DRAFT: January, 2001

FOR: The Nature of Scientific Evidence
M. L. Taper and S. R. Lele, editors
The University of Chicago Press

STATISTICS AND THE SCIENTIFIC METHOD IN ECOLOGY

Brian Dennis
Department of Fish and Wildlife Resources
and
Divison of Statigics
University of 1daho
Moscow, ID 83844-1136 USA

phone: 208-885-7423
fax: 208-885-9080
emal: brian@uidaho.edu



Abstract. Ecology asascience is under constant politica pressure. The scienceis
difficult and progressis dow, due to the varigbility of natura systems and the high cost of
obtaining good data. Ecology however is charged with providing information support for
environmenta policy decisonswith far reaching societal consequences. Demand for quick
answersis strong, and demand for answers that agree with a particular point of view is even
stronger.

The use of Bayesian Satistical analyses has recently been advocated in ecology,
supposedly to aid decision makers and enhance the pace of progress. Bayesian datistics
provides conclusonsin the face of incomplete information. Bayesian Satistics, though,
represents a much different approach to science than the frequentist Satistics sudied by most
ecologigts. The scientific implications of Bayesan atigtics are not well understood.

| provide a critica review of the Bayesian approach. | compare, usng asmple
sampling example, the Bayesian and frequentist anadlyses. The Bayesan andyses can be
“cooked” to produce results consistent with any point of view, because Bayesan analyses
quantify prior persond beliefs and mix them with the data. In this, Bayesan satidicsis
consgtent with the postmodern view of science, widely held among nonscientigts, in which
scienceisjus asystem of beliefs that has no particular authority over any other system of
beliefs. By contrast, modern empirica science uses the scientific method to identify empirica
contradictions in skeptics beliefs and permit replication and checking of empirica results.
Frequentist gtatistics has become an indispensible part of the scientific method.

| dso undertake a critical discussion of satistics education in ecology. Part of the
potentia apped of Bayesian Satidticsis that many ecologists are confused about frequentist
datigtics, and datisticad conceptsin generd. | identify the source of confusion as arising from
ecologists atempts to learn dtatistics through a series of precalculus “ satistical methods’
courses taken in graduate school. | prescribe aradical changein the statistical training of
ecologica scientistiswhich will greetly increase the leve of confidence and facility with Satigticd
thinking.



INTRODUCTION

Stiencein the crosshairs

Tobacco company scientists argue thet there is no evidence that smoking tobacco is
harmful. Biblica crestion scientists argue that the evidence for evolution iswesk. Ingtitutes paid
for by industry are saffed by degreed scientists, whose job it isto creete in the minds of
politicians and the public the illuson of mgor scientific disagreements on environmenta issues.

We are awash in a sea of popular postmodernism. Fact in the postmodern view is just
srongly-held belief (Anderson 1990). Native Americans, according to tribal crestion stories,
did not origindly cross over from Asa, but arose independently and originaly in the Americas.
The U.S. government is concedling dark secrets about the existence of extraterrestrid life,
secrets which became partly exposed after a crash near the town of Roswell, New Mexico.
Crygds have hedth and hedling properties. One's personality and tendencies are influenced by
the pogtions of solar system objects at the moment of birth. O. J. Simpson did not kill Niccole
Brown and Ron Goldman.

The postmodern outlook is not confined to popular culture, but permestesintellectua
lifeaswdl. Humanities disciplines a universties have abandoned the traditional empirical view
of science (Soka and Bricmont 1998). Feminists claim that the methods and requirements of
stience are biased againgt femdes. According to feminist scholars, if femaes formed the
reigning power structure, science would be more cooperative in occupation and more tolerant
of multiple explanations. “Science sudies’ historians focus on questionable behavior of well-
known scientists toward colleagues, in order to expose science as a subjective power struggle.
Multiculturd philosophers portray science as just another of many legitimate ways of knowing,
its successes due primarily to the dominance of European culture. Scientists writings are
decongtructed by literary theorists in order to reveal how the scientists were trapped by the
prevailing cultura menta prisons. Politica polemics from the intellectud |eft and right reved
dishdief and disrespect for established scientific knowledge.

Ecology

The questioning of science and the scientific method continues within the science of
ecology.

Ecology has become a highly politicized science. Once aquiet backwater of biology,
ecology burst into high public profile in the early 1970s (Earth Day, April 1970, was a
watershed event) with the emergence of popular concern about environmenta issues. After
passage of the Nationa Environmentd Policy Act, the Endangered Species Act, the National
Forest Policy and Management Act, and many other federal and state laws, ecologists and the
findings of ecology suddenly had greet influence in the lives of people everywhere. The scientific
information from ecology, coupled with the environmenta laws, forced congtraints on peoples
behavior and economic activity.

Many ecologica topics, from evolution to conservation biology to globa climate
change, hit people close to home. Asaresult, scientific sgnals are often masked or distorted by
politica noise. An ecologica discovery that has impact on human conduct will often have a
debunking campaign mounted againg it by monied interests. Government agency scientists are



sometimes muzzled and have their findings reversed by the pen-stroke of a politica gppointee.
Natural resource departments a state universities are pressured by specid interest groups.
Radio talk show hosts set themselves up as authoritative spokespersons on environmental
topics.

Among practicing, credentialed ecologists, the science itsdlf is quite contentious. The
topic intringcdly attracts many participants, and the competition for admission to programs,
jobs, journd space, grants, and recognition isfierce. Severe scientific and paliticd infighting
surfaces during position searches at university departments. Anonymous peer reviews can be
ignorant and vindictive. Resources for curiosity-driven research are scarce; ecologicd research
is funded more and more by agencies and companies with particular agendas. Pressures mount
from environmenta decison-makersfor definitive answers. 1n this postmodern cacgphony, how
can ahedthy ecologica science thrive?

In fact, some ecologists in the past couple of decades have questioned whether the
Popperian hypothetico-deductive gpproach, and the collection of inquiry devices known as the
scientific method, are too congraining for ecology. Good empirical dataiin ecology have often
been too dow in coming or too difficult and expensive to collect, and scientific progressin
ecology has seemed painfully dow. The callsfor relaxed scientific guiddines have come from
two main sources. Firgt, some “theoretical ecologists’ have sought scientific respect for ther
pencil, paper, and computer peculations on ecologica dynamics. Their mathematica modds
however, frequently play therole of “concepts’ rather than * hypotheses’, due to the lack of
connections to data and the lack of widdly accepted ecologica laws with which to build models.
Asaresult, theoretical ecologists have cdled for judging mathematica models under different
criteriathan scientific hypotheses would be judged. Articles in the November 1983 issue of
The American Naturalist debated this question, among others, within the context of
community ecology.

Second, applied ecologists and socid decison-makers have often viewed the beetles-
and-butterflies focus of ecologicad naturd history research to be an unaffordable luxury.
Academic ecology research is an exotic world of Galgpagos birds, Carribean lizards, jungle
orchids, and desert scorpions; it isdow, intellectual, and to some onlookers, produces few
useful generdities. Y e, ecology aso deds with vita topics within which mgor socid decisions
must be made, regardless of the amount of evidence available. Answers, in the form of “best
judgements’ by experts are needed, fast. For example, will breaching the Columbia watershed
dams save salmon, or not?

A partid reading list for aseminar course on the “ scientific method in ecology” might
include Connor and Simberloff (1979, 1986), Saarinen (1980), The American Naturalist
(1983 November), Hurlbert (1984), Strong et d. (1984), Hairston (1989), Underwood
(1990), Peters (1991), Schrader-Frechette and McCoy (1993), and Dixon and Garrett (1993).

Inevitably bound up in this question about ecological science are concerns about
datistica practice. Thelack of true replication in many ecologica experiments exposed by
Hurlburt (1984) was a shocker. Thelack of attention to power in many ecologica studies has
a0 been criticized (Toft and Shea 1983, Peterman 1990). Didtribution-free statistica methods
have been advocated (Potvin and Roff 1993), but some advocacy arguments have been
challenged (Smith 1995, Johnson 1995). Stewart-Oaten (1995) criticized the tendency for



ecologigs to view datistics as a set of procedurd rulesfor dataanadyss. The widespread
misnterpretation of satistical hypothesis testing has ingpired much discusson (Simberloff 1990,
Underwood 1990, Y occoz 1991, Johnson 1999). The lack of Statistical connections between
“nonlinear dynamics’ models and ecologica datawas criticized (Dennis et d. 1995). Specific
ecologica topics, such asthe prevaence of density dependent population regulation, have
spawned their own Setistical literature (see Dennis and Taper 1994).

Bayesian statistics

According to some (Reckhow 1990, Ellison 1996, Johnson 1999), there is a dtatistical
solution to many of ecology'sills. The touted solution is Bayesian datistics. Bayesan Satistics
isremarkably different from the variety of satistics called frequentist satistics that most of us
learned in college. Bayesan datistics abandons many concepts that most of us struggled (with
mixed success) to learn:  hypothesis testing, confidence intevals, P-vaues, standard errors,
power. Bayesans clam to offer improved methods for ng the weight of evidence for
hypotheses, making predictions, and making decisons in the face of inadequate data. In a cash-
srapped science charged with information support in a highly contentious political arena, the
Bayesan promises are enticing to ecologicd researchers and managers dike.

Butisthereapriceto pay? You bet. Bayesans embrace the postmodern view of
science. The Bayesian gpproach abandons notions of science as aquest for “objective’ truth
and scientists as detached, skeptical observers. Like postmoderns, Bayesians claim that those
notions are mideading at best. In the world of Bayesan datitics, truth is persond and is
measured by blending data with persond beliefs. Bayesan Satidicsisaway of explicitly
organizing and formulating the blending process.

There is an enormous literature on Bayesan datistics. A glance at thetitlesin any
current statisticsjournd (say, Journal of the American Statistical Association, or
Biometrika) might convince a casua onlooker that the world of statisticsis becoming Bayesian.
The Bayesan viewpoint isindeed gaining influence. The burgeoning literature, however, tends
to be highly mathematicd, and a scientist is right to question whether the attraction is
mathematical ingtead of scientific. Actudly, frequentismisdive and well in datistics.
Introductory textbooks and courses remain overwhemingly frequentist, as do canned computer
satistics packages available to researchers. Frequentist and Bayesan statisticians waged war
for many years, but the conflict quieted down around 1980 or so, and the two camps coexist
now in gtatistics without much interaction.

Ecology, however, represents fertile, uncolonized ground for Bayesanideas. The
Bayesan-frequentist arguments, which many satisticians tired of twenty years ago, have not
been considered much by ecologists. A handful of Bayesian papers have appeared in the
ecologicd literature (see the featured group of articlesin the November 1996 Ecological
Applications, vol. 6(4)). Their enthusiastic exposition of Bayesian methods, and portraya of
frequentism as a anachronistic yoke impeding ecologica progress, has attracted the attention of
natural resource managers (Marmorek 1996).

The Bayesian propagule has arrived at the shore. Ecologists need to think long and
hard about the consequences of a Bayesian ecology. The Bayesian outlook is a successful
competitor, but isit aweed?



| think so. In this paper, | attempt to draw a clear distinction for ecologists between
Bayesan and frequentist science. | address a smple environmental sampling problem and
discuss the differences between the frequentist and the Bayesan satistical andyses. Whilel
concur with Bayesans regarding critiques of some of the imperfections of frequentiam, | am
adarmed at the potentid for disnformation and abuse that Bayesian Satistics would give to
environmenta pressure groups and biased investigators. At therisk of repeating alot of basic
datidics | develop the sampling example rather extensvely from eementary principles. The
am isto amplify the subtle and not-so-subtle conflicts between the Bayesian and frequentist
interpretations of the sampling results.

Readers interested in amore rigorous analyss of the scientific issuesin the
frequentist/Bayesian debate are urged to consult Mayo's (1996) comprehens ve account.

One thing has become painfully clear to me in twenty years of extensive teaching,
datidtica consulting, reviewing, and interacting in ecology. Ecologists understanding of statistics
in generd isabysmally poor. Statigtics, which should naturaly be a source of strength and
confidence to an ecologist, no matter how empiricdly oriented he/sheis, isdl too frequently a
source of weakness, insecurity, and embarrassment. The crucia concepts of frequentism, let
adone Bayesanism, are widely misunderstood. | place the blame squarely on ecologists
datistica educations, which | find al wrong. In alater section of this paper, | offer some
solutionsto this problem. Ecologists, whether Bayesian or frequentist, will be better served by
datisticswith aradica revison of universty satistics coursework.

WHAT ISFREQUENTISM?

“ Nature cannot be fooled.” —Richard Feynman

Suppose areach of astream isto be sampled for Cu pollution. A total of 10 samples
will be collected from the reach in some random fashion, and Cu concentration (g =1 ) will be
determined in each sample.

The purpose of the samplesisto estimate the average concentration of Cu in the water
a thetime of sampling. The sampling could be a part of an ongoing monitoring study, an
upstream/downstreanvbefore/after sudy, or smilar such study.

Frequentist satigtics involves building a probability mode for the observations. The
modeling aspect of gatigticsis crucid to its understanding and proper use; however, the pre-
calculus gatigtics methods courses taken by ecologisis-in-training tend to emphasize formulas
ingead of models. | therefore develop the modeling aspect in more detail than is customary in
frequentist analyses, so that the approach may be contrasted properly with the Bayesian way.

We might suppose that theobservations of Cu concentration could be modeled asiif
they arose independently from anorma distribution with mean 1 and variance o2. Applied
datigtics texts would word thismode asfollows. each sampleis assumed to be drawn at
random from a“ population” of such samples, with the population of Cu vaues having a
frequency digtribution well-gpproximated by anorma curve. The population mean is i, and the
population varianceis o2. Mathematical (i.e. post-calculus) statistics texts would state: the
observations { X; },7 =1, 2, ..., n are assumed to be independent, identically distributed
norma (11, o) random variables. Regardless of the wording and symbology, the important



point is that a probability modd is assumed for how the variability in the data arose. The
andyses are based on the model, and so it will be important to eva uate the model assumptions
somehow. If the mode isfound wanting, then proper andyses will require construction of some
other moddl.

We suppose the observations are drawn; their numericd vduesare 1, xo, ..., T,
(n = 10). Symbols are used for the actua vaues drawn so that the subsequent formulas will be
generd to other data sets; the lower case notation indicates fixed constants (sample aready
drawn) instead of upper-case random variables (sample yet to be drawn). The digtinction is
absolutdy crucid in frequentist satistics and is excruciating for teachers and sudents dike.
(Educators in ecology should be aware that pre-calculus basic satistics textbooks, in response
to the overwhelming symbol alergies of today's undergraduates, have universdly abandoned the
big- X little- notation, and with it al hope that statistics concepts are intended to be
understood). Let us suppose that the investigator has dutifully calculated some summary

n
datigtics from the samples, in particular the ssmplemeanz = () z; ) /n and the sample
i=1

vaiance s2 =
n

(3 (x; —7T)%]/(n — 1), and that the resuiting numerical values are;
i=1

T = 50.6,

s2 = 25.0.

The probability modd for the observations is represented mathematically by the normal
digtribution, with probability dengity function (pdf) given by

fz) = (*2m) e[~ (z — p)?/(20%)], — oo <z < co.

Thisisthe bell-shaped curve. The cumulative digtribution function (cdf) is the area under the
curve between — oo and x and is customarily denoted F(x). The probabilistic meaning of the
mode is contained in the cdf; it isthe probability that arandom observation X will take avaue
less than or equal to some particular constant value x:

Fz) = P X<z] = /_x flu)du .

Again, the lower and upper case X's have different meanings. The constants 1, and o are
“parameters.” In applied stat texts, 1 and o are interpreted respectively as the mean and
variance of the “population” being sampled. Bear in mind that the population hereisthe
collection of al possible samplesthat could have been selected on that sampling occasion. Itis
this potentid variability of the samplesthat is being modeled in frequentist satistics.

An essentid concept to master for understanding frequentist and Bayesian satistics ke
isthelikeihood function. The pdf f(«) quantifies the relative frequency with which asingle
observation takes avaue within atiny interva of . The whole sample, however, consss of n
observations. Under the independence assumption, the product f(x1) f(xz2)... f(xzn)



quantifies the relative frequency with which the whole sample, if repeated, would take vaues
within atiny intervd of 21, 9, ..., xn, the sample actually observed. The product isthe
“probability of observing what you observed” relative to dl other possible samplesin the
population. Mahematicaly, the random process consists of n independent random variables
X1, X9, ..., Xy Theproduct f(z1) f(x2)... f(x,) isthejoint pdf of the process, evaluated
at the data values.

Thejoint pdf of the process, evauated at the data, isthe likelihood function. For this
norma model, the likelihood function is a function of the parameters 1« and 2. Therdaive
likelihood of the sample z1, 9, ..., z;, depends on the the values of the parameters, if 1, were
100 and o2 were 1, then the relative chance of observing sample values clustered around 50
would be very smdl indeed. Written out, the likelihood function for this norma modd is

L(p, 0*) = f(z1) f(x2)... f(zn)

= (0227r> "2 exp [— (202)_1 y (x; — ,u)2] .

1=1

An dgebraic trick well-known to setisticiansisto add — z + 7 inddeeach term (z; — p) in
the sum. Sqguaring the terms and summing expresses the likelihood function in terms of two
sample satistics, 7 and s2:

L) = (P2r) el - (22) [0 -2 +nw-2?]}. @

Only the numbersz and s are needed to calculate the likelihood for any particular values of 1
and o?; onceZ and s° arein hand, the original data values are not required further for
estimating the model parameters. The statistics T and s2 are said to be jointly sufficient for x
and 2.

Because likdihood functions are typicaly products, dgebraic and computationa
operations are often smplified by working with the log-likelihood function, In L:

INL(p,0%) = —(n/2)In27) — (n/2)Inc?

—(n—1)s*/(20°) = n(n—7)*/(20). 2

Modern frequentist statistics can be said to have been inaugurated in 1922 by R. A.
Fisher, who firg redized the importance of the likelihood function (Fisher 1922). Fisher noted
that the likeihood function offersaway of usng data to estimate the parametersin amodd if
the parameter values are unknown. Subsequently, J. Neyman and E. S. Pearson used the
likelihood function to congtruct a general method of statistical hypothesis testing, that is, the use
of datato select between two riva statistical models (Neyman and Pearson 1933). More
recently, the work of H. Akaike (1973, 1974) launched a class of likelihood-based methods for
model selection when there are more than two candidate models from which to choose.



Two cases for inferences about 1 will be considered: o known, and o unknown.
The“s? known” caseis obvioudy of limited practical usefulnessin ecologica work. However,
it alows asimple and clear contrast between the Bayesian and frequentist approaches. The“o?
unknown” case highlights the differences in how so-cdled * nuisance parameters’ are handled in
the Bayesan and frequentist contexts, and aso hints a the numerica computing difficulties
attendant with the use of more redistic models. | concentrate on point estimates, hypothesis
tests, and confidence intervals.

o2 known

We assumethat o2 is aknown constant, say, o2 = 36.

Fisher (1922) developed the concept of maximum likelihood (ML) estimation. The
value of 1, cdl it 71, that maximizes the likelihood function (Eq. 1) isthe ML estimate. The ML
edimate dso maximizes the log-likelihood function (Eq. 2). Itisasmple cadculus exerciseto
show that Eq. 2 is maximized by

=T,

Thus, a point estimate for 1 calculated from the sampleis i = 50.6.

ML point estimates were shown by Fisher (1922) and numerous subsequent
investigators to have many desirable Satistica properties, among them: (a) Asymptotic
unbiasedness (datistica distribution of estimate approaches a distribution with the correct mean
asn becomeslarge). (b) Consstency (distribution of the parameter estimate concentrates
around the true parameter value as n. becomeslarge). (€) Asymptotic normdity (distribution of
the parameter estimate gpproaches anorma distribution, a celebrated centrd limit theorem-like
result). (d) Asymptotic efficiency (the asymptatic variance of the parameter etimate is as smdll
asistheoreticaly possble). These and other properties are thoroughly covered by Stuart and
Ord (1991). Deriving these properties forms the core of amodern Ph. D.-level mathematical
datistics course (Lehmann 1983).

These gatistical properties refer to behavior of the estimate under hypothetica repeated
sampling. To illugrate, the whole population of possible samples induces awhole population of
possible ML estimates. In our case, to each random sample X, Xo, ..., X, there
corresponds a sample mean X, arandom variable. The frequency distribution of the possible
edimate vaues is the sampling distribution of the ML estimate. The sampling digtribution
plays no role in Bayesian inference, but is a cornerstone of frequentist analyses.

When reading Statistics papers, one should note that the “hat” notation for estimates
(eg. 11) isfrequently used interchangeably to denote both the random variable (X) aswell as
theredlized value (7). Thisdoes not create confuson for satisticians, because the meaning is
usudly clear from context. However, the distinction can trip up the unwary. A quick test of
one's grasp of statisticsisto define and contrast 1., 7, X, and 7 (ornery professors looking for
curveballsto throw at Ph. D. candidates during ora exams, please take note).

In our example, the sampling distribution of the ML estimateis particularly smple. The
exact sampling distribution of X isanorma digtribution with amean of . and a variance of
o’ /m. Theindependent normal model for the observations is especialy convenient because the
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sampling distribution of various statistics can be derived mathematically. In other models, such
as the multinomia models used in categoricad data analysis or the dependent norma models
used in time series anays's, the sampling distributions cannot be derived exactly and instead are
approximated with asymptotic results (centra limit theorem, etc.) or studied with computer
amulation.

A statistical hypothesis test is a data-driven choice between two statisca models.
Congder afixed reference Cu concentration, 1., that has to be maintained or attained, for
instance, ;1o = 48. One podition is that the reference concentration prevails in the stream, the
other position isthat it does not. The positions can be summarized as two Statistical hypotheses:
Ho: the observations arise from anormal (g, o2) distribution, and Hy : the observations arise
from anorma (., o%) distribution, where 1. is not restricted to the value 1. In beginning
datigtics texts, these hypothese are often stated asHy: 1 = g, Hi: p # pg. A decison
involves two possible errors, provided the norma distribution portion of the hypothesesis
viable. Firg, Hy could betrue but H; is sdlected (Typel error); second, H; could be true but
Ho issdlected (Typell error). Both errors have associated conditional probabilities «, the
probability of erroneoudy choosing Hy, given Hy istrue, and (3, the probability of erroneoudy
choosing Hy, given H; istrue. Both of these error probabiilities are set by the investigator. One
probability, typicaly «, is set arbitrarily a some low value, for ingance 0.05 or 0.01. The
corresponding hypothesis assumed true, Hy, is termed the null hypothes's. The other
probability is controlled by the design of the sample or experiment (sample sz, etc.) and the
choice of test satistic. The hypothesis assumed truein this case, Hy , isthe alter native
hypothesis.

Severd important points about Satistical hypothesis tests must be noted. First, o and 3
are not the probabilities of hypotheses, nor are they the unconditiond probabilities of committing
the associated errors. In frequentist statistics, the probability that Hy istrueiseither O or 1 (we
just do not know which), and the unconditiond probability of committing a Type | error is either
« or 0 (we do not know which). In the frequentist view, tating that “H has a 25% chance of
being true” is meaningless with regard to inference.

Second, the smpler hypothesis, thet is, the statistical model that has fewer parameters
and is contained within the other as a specid caseis usudly designated as the null hypothesis,
for reasons of mathematical convenience. The sampling distributions of test Satigtics under the
null hypothesisin such situations are often easy to derive or gpproximate.

Third, satigtical theory accords no specid digtinction between the null and dternative
hypotheses, other than the difference by which the probabilities o and 3 are set. The
hypotheses are just two statistica models, and the test procedure partitions the sample space
(the callection of al possible samples) into two sets: the set for which the null modd is sdlected,
and the set for which the dternative is selected.

Fourth, the concordance of the satistical hypothesis with a scientific hypothesisis not a
given, but is part of the craft of scientific investigation. Just because an investigator ran numbers
through PROC this-or-that does not mean that the investigator has proved anything to anyone.
The gatigtical hypothesis test can enter into scientific argumentsin many different ways, and
weaving the satistica results effectively into abody of scientific evidence is a difficult kill to
magter. Ecologists who have become gun-shy about hypothesis testing after reading alot of
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hand-wringing about the misuse of null hypotheses and significance testing will find the
discussions of Underwood (1990) and Mayo (1996) more congtructive.

In our stream example, the hypothesistest is congtructed asfollows. The likelihood
function under the null hypothesisis compared to the maximized likelihood function under the
dternative hypothess. The likelihood function under the null hypothesisis Eq. 1 evduated at
1= o (= 48) and o> = 36. The maximized likdihood function under the dternetive
hypothesisis Eq. 1 evaluated at 1« = ;1 = = = 50.6 and o> = 36. Thelikeihood ratio statistic,
L(po, %)/ L(1, o%), or amonatone function of the likelihood ratio such as

G2 — _2In L(MO’UQ)/L(:"UQ)]

forms the basis of thetest. High values of the test Statistic G favor the dternative hypothesis,
while low vaues favor the null. The decison whether to rgect the null in favor of the dternative
will be based on whether the test statistic exceeds acritical value or cutoff point. The critica
vaueis determined by o and the gatisticad sampling digtribution of the test datistic.

A wdl-known result, first derived by S. S. Wilks (1938), provides the gpproximate
sampling distribution of G2 for many different statistical models. If the null hypothesisis true,
then G has an asymptotic chi-square distribution with 1 degree of freedom, under hypothetical
repeated sampling. (The degrees of freedom in Wilks result is the number of independent
parametersin H; minus the number of independent parameters estimated inHp,or 1 — 0=1
in our example) Using this resuilt, one would reject the null hypothesisif G2 exceeded x2 (1),
the 100(1 — «/)th percentile of a chi-square(1) distribution (Xg. 05 (1) ~ 3.843). Because our
example involves observations from the mathematically convenient norma ditribution, the
sampling distribution can be caculated exactly. Letting Z = (X — ug)/+/ 0% /n , the
expression for G2 can be dgebraicaly rearranged (using the + X — X trick again; the upper
case X reminds us that hypothetical repeated sampling is being considered):

G? = 72,

Because Z has a standard normal distribution, the chi-souare result for G2 is exact (square of a
standard normd has a chi-square(1) distribution). The decison to rgject can be based on the
chi-square percentile, or equivalently on whether |Z| exceeds z,, /5 , the 100(1 — a/2)th
percentile of the sandard norma distribution (2 o5 ~ 1.960).

For the stream example, the attained value of Z isz = (50.6 — 48)/,/36/10 ~ 1.37.
For o = 0.05, the critical value of 1.96 is not exceeded. We conclude that the vaue . = 48
isaplausble vauefor p; thereisnot convincing evidence otherwise. The P-value, or attained
sgnificance levd, is the probaility that Z for a hypothetica sample would be more extreme
than the attained value z, under the null modd. From the norma digtribution,
Pl Z| > 1.37] = P~ 0.17. If the test Statistic has exceeded the critica value, then aso P will
be lessthan .

Confidence intervals and hypothesis tests are two sides of the same coin. A
confidence interval (Cl) for 1. can be defined in terms of a hypothesstest: it isthe set of dl
vaues of 1 for which the null hypothessHy: 1 = 19 would not be rgjected in favor of the
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dternaiveH;: 1 # pg. A Cl can be consdered a st of plausible valuesfor . The sets
produced under hypothetica repeated sampling would contain the true value of . an average of
100(1 — a)% of thetime. Theform of theinterval ishere

( )

The redized Cl for the stream example, with o« = 0.05, is
(50.6 — 1.96,/36/10, 50.6 + 1.96,/36/10) = (46.9, 54.3) .

Note that under the frequentist interpretation of the interval, it is not correct to say that

P[46.9 < u < 54.3] =1 — a.. Theinterva either contains 1. or it does not; we do not know
which. The concept of a Cl can be likened to a playing agame of horseshoes in which you
throw the horseshoe over awall that conceals the stake. 'Y our long-run chance of getting a
“ringer” might be 95%, but once an individua horseshoe isthrown, it is either aringer or it is not
(you just do not know which).

There are one-sided hypothesis tests, in which the form of the aternative hypothesis
might beHy: p > pg (orinstead <), and associated one-sded confidence intervals (see Bain
and Engdlhardt 1992). The one-sided test or CI might be more appropriate for the stream
example, if for instance the data are collected to provide warning as to whether an upper level
o of Cu concentration has been exceeded.

o unknown

Redigtic modding studies must confront the problem of additional unknown parameters.
Sometimes the whole modd is of interest, and no particular parameters are singled out for
gpecid attention. Other times, asin the stream example, one or more parameters are the focus,
and the remaining unknown parameters (“ nuisance parameters’) are estimated out of necessity.

The parameter o in the norma modd is the perennid example in the statistics literature
of anuisance parameter. That the estimate of ;1 becomes more uncertain when o must aso be
estimated was first recognized by W. S. Gosset (Student 1908). The problem of nuisance
parameters was refined by numerous mathematica/satistical investigators after the likelihood
concept became widdly known (Cox and Hinkley 1974 is a standard modern reference).

In frequentist Statistics, aleading approach isto estimate o2 (or any other nuisance
parameter) just like one would estimate 1. The gpproach has the advantage of helping
subsdiary studies of the data; for instance, in a monitoring study (such as the stream example),
one might have an additiond interest in whether or not o2 has changed. In this case o2 isnot
redlly anuisance, but rather an important component of the red focus of study: the modd itsdf.

For estimation, the likelihood function (Eq. 1) isregarded as ajoint function of the two
unknowns, i and o2. The ML estimates of 1 and o are those vdues which jointly maximize
the likelihood (Eq. 1) or log-likdihood (Eq. 2). A smple calculus exercise sets partiad
derivatives of In L (1, o) with respect to ;. and o> Smultaneously equal to zero. Theresuiting
ML estimates are;



Note that the ML estimate of o is not the sample variance (n — 1 in denominator). An
edimate that adjusts for asmdl-sample biasis

The ML estimate of o2, however, has smaller mean-squared error in small samples; o2 and

T2 arevirtudly identicd in large samples.
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Hypothesis tests and confidence intervals for 11 again revolve around the likelihood ratio

datistic. With additiond unknown parametersin the modd, the statistic compares the the
likelihood function maximized (over the remaining parameters) under the null hypothesis, Hy :
1= g, with the likelihood maximized (over dl the parametersincluding 1) under the
dternative hypothesis Hy @ 1 # 119 When p = g, thevaue of o that maximizesIn L (y,
o?) (Eq. 2) is

The (log-) likelihood ratio datidtic is
[ L0, 5% |
| LG |

where in the brackets isthe ratio of the null and aternative likdihoods, evauated at the ML
estimates. With some dgebraic rearrangement (the + = — T trick again), G becomes

G? = —2In
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where

T — Jo
Vs /n

is recognized as Student's t-gatistic. The hypothesis test can be based on the asymptotic chi-
square(1) sampling distribution of G2, or better yet, on the known exact distribution of
T=(X~-py)/\/S?/n. OnergectsHy: i = g infavor of Hy: pu # p if |T| exceeds
ta/2,n—1,the 100[1 — («/ 2)]th percentile of the Student's t-distribution with » — 1 degrees of
freedom.

For the stream example with .y = 48, the attained value of 7' is
t = (50.6 — 48)/4/25/10 ~ 1.64. For oo = 0.05, the criticd value of ¢( g25 9 ~ 2.262 is
not exceeded by |¢|, and we conclude thet the vaue 1.y = 48 isaplausblevauefor pi. The P-
vaue for the test is obtained from Student's t-distribution (9 degrees of freedom):
P[|T| > 1.64] = P ~ 0.14.

Confidence intervas, as before, can be defined by inverting the hypothesistest. The
values of 4 for which Hy isnot rejected, that isfor which |T| <t /5,1, mekeup the

interva
(E - toz/Q,nfl \/ 82/”* x + ta/Q,nfl V SQ/”) .

This condtitutesa 100(1 — )% Cl for p. Theinterva aso represents aprofile likelihood Cl.
For arange of fixed vaues of 1, L (g, 02) ismaximized (over o values) and compared to
L(ﬁ,&z) (the maximized likdlihood under the model Hy ). The set of 1 vauesfor which

G? < k, where k is some fixed congtant, isaprofilelikeihood Cl. Inthe aoveintervd,

(ta/Q,nfl)2

k=nIn{1l+ T] , the critical value of the likdlihood retio test usng the exact

Student's t-digtribution. In non-norma models, & istypicdly a percentile of the chi-square

distribution used to approximate the sampling distribution of G2. Frequently for such models,

repeated numerical maximizations are necessary for caculating profile likelihood intervas.
The stream example gives a 95% CI of

(50.6 — 2.262,/25/10, 50.6 + 2.262,/25/10) = (47.0,54.2).

This Cl represents arange of plausible vauesfor p, taking into account the uncertainty of
estimation of 0.

Much of standard introductory statistics, in the form of t-tests, tests of independencein
contingency tables, andysis of variance, and regression, can be understood in the context of the
above concepts. In particular, norma linear models (andysis of variance and regression) are
formed by dlowing 1 to be reparameterized as

po= Py + Bir1 + Bara + ... + Bmrm,
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where 5y, 61, ..., Bm aeunknown parametersand r, ro, ..., y, aevaues of covariates
(indicator variables or predictor variables).

Model evaluation

Once the point estimates are calculated, tests are performed, and confidence intervals
are reported, the job isnot done. The estimates and tests have valid sample space Statistical
properties only if the modd is a reasonable approximation of how the origina data arose.
Diagnostics are routine checks of modd adequacy. Diagnostics include examining residuds (in
this case, ;; — 1) for gpproximate normality vianormal quantile-quantile plots or tests, tests for
outliers or influentid values, and graphica plotting of modd and data. The mode implicit in the
datisticd analysisisto be questioned, and if found wanting, some other model might be
necessary.

Such modd checking, it must be noted, involves sample space properties of the model.
If the correct mode is being used, observations of the process are expected to be in controal,
that is, within the usua boundaries of model-predicted variability. A process out-of-control is
indicated by wayward observations and cals for further investigation. Thisisa standard
principle of quality control, which involves the sysematic and routine use of gatistical models
to monitor variability and is used in virtualy al modern manufacturing processes (Vardeman
1994).

WHAT ISBAYESIANISM?

“What he and | are arguing about is different inter pretations of data.”
—Duane Gigh, in an evolution/cregtion debate

The concepts of frequentism revolve around hypothetica repetitions of arandom
process. The probabilities in afrequentist problem are probabilities on asample space. The
quantity «, for ingance, is the probakility that the sample will land in a particular region of
sample space, given that a particular model describes the process.

In Bayesan Statistics, sample space probabilities are not used. Instead, probability has
adifferent meaning. Probability in Bayesian daidicsis an investigator's persona measure of the
degree of belief about the vaue of an unknown quantity such as a parameter.

Let us again turn to the example problem. We have a sample of 10 observations of Cu
concentration in astream. We assume that these observations can be modeled asif they arose
independently from anormal distribution with amean of 1 and avariance of 0. Again, we
treat separately the cases of o2 known and o unknown.

o2 known
There is only one unknown parameter, 1. The Bayesan formulates hisher beliefs about
thevdueof . into aprior probability distribution. The prior distribution has pdf denoted by
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g(p) and cdf given by

The form of g(u) must be specified completely by the investigator. There are various
waysto do this Oneway isto “dicit” such adidribution by determining the odds the
investigator would give for betting on various vaues of 1.

The subsequent formulas work out agebraicaly if we assume thet theform of g(u) isa
norma pdf with amean of @ and avariance of 72, with the values of 8 and 72 to be dlicited.
However, more complicated distributiona forms nowadays are possible to implement in
practice. Skewed gamma-type distributions or curves fitted to the investigator's odds
declarations can be used.

Our invedtigator in this example works for the mining company upstream. This
investigator would give one-to-three odds that the Cu concentration is below 18.65, and three-
to-one odds that the Cu concentration is below 21.35. If the 25th and the 75th percentiles of a
normal distribution are set at 18.65 and 21.35 respectively, then solving

G(18.65) = 0.25

G(21.35) = 0.75

gmultaneoudy gives
0 ~ 20,

7'2%4.

It isworth pausing a moment to reflect on the prior. It isnot claimed that 1 isarandom
variable. Indeed, 1 isafixed quantity, and the objective isto estimateitsvaue. Rather, i isan
unknown quantity, and personal beliefs about ;. can be represented as if they follow the
laws of probability. Thisis because the odds that the investigator would give for the vaue of 1
increase smoothly from O for valuesof 1 < — oo, 10 + oo for vauesof p < 4 oo. Such
increase and range are the precise properties of a cdf written in terms of odds.

G(p)/[1 =G (p)].

Data, in the Bayesan view, modify beliefs. The data enter the inference through the
likelihood function. The likelihood function is as centrd to Bayesan inference asitisto
frequentist inference. However, its interpretation is different under the two outlooks.

In Bayesian gatidtics, the likelihood arises as a conditiond probability mode. Itisthe
joint pdf of the process, evaluated at the data, given values of the unknown parameters. In
other words, the set of beliefs about dl possible values of 1, and dl possible outcomes of the
data-production process are contained in ajoint pdf, say h(z1, 3, ... ,xn, 1). Thelikdihood
function (Eq. 1) isthe conditiond pdf of 1, zo, ... ,xn given u:
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L(,u,az) _ (0227r) —n/2 exp{ _ (202)—1 [(n _ 1)32 +n(p —5)2} }

= h(ibl,wg, ,:cn|,u) .

The frequentist Smply regards the likelihood as a function of possible values of 1, with no
underlying probability attached to the . values.

What is sought in Bayesian datidics is the probability digtribution of bdliefs after such
beliefs have been modified by data. This digtribution is known as the posterior distribution and
isthedigribution of 1. giventhe data, 1, xo, ... ,x,. Bayes theorem in probability isa
mathematica result about joint and conditiond probability distributions thet is not in dispute
between frequentists and Bayesians. In the present context, the theorem is used to write the pdf
of u gvenzy, g, ... , @, denoted g(p |1, 29, ..., xn), interms of the the likelihood function
and the prior digtribution:

g(plzy, @9, .. ,xn) = Ch(xy,x2, .., xn|pw)g(p) .
The quantity C' isanormalization constant that causesthe areaunder g(y|z1, 22, ..., n) t0
beequd to 1. Itis
1

- fjoooo h(xy1, zo, ...,acn‘,u)g('u)d,u .

The cdculation of C' isthe mathematical and computationa crux of Bayesan methods.
Obtaining C' isadgebraicaly sraightforward for the forms of the prior and the likelihood selected
in our stream example. The quantity ;. appears quadraticdly in the exponentia function in the
product A (z1, 9, ..., zn |p)g(k), and so C' isrelated to theintegral of anormd distribution,

The end result is that the pogterior pdf isthat of anorma digtribution:

[NS] [

ep| - (u—61)?/(2n?)],

g(u‘xl,xg,...,acn) = (T1227T)_

wherethemean 6 is

and the variance 7, 2 is



18

The mean 0, isaweighted combination of the prior mean, ¢, and the sample mean of the data,
T. Asthe sample sze increases, the weight on the prior mean decreases, gpproaching zero in
thelimitasn — oo.

The point estimate of 1. in Bayesan Satigticsis usualy taken to be the expected vaue of
the pogterior digtribution: #;. This estimate can be regarded as a prediction of the vaue of 1.
The posterior distribution, like the prior, represents degree of belief. The prior prediction was
6, and the posterior prediction 6 quantifies how the prior prediction has been modified by the
advent of the data. In our stream example, the ten data points changed the prior prediction of
6 = 20 into the posterior prediction of §; ~ 36.1. The variance of the posterior is 72 ~ 1.89.

One should note that the Bayesian point estimate of 1 isbiased in the frequentist sense.
If hypothetica repetitions of the sampling process are imagined (for the same Bayesian with the
same prior), the frequency digtribution of the Bayesian's estimates would be off-center from 1.
If we denote by © the sample-gpace random version of the point estimate 6, then the
expected value of ©; over the sample spaceis

02
—p 4 | ] —n).
p 2, )0

The amount of biasis seen to be the difference 6 — p (biasin the prior) multiplied by the
Bayesan weight. In the sream example, if the null hypothesis (1 = 48) were true, the amount
of biasin the Bayesan estimaeisabout — 13.3; this Bayesan's long-run frequency digtribution
of estimates would be centered at a distance more than twice the standard deviation (o = 6)
below the true vaue of 1.

The posterior distribution also yields to the Bayesian information about the uncertainty
with which to regard the prediction. One way to summarize this uncertainty isthe Bayesan
belief interva, formed by taking an interva containing 100(1 — «:)% of the probability in the
pogterior dendty. The smdlest such intervd isthe highest probability region (HPR). The
HPR is andogous to the confidence interval of frequentist Satistics, but has amuch different
interpretation. The Bayesian asserts that there is a 95% chance that 1. iswithin agiven 95%
HPR, because probability represents belief on a parameter space (all possible values of ).
The frequentist cannot assert that there is a 95% chance that 1. iswithin agiven 95% Cl,
because probability to a frequentist represents long-run frequency on a sample space (al
possible outcomes of the sample). With our norma modd, the HPR region is the interva
centered at the posterior mean, 61, containing 100(1 — «)% of the area under the posterior
dengty:

(91 — 202V 712, 01 + 242V 712) :

In the stream example, the 95% HPR is (33.4,38.8), which is quite different from the 95%
confidence interva (46.9, 54.3) obtained under the frequentist approach. However, asthe
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sample size becomes large and the data swamp the prior beliefs, the HPR in this normal-based
example converges rgpidly to the confidence interval. In other words, the Bayesian and the
frequentist will report essentialy the same interva estimate for 1 if good data are available.
While this asymptotic behavior of HPRsistypica for sandard Satisticd models, it is somehow
not acomforting point of agreement for Bayesans and frequentids, in that the interpretation of
the two intervasis so different. Also, for some models and circumstances, the rate of
convergence of the Bayesian HPR to the frequentist Cl is dlarmingly Sow (see o unknown,
below).

A key aspect of Bayesanism is adherence to the likelihood principle. The principle
dtates that sample space probabilities are irrdlevant to inferences about unknown parameters.
The data only influence the inferences through the likelihood function. This principleis
embodied in the posterior density, g(|z1, 29, ..., zn). All inferences about 11 are contained in
the posterior density and are phrased in terms of probabilities on parameter space. Only the
data actually observed gppear in the pogterior (viathe likelihood function); no hypothetica
data, such asacritica vauefor z, or probabilities of hypothetical data, such as P-vaues or
Typel & 1l error probahilities, are consdered in the conclusions about (.

Bayesans are adamant on this point (Lindley 1990, Berger and Berry 1988). Typel
& |l error probabilities and P-vaues are probabilities of “data that didn't happen,” and
Bayesans question what relevance such quantities could possibly have for conclusions about a
parameter.

The use of sample space probabilitiesin frequentist statistics has surprising, and to
Bayesans, undesirable consequences. Foremost is the dependence of the statistical conclusions
on the stopping rule of the experiment. For instance, were the stream samples drawn
sequentidly, one by one, until some threshold high or low value of = was attained? Or, were
samply ten samples drawvn? Or, did the investigator actually draw 11 samples, but drop one jar
accidentdly?

o unknown

Bayesans clam that the treetment of nuisance parameters within the Bayesan
framework is one of the key advantages of their gpproach. Let us examine how thisclam
operates in practice.

With 2 unknown, the concept behind the Bayesian andlysisis straightforward. The
posterior distribution for 11, represented by the pdf g(u|z1, 9, ..., zn), isdill sought. First,
though, beliefs about 1 and o must be summarized in ajoint prior distribution for 1 and o2.
So-represented, the beliefs are entered into the mix with the likelihood function (Eg. 1), and the
posterior digtribution for 4 is then obtained (at least in principle) with Bayes theorem.

Thejoint prior pdf for 1 and o2, denoted g(, 0%), isthat of a bivariate continuous
distribution. The distribution would presumably be defined for positive redl vaues of o2, and
redl (or postivered) vauesof 1. A joint digtribution in genera would contain some correlation
between 1 and o2, Rarely, however, can any dependence of beliefs about 1 on those about
o2 be acknowledged or dlicited. Consequently, the form often proposed for the joint pdf isa
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product of univariate prior pdfsfor . and o2

g(p, 0%) = g (w)ga(c?).

Here g1 (11) isapdf for 1. (such asthe norma pdf in the ¢ -known case above), and g2 (o2 ) is
apdf for 2. Theform of g5 (0?) sdected by the investigator could be agamma, reciprocal
gamma, lognormal, or other distribution on the positive red line. The product form of g(y, 02)
assumes (or implies) that the prior “information” about 1 isindependent of that of 0.

With the dicited joint prior in hand, the analys's proceeds via Bayes theorem. Thejoint
posterior pdf for 1 and o2 is proportiona to the product of the prior pdf and the likelihood
function:

1, 0%)g1 (1) ga(o?) .

g, o’ ‘wl, X9, ) = Crh(zy, 9, o0y T
The likelihood function is again written as h(z1, 2, ..., zn |, 0?) to emphasizeitsrole asa
conditiona pdf. The constant C; isthe normdization congtant given by
1

Cl ’
1, 02)g1 (1) g2 (©?) dp do?

- [ [ h(z1, 29, ..., 21

where the integrals are over the ranges of 1 and o in the prior pdfs. Some remarks about the
daunting process of obtaining C; are given below. In principle, the joint posterior pdf g(x,
o?|z1, 2, ..., 7n) containsal the beliefs about 11 and o2, updated by the datax1, g, ..., Tp.
Moreover, the nuisance parameter o is vanquished by integrating it out of the joint posterior to
et the posterior marginal ditribution for

o
g(,u|x1, X9y ey Tp) = / g(u, o2 ‘:1;1, Ty eeuy Tpy) do? .
0

This posterior pdf for 1. reflects dl beliefs about 1. after the advent of the data. The pdf could
be used, for instance, to obtain an HPR for 1, just as was done in the o -known case above.
The technicd difficulties with the andysis resde in evauaing the multiple integras for
C; andinintegrating out o to get the margina posterior for .. For nearly al forms of prior
distributions g1 (1) and g5 (02 ), the integrals must be performed numerically. Up until the
middle 1980s, the lack of symbolic results for the integrals were the death knell for Baysianism,
because methods for reiably eva uating multi-dimensiona integrals were poorly devel oped.
However, clever smulation methods were devised for these integrals, the methods exploit the
fact that the integrals are essentidly expected values of functions with repect to the prior
digtributions. Papers on Bayesian andyses in the statistics literature subsequently exploded in
number, starting in the late 1980s. The smulation methods have been for a decade a part of the
hidden culture of Satisticians, described tersely or implicitly in dense mathematica termsin the
datigtics literature, but are now receiving excellent expositions for broader scientific audiences
(for instance, Robert and Casella 1999). Investigators must be warned, however, that the
numerica methods at present involve heavy computer programming efforts, post-caculus
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datistics knowledge, and sometimes days of computer time; the methods are not ready yet for
routine use by busy laboratory or field scientists.

What if the investigator does not redly have, or is unwilling to admit, any prior beliefs
about o2 ? Bayesian writers have proposed “uninformative priors’ for such situations. Use of
these priors has a so been advocated for Stuationsin which investigators disagree about the
prior information and require ardatively “neutrad” prior for mediation (Lee 1989). However,
there are different approaches to specifying neutrd priors. Oneisthe maximum entropy
gpproach (Jaynes 1968). The investigator in the maximum entropy approach specifies only
numerical summaries of the prior distribution, such as the mean, or the mean and variance both.
The prior is then the distribution that maximizes the “entropy content” (expected vdue of — In
g2(0?) ) of the prior while retaining the numerical summaries. If the meen of the prior for o2 is
fixed & ¢, for example (and the range is taken to be the positive red ling), the maximum entropy
criterion yields an exponentia distribution for o2 with pdf g9 (0?) =
(1/¢)exp(— 02/¢). Another approach isthat of the uniform prior: the beliefs about o2 are
taken to have auniform didtribution. Thistype of prior is sometimes caled an improper prior
because it is not integrable over the entire range of the parameter (here, the positive red line).
Actudly, the uniform distribution for o is taken to range properly from 0 to, say, some large
unspecified number . The prior pdf (a constant, 1/+) isthen integrable, and the vaue of ~, if
large, turns out to affect the caculations about 1. only negligibly.

A conceptud problem with uninformative priorsis that ignorance about o2, expressed
in an uninformative prior distribution for o2, does not trandate into ignorance about a function of
o2, say Ino?. Foringance, if o2 has auniform distribution on the interval from 0to 4, then the
distribution of Ino? is non-uniform. A uniform prior distribution for o2 leads to a different
posterior distribution for 4« than when auniform prior for In (o) isused. This digparity has
motivated some Bayesians to investigate how to choose the scale upon which their ignorance is
to be expressed. Textbook discussions of such investigations gravitate to scales which alow
convenient algebra, i.e., scales for which the problematic integrals noted above can be evauated
symbalicaly (eg. Lee 1989).

So that some numerica results might be displayed for the stream example without
having to refer to aworkstation, let us employ such ascae for o2. Suppose the prior
distribution for In (o2 ) is taken to be a uniform distribution on some large, unspecified interval of
thered line. Then, from the transformation rule for digtributions (Rice 1995), the prior
distribution for o2 has apdf of theform g9 (0?) = G /o2, where C isacongtant. This prior
isimproper on the entire positive red line, but again it will be thought of as ranging from 0 to
some large but unspecified upper vaue. Thejoint prior distribution for 1 and o2 becomes,
assuming independence of beliefs about the two parameters, the product of margina prior pdfs.

o1 ?) = Co(*V/72r) e[~ (u—0)/(2)] .

Substituting thisjoint prior into the expression for the posterior distribution for 1, and o above,
and using the normd likelihood function (Eq. 1) for h(x1, z2, ..., Tn |1, 02), one obtains
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~5 . _ntl -(3+1
91, 1, 3,y n) = C1(72) (207 (0?) #+y {—%@—M
—én(u—E)Q—ﬁ(u—ﬁ)Q}-

This posterior pdf for 1 and o2 is adome-shaped function reflecting the joint beliefs about the
two parameters after the advent of the data. The nuisance parameter is now eliminated in an act
which isto Bayesans conceptudly aswell as dgebraically symbolic. The termsin the posterior
involving o2 are (thanks to our selection of prior) in theform (o) “exp (— b /o2). Theform
islike areciproca gamma pdf and yieIdsb*“f”F( a— 1) when integrated over the positive
red line. Thus

o
g(p|z1, z2, ...y 2n) :/ g(u,az‘xl,xg,...,xn)da2
0

n — 32 n —T2 /2 — 6)?
C3[< 21) <u2 >] @*p[—(“%f)]

9 —n/2

(n—1)

Heret = \/ﬁ(f — ) /s isthet-gatistic that would be used by frequentists to test a particular
vaue of 1, asanull hypothess. The posterior distribution for 44 is seen to be the prior normal
pdf for 1« weighted by the pdf of a Student's t-ditribution. Rather awkwardly, the normaization
congtant ('3 cannot be evaluated symbalicdly, and so to obtain a point estimate or HPR the
workstation must be booted up even for this smpleilludrative example. Fortunady, the
numerica integration for one dimengon is sraightforward.

The 95% HPR resulting for the stream example (using, as will berecdled, 7 = 50.6,
s?2 =25.0,n =10, § = 20.0, 7% = 4.0) is approximately (17.3, 25.3). Recdl that the
frequentist 95% confidence interval based on the Student's t-distribution was (47.0, 54.2). In
the previous case in which o was taken as aknown constant (02 = 36), the HPR (33.4,
38.8) was considerably closer to the corresponding frequentist confidence interva (46.9, 54.3).
Apparently, when o2 is unknown the preponderance of weight remainsin this example on the
prior; the HPR isremarkably insengtive to the data. While the frequentist results take at face
vaue the estimate, s2, of o2, the Bayesian resultsin the face of lack of knowledge about ¢
contain an inherent preference for beliefs about 14 over data. Indeed, one can ask just how
much evidence is necessary for the Bayesian here to sart noticing the data. What if the values
of = and s? from the stream had resulted from larger sample sizes? Suppose the value of n is
increased in the posterior pdf for 1. above, while keeping al the quantities fixed & the same
vaues. Atn = 40, prior beliefs are il heavily weighted: the HPR is(21.8, 30.0). A srangely

=C5|1 +

272

(u—9)2]_

o) -
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sudden change of heart occurs between 60 and 65 observations. At n = 60, the posterior pdf
for ;1 has developed a prominent “shoulder” near 1+ = 50, and the upper end of the HPR has
garted to reach upward; the HPRis(26.1, 40.1). The frequentist 95% confidence interva for
n = 60 isby contrast only two unitswide: (49.3, 51.9). Atn = 63, the posterior pdf for p is
bimoda, one peak influenced by the prior, and one peak influenced by the data; the HPR is
(28.8, 47.1). By n = 65, the data-peak has grown taller than the prior peak, and the HPR is
(31.2,48.3). By n = 70, thelaggard lower end of the HPR hasfindly entered the 40's, the
HPR is (42.7, 49.0).

If . = 48 were cause for darm, the frequentist scientist would have detected this Sate
of affairswith as few as 10 observations. It would take at least 65 observations before our
Bayesan, to whom bdliefs are evidence on equad footing with data, would sound a Cu pollution
warning.

DISCUSSION

Beliefs

It should be evident from the above example that Bayesan and frequentist statistics
arise from different views about science. In Bayesian Satidtics, beliefs are the currency traded
among investigators. Beliefs are evidence. Data are used to modify beliefs.

“Beiefs’ is not necessarily afour-letter word. In Bayesian datistics, nothing precludes
the prior dengty being “rationally” constructed based on common sense information. Indeed,
investigators frequently encounter Situationsin which a parameter is not completely unknown. In
our stream example, it is known for afact that the mean Cu concentration 4 is not anegative
quantity. Isit not possible to account for such knowledge in the analyss?

Frequentists account for such information by building more redigtic satisticd models.
The normd digtribution is a mathematica approximation. Red Cu concentrations cannot be
negative. In the stream example, if the norma gpproximation is adequate, negative Cu
concentrations are wildly improbable, and a negative . value would result in an extremely bad
modd. However, adifferent distribution modd might be required, if, for indance, some
concentrations are bunched near zero. Even anew, more realistic mode is dways subject to
questioning, viamodel evauation procedures.

Frequentists also use prior information in designing surveys and experiments. For
instance, the optimd dlocation alocation of samplesin a dratified sampling scheme depends on
knowing the variances within each stratum (Scheeffer et d. 1996). In addition, sdecting a
sample size in experimenta design depends on the desired power,
which in turn depends on the effect Sze and the variance (Ott 1993). The investigator must
have some prior information about the effect 9ze and variance for the design to achieve the
desired power.

To the frequentist, though, such prior information is regarded as suspect. Thisisa
magor departure point from the Bayesans. Frequentists build on prior information tentetively,
using sample space variability properties congtantly for checking the rdiability of the knowledge.
Prior information is placed in the likelihood function itself, and is thereby vulnerable to empirica
chdlenge.
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Bayesanswill cry foul a my rough handling of the Bayesan andyssin the sream
example. The sdection of the prior mean of & = 20 by the mining company scientist seems
lopsided and biased, cynically cdculated to come to a pre-defined concluson. The scientist is
supposed to formulate the prior distribution based on red costs and consequences of being
wrong. What if the scientist were forced to deliver on the bet implied by the prior?

It must be remembered, however, that the scientist is employed by the mining company.

Firgt, the real cost to the scientist comes not from being far from the truth, but rather
from defeat. The two are not necessarily concordant. The scientist has ared financid stakein
defending the mining company'sview. If this scientigt is not willing, some other scientist will
gladly step in and cook the numbers.

Second, the scientist can be wrong, or even deceived. It is quite possible that the
scientis's beliefs were genuine. During previous monitoring of the stream, say, Cu
concentrations might indeed have hovered around 20 g I~!, and the scientist had no reason to
believe that today's samples would be different. In this hypothetical scenario, the company had
apollution event, and failed to inform their monitoring group.

Either way, the scientist's beliefs do nothing but contaminate the data analysis. They
add no legitimate information to the estimate of Cu concentration.

Infact, for scientigtsin generd there is often a conflict of interest between a scientist's
beliefs and the truth. In an ided world, the scientist who is most successful in discovering truth
will be the most successtul in building a scientific career. While this circumstance is fortunately
common, the redl world of scientific careers admits additional complexities (Sindermann 1982).
Scientists gain reputations for being advocates of certain theories. Laboratories and research
programs grow from mining particular techniques or points of view. A scientis's career is
measured in the form of socidly warranted visibility: jobs, papers, research grants, citations, and
seminar invitations. 'Y oung graduate students know one career syndrome well: stubborn
adherence of older scientists to old-fashioned explanations and quick dismissa by such
scientists of newer ideas before even understanding them. Senior scientists know another
career syndrome well: rapid study and advocacy by younger scientists of fashionable new
hypotheses that contradict established doctrine and are beyond the frontiers of available data
Everyone in science knows of investigators that took wrong turns toward untenable hypotheses
and then spent whole careers defending the hypotheses with contrived arguments. To an
individua scientist with a career to build, maintain, and defend, victory, rather than truth, is often
the objective.

Scientific method

Is stience just a postmodern “way of knowing” after al? At thelevd of the individud
scientis, it would certainly seem 0, given dl the explicit and implicit socid pressures. Science
in the postmodern view is a belief system, and scientists achieve success only by participating in
asocidly warranted system of thought and action, which changes from place to place and year
to year.

Bayesanism, through the incorporation of persona beliefs into statistical andyses,
accepts the postmodern view of science. A scientist's acceptance or rgjection of a hypothesisis
adecison madein light of bdiefsinfluenced by cogts or utilities. To the Bayesan, scienceis
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improved by explicitly sating, organizing, and acting on beliefs. A stientist summarizes hisgher
prior beliefs into a probability distribution and modifies those beliefs in a controlled and
systematic way with data. Observers are free to quibble with the scientist's prior, or use their
own priors and come to their own conclusons. Consensus of beliefs will supposedly emerge as
data become more available and priors become diluted. However, the process for this
emergence is not clear, for, human nature being what it is, priors will inevitably become more
opinionated in the face of growing data. Fundamentaly, a the heart of it dl, the interpretation of
resultsisin terms of beliefs. In Bayesanism, beliefs are sanctioned, not repudiated.

Modern science, though, has been wildly successful despite the imperfect humans that
make up the ranks of scientigts, and, incidentally, despite the dmost compl ete absence of
Bayesanism in day-to-day scientific life. The postmodern clam that science is socidly
congtructed redlity isan intdlectua fraud (Soka and Bricmont 1998). Hydrogen atoms, and the
Speed of light, are the same in India, Alaska, and the Andromeda gdaxy. True, scientists, and
groups of scientigts, often come to the wrong conclusions. It isthe process that isresponsible
for the enormous gains in understanding we have attained, in ecology and in other disciplines.
Our understanding does not just jump from one fashionable paradigm to another; it improves.
Scienceislike ariver that flows mostly forward, but with dow pools and backcurrents here and
there. It isthe collective process of empirica investigation, involving weeding out of untenable
notions and careful checking of working hypotheses, that makes progress possble. The
invisble empirica hand of Gdlileo, the Adam Smith of science, promotes the emergence of
reliable knowledge.

Bayesans and postmoderns aike miss the fundamenta idea of science. Scienceis not
about beliefs, science is about skepticism.

Science is not about prediction, estimation, making decisions, data collection, or data
interpretation. Scientists engage in these activities, but these activities do not congtitute science.
Science, rather, is about constructing convincing explanations and acquiring reliable knowledge.
“Convincing” means areasoned skeptic isforced, by logic and evidence, to accept the
explanation as, a leadt, a serious contender for the true explanation. “Reliable’ means that
others can reproduce the results and rely on them for building further explanations. Scientific
arguments are aimed at reasoned skeptics. “Reasoned” means open to acknowledging
evidence that might contradict prior points of view.

The scientific method isa series of logica devices for diminating or reducing points of
reasoned skepticism. One premise of the scientific method is that human judgment is inherently
flawed. Thisis because reasoned skeptics might validly argue in any Stuation that a scientist's
persona beliefs are suspect. Successful scientists seek to counter that criticism by adopting
investigative methods that eiminate conscious or unconscious biases. Frequentist analyses are
an important toal in the scientific method.

Fregquentism accepts only a portion of the postmodern critique. To the frequenti<, the
actions and behaviors of individud investigators are indeed mired in beliefs. However, to the
frequentist, the methods of datistica analyss are set up to discount those beliefs as much as
possible. The assumption that a scientist's judgments are not to be trusted has along history in
frequentist statistics, and is expressed in the concepts of design-based sampling, replication,
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randomization, experimenta design, unbiased estimation, mode diagnostics, and explicit
stopping rules.

Frequentist satistics adheres to the principles of the scientific method. Experimenta
subjects are selected at random. Observations are sampled at random. Variability of the
process under study is carefully controlled and modeled, so that future investigators can
replicate and check the work. In frequentist hypothesis testing, the skeptic's null hypothesisis
assumed to be true, but the unlike the Bayesian's prior, the assumption is just an argumentative
device. The assumption isthen found to be tenable or untenable under the data. The Satigtica
modds used by the investigator are suspect and must have demondtrated reliability and
usefulness for future investigators. By the continua modding of and referrd to sample space
variability of adata production process, frequentism can not only show that some hypotheses
are untenable in a classic Popperian way, but can aso establish that other hypotheses are
operationdly reliable and can serve as the bases for future studies (Mayo 1996).

Evidence

Bayesans dam that scientists long for numerica measures of evidence. If only one
could attach, in some reliable way, a number to a hypothess, indicating the relative weight of
evidence for that hypothesis as opposed to others, then scientific conclusions would be clearer
and more helpful to policy decisons. Why must we avoid doing what seems naturd, that is,
dating that the chance hypothesis A istrueis Q%?

The answer isthat the number is scientificaly meaningless, and the price istoo high. In
Bayesan andyses, the evidentiary number cannot exist except in the persona belief system of
the invedtigator. Neither priors nor likelihood functions can be empiricaly chalenged in the
Bayesian scheme, and so persona beliefs are aways present to some degree in conclusions.
With the postmodern foot in the door, the way is opened for limitless politica pressure to
influence the weight of evidence. Bayesan Satistics might seem like ashot inthearm for a
ddled science, but Bayesian science unfortunately fails to convince.

The evidentiary number in Bayesian datidicsislikeihood, modified by beliefs. Isit
possible to diminate the belief congderaions, while retaining likelihood? Various investigators
through the years have proposed dtatistical gpproaches which accept the likelihood principle but
rgect the use of priors (Edwards 1972, Royall 1997). The relative weight of evidence for
hypothesis A over hypothesis B is determined by comparing their likelihoods under these
schemes.

The likelihood principle €liminates consderation of any sample space events, other than
the actud data outcome, as evidence. Buit likelihood has little abbsolute meaning by itsdlf,
without gppedl to sample space properties. One cannot determine from the statement, “In L 4

= — 437", whether A isaviablemodd or not. One cannot determine from the statement,
“InLy — InLp = 5.8, whether model A isunquestionably better than modd B. The
viability of amode depends on avariety of things, for instance, on whether it fits. A difference
in log-likelihoods as big as 5.8 might easly be within the range of variability expected by
chance. Without analyses based on hypothetical sample space events, these possibilities cannot
be addressed.
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Also, the likelihood principle iminates congderation of sopping rules. Whether the
sample sze was sequentialy determined or fixed, the evidence is the same under the likelihood
principle. Unfortunately, we cannot then determine whether or not the investigator's results are
unusua under a particular experimenta protocol, and consequently we cannot question the
likelihood upon which the investigator's conclusions are based. The stopping rule dependence
exigts because we do not trust the scientist: we indst upon the option of repesting the study to
as close adegree as possible.

Findly, the current likelihood-only analyses are developed only for smple hypotheses,
that is, for statistical models with no estimated parameters (Roydl 1997). Nuisance parameters
are Smply not trested (but it is atopic under active sudy and new developments are emerging:
see Roydl 2000). The precticd redlities of red scientific problems strongly suggest that
likelihood-only methods are not yet ready for primetime,

It should be clear by now that evidencein science is not and should not be asingle
number. Evidenceis a structure of arguments, in which each structurd piece survives continua
and clever empiricd chalenges.

Tobacco company science

Thereisaclass of scientific-gppearing peoplethat | call unreasoned skeptics.
Unreasoned skeptics do not accept the tenets of the scientific method. They view science as an
activity of datainterpretation ether in light of prior beliefs or to maximize certain utilities.
Money, power, and influence are the objects of the scientific game. Inthisthey have a
decidedly postmodern outlook. Unreasoned skeptics include tobacco company scientists and
Biblicd creation scientists. It is perhaps fortunate that these professond debaters tend not to
know much about atitics, for | fear that they would find Bayesan statistics well-suited for
their sponsored disinformation campaigns.

EDUCATION

“1 have taken 18 credits of statistics classes, but | still do not understand statistics.”
—Ph.D. sgudent in wildlife
The distressed wildlife student confessed the above to me, toward the end of along,

rigorous program of graduate study. The student had taken a succession of graduate statistics
“methods’ courses, such as regression, analyss of variance, experimenta design, nonparametric
ddidics, and multivariate Satistics, virtudly the entire “service’ offering of the university
satistics program, and had worked hard and recieved near-perfect grades. Y €, the student felt
that the subject was fill amystery. My impression, based on twenty years of teaching,
research, and consulting in ecologica gatitics, is that this student's confusion about atidticsis
not an isolated case, but rather represents the norm in the life sciences. What this student's case
illugtrates is the sad fact thet the “ applied” coursesinsisted upon for their students by life
science educators are designed to perpetuate the confusion. One can take statistics
“methods’ courses until the cows come home, and be no nearer to understanding Statistics than
one isto understanding quantum mechanics.
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Inthis last section of my essay, | offer a prescription for change. It might seem likea
digresson, but | contend that it isacrucid part of the Bayesan/frequentist problem. Many
ecologists have never redly been comfortable with satistical concepts (e.g. thinking that a P-
vaue isthe probability of a hypothes's, etc.), and this discomfort can be exploited by
polemicigts.

Ecologigs areill-served by their satistics education. For ascience in which gatidticsis
S0 vitd, it is paradoxicd that satisticsis such a source of insecurity and confusion. Itisasif the
the subject of atidticsisabig secret. Ecologists are given glimpses and previews of the subject
inther “methods’ courses, but the subject itsdlf is never reveded. Shouldn't ecologigts instead
be trained to wild gatistical arguments with strength and confidence?

The topic of gatistics could hardly be more important to a science than it isin ecology.

Fird, ecologists are routinely confronted by nonstandard data. The random
mechanisms and sampling schemes encountered in ecology often are not well described by the
datigicd modds underlying “ off-the-shelf” datistical methods. | find it ironic that ecologists
gpend afar amount of time and journd space arguing about gatigtics;, quantitatively-oriented
ecologists even teach datistics and attempt to invent new dtatistical methods. These are tasks
for which ecologists (without the education | discuss below) are by and large untrained. With
“methods’ courses, one never |learns the foundationa principles from which gatistics methods
aise; one merdy learns the methods that have dready arisen. No amount of “ methods’
courses and no amount of familiarity with computer packages can compensate for thisgap in
underganding. In particular, jury-rigged attempts to transfer off-the-shef andysesto
nonstandard Situations can result in embarrassment and frequently is the subject of useless
controversy.

Second, ecologica systems are stochastic. Stochastic models are rapidly becoming an
integral part of the very theories and concepts of ecology. Y et, confusion about stochastic
models has often marred published ecologica discourse. For instance, the density dependence
vs. dengity independence debates, a stigple in the ecologicd literature since the '50s, continue to
feature mathematicaly incorrect statements about persistence, autocorrelation, and etistical
tests (see discussion by Dennis and Taper 1994).

| propose that ecologists take less Satistics courses. Yes, that is not atypo.

The core of an ecology graduate student's Satistical training should be a one-year
course sequence in mathematica datistics. The standard “ math-stat” course offered at most
colleges and universitiesis an upper divison undergraduate course (usudly can be taken for
graduate credit). It iswherethe secret isreveded, and by the way iswhere Satigticians
commence training their own students. With this course sequence, statistics will be a source of
strength and confidence for any ecologist. Though the math-stat sequence is atough challenge,
the ecologist will be rewarded by needing far fewer methods coursesin their educations. The
usua math-gat sequence, incidentaly, gives balanced coverage to both the frequentist and the
Bayesian gpproaches without developing the scientific issues to any greet degree (Bain and
Engdhardt 1992).

Proper preparation for math-stat is essentid. Statisticsis a post-cal culus subject, and
that is the heart of the educationa problem. Thereisno way around thisfact. The reduced
number of methods courses during the training of a Ph. D. will have to be partidly compensated
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by thorough undergraduate cal culus preparation. This does not mean “business calculus’ or
even “cdculusfor life sciences” This means genuine calculus, taken by scientists and engineers.
Genuine cdculus should be consdered a deficiency in graduate admissons, the one-year math-
stat sequence can be undertaken in the first or second year of graduate training.

It will hdp if math-gtat is not the first exposure to Setigtics. The student who has had
the usua undergraduate basic Satigtics course will be continualy amazed in math-gat to
discover how unified and powerful are the concepts of atidtics.

Thisbasic curriculum, caculus, intro Satistics, and math-stat, can be followed by
selected “methods’ courses of particular interest to the student.

One pleasant surprise to a sudent taking this curriculum will be that the methods
courses are quite easy for someone with math-dtat training. Textbooks on many statistics topics
become readily accessble for sdf-study. Imagine reading tatistics like one reads biology!
Anather, perhaps more disconcerting surprise will be that the student will be sought out
constantly in hisher department by faculty and other grad students as a source of Satistical
help. The demand for statistics consulting can be overwheming. But that hints a athird
surprise, avery pleasant oneindeed: command of statistics greetly enhances employability.

Ecologigsin-training who are particularly interested in theoretical ecology, or who are
samply interested in strong progpects for gainful employment as scientists, might consider
acquiring agraduate degree in gatistics. Our M.S. statistics graduates from the University of
Idaho wave at their faculty advisors from their ofty tax brackets.

Ecologists sruggling with the Bayesan/frequentist issues will ultimately benefit from
greater satistical understanding in generd. Statisticians are not going to solve the scientific
issues of ecologica evidence; ecologists mugt do that to their own satisfaction. But at their
current command level of statistics, ecologists are not reedy for the task.

CONCLUDING REMARKS

Ecology isadifficult science because of the large varigbility in ecologicd systems and
the large cogt of obtaining good information. It is difficult dso because of the sendtive palitica
nature of its scientific questions and the pressing demand for quick answers. However, if
ecologists yied to the Bayesians call for watering down the standards of evidence, the end
result will be tobacco company science, not science.
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