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COMMENT: THE FIRST DATA ANALYSIS
SHOULD BE JOURNALISTIC!2
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Abstract. Bayesian statistical methods can be considered an attempt at mathematical
formalization of the natural scientific process of interpretation of data in light of preexisting
information. As such, their use, and the degree to which they are used, is largely a question
of efficiency. In some instances it may be appropriate to incorporate prior information into
an analysis to the extent that this information is deemed reliable by all concerned; it will
not often be the case in an ecological study, however, that information satisfying these
constraints is substantial. In the most important distributional setting a frequentist confi-
dence interval is identical to a noninformative Bayesian credible interval, and it is asserted
that in most other cases where noninformative priors are used, these two will be very
similar; the primary data analysis in an ecological study should probably be of one of these
two forms. It is conjectured that, in order to be mathematically tractable, decision theoretic
methods (Bayesian or not) will often deal with a dangerously short action—space time frame.
Finally, Empirical Bayesian methods and hierarchical models in general are powerful new
methods that should be used, with caution, to the extent that their superstructural assump-

tions are reliable.

Key words: Bayesian inference, confidence-intervals, decision theory;, Empirical Bayes methods;
frequentist statistics; hierarchical statistical models; hypothesis tests; statistical ecology.

A QUESTION OF EFFICIENCY

To quote I. J. Good (1983), University Distinguished
Professor Emeritus of Statistics and Philosophy at Vir-
ginia Tech, ‘““‘People who don’t know they are Bayesians
are called non-Bayesians.”” At first, this may seem like
a “slam” on non-Bayesians, but there is another in-
terpretation: perhaps Bayesians and non-Bayesians are
not as different as they think they are. How has science
always been done? A study is begun with some existing
beliefs on the state of nature, with differing amounts
of confidence in the various existing theories (if any);
after observing data, the scientist revises these beliefs
and his/her confidence in the candidate theories. A tal-
ented scientist instinctively makes good decisions
along the way, in much the same way a talented card
player intuits probabilities accurately.

Bayesian statistical methods can be regarded as an
attempt to formalize this age-old process by quanti-
fying preexisting beliefs with a (somewhat) handy
mathematical device called a prior probability distri-
bution. Bayes’ theorem provides the formula by which
existing beliefs are updated as a reaction to data, re-
sulting in revised beliefs quantified by the posterior
probability distribution. If this formal mathematical
process can be done, and done well, it results in a more
efficient scientific process: human errors in judgment,
especially in assessing the importance of the data rel-
ative to existing information, are reduced. However, if
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2 For reprints of this group of papers on Bayesian inference,
see footnote 1 on p. 1034.

the Bayesian formalization of the scientific process is
not done well, it can most definitely make matters
worse. Moreover, in the science of ecology, with the
current state of data-analytic technology, it often can-
not be done at all by the scientists who have access to
the best prior information. It is naive and a little bit
arrogant to think that knowledge that required an ecol-
ogist years or decades of study to acquire can be passed
intact to a statistician as one would pass the salt at the
dinner table.

CAN’T WE ALL JusT GET ALONG?

Ludwig (1996) states that ‘‘the fundamental differ-
ence between . . . frequentist . . . statistical theory and
... Bayesian statistics is in the interpretation of the
term ‘probability’.”” Though the relative-frequency in-
terpretation of probability seems incompatible with a
Bayesian’s subjective, degree-of-belief interpretation,
there are statistical methods that can be interpreted un-
der both philosophies: the common ground is the device
frequentists call a confidence interval. Consider the
most common setting, the ‘“‘normal prior + normal
data” case, as in the hypothetical example used by
Ellison (1996). His quantity of interest is the unknown
fraction 8 of foliar area of red spruce affected by a pre-
defined concentration of acid deposition. An indivi-
dual’s prior information on B is quantified using a nor-
mal distribution with some mean and standard devia-
tion. The 10 observations (given () are assumed to be
taken from a normal distribution with mean 8 and some
standard deviation ¢. The posterior distribution for 8
in this setting is also normal, with expressions for pos-
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TaBLE 1. Ellison’s red spruce acid deposition example, continued (Ellison 1996).

Posterior  Posterior 95% credible
Ecologist Prior mean Prior sD mean sSD interval

A 0.4 0.05 0.318 0.021 (0.276, 0.360)

B 0.2 0.10 0.295 0.023 (0.249, 0.340)

C: non-informative any value infinite 0.300 0.024 (0.253, 0.347)

D 0.05 0.02 0.154 0.015 (0.124, 0.184)

E 0.8 0.02 0.592 0.015 (0.562, 0.622)

Note: Sample mean = 0.3, s = ¢ = 0.075, n = 10.

terior mean and variance given by Ellison’s equations
8 and 9. Ellison then assumes o = s = 0.075, though
with only 9 degrees of freedom the sample standard
deviation is fairly unreliable as a point estimate of o;
for the sake of discussion, we play along in this as-
sumption.

Usually a normal posterior distribution would be re-
ported as a credible interval (using 95% probability
here):

posterior mean *= 1.96(posterior standard deviation).

Table 1 demonstrates the effects of several different
choices of prior mean and standard deviation on the
ultimate results for this example. Ellison’s Bayesian
Ecologists A and B have only slightly different prior
beliefs, and are not overly confident in these beliefs,
as reflected by relatively large prior standard devia-
tions. Their posterior means are not very different from
. each other, or from the sample mean. The third entry
of Table 1 shows a credible interval identical to a fre-
quentist ‘““‘c known” 95% confidence interval for (.
This interval corresponds to Ecologist C, who admits
to the crime of having a completely open mind a priori
(infinite prior standard deviation). The reported inter-
vals for Ecologists A, B, and C are clearly not very
different. One has to wonder whether the slight de-
crease in interval length for Ecologists A and B is worth
the controversy that will be generated by the incor-
poration of their opinions into the data analysis.

In this setting and many others, a frequentist’s con-
fidence interval could be regarded by an open-minded,
pragmatic Bayesian (assuming the intersection of these
three groups of individuals is not empty) as a “‘jour-
nalistic”’ credible interval. It reports the posterior in-
formation flowing solely from the data, uncolored by
the data analyst’s own attitudes (except for distribu-
tional assumptions, which must be made under either
philosophy). To spend a lot of time and energy arguing
about whether we should say ‘“‘confidence” or “‘prob-
ability” is to earn a reputation for being a useless ac-
ademic: it’s the same interval. Report the interval, and
let each reader interpret it as he/she prefers, in the name
of religious freedom. Care should be taken that the
reported information is complete enough to allow any
reader to formally incorporate prior information if
he/she chooses to do so.

Of course, a Bayesian credible interval will not al-
ways be equivalent to a frequentist confidence interval.

In the “journalistic” case of large prior variance, they
are usually similar enough. However, a very small prior
variance results in an editorial: the results are mostly
opinion. This is the case for both Ecologists D and E
in Table 1. These two individuals had strong and op-
posing views prior to collection of the data. By choos-
ing very small prior variance, they have allowed them-
selves to ignore, for the most part, the sample infor-
mation. Notice that for these dogmatic ecologists, even
though the sample information strongly contradicts
their prior beliefs, they have nonetheless mixed the
sample and prior information and seem to have more
confidence than ever in their posterior beliefs (their
posterior standard deviations are smaller than their pri-
or standard deviations).

HyPOTHESIS TESTS VS. INTERVAL
ESTIMATION

Much of the discussion in Ellison (1996) is in fact
arguing against hypothesis testing methodology, not
frequentist methods in general. Prediction and esti-
mation methods are available under both frequentist
and Bayesian philosophies. Hypothesis tests are over-
used because they are so simple; the fact that an in-
significant P value does not necessarily imply the hy-
pothesis to be ‘“‘true,” and that a very small P value
does not necessarily imply it to be meaningfully false,
is well known to well-educated scientists. There is no
question that interval estimates of ecologically mean-
ingful quantities are more informative and honest than
hypothesis tests, but one need not be a Bayesian to
calculate them. In addition, Ellison’s assertion that the
coverage probability of a Student’s ¢ confidence inter-
val is ‘“‘substantially less than the expected coverage
.. . for most parameterized, non-normal distributions”’
is grossly inaccurate. Procedures based on Student’s ¢
distribution have often been studied and are always
found to be remarkably robust to nonnormality (Pear-
son [1931]; Box [1953]; Scheffé [1959:337]; Sokal and
Rohlf [1981:414]). Ellison’s lone supporting reference
for this statement, Robinson (1975), considers only
50% confidence intervals, under three closely related,
highly unrealistic (a.k.a. bizarre) distributional set-
tings, and Robinson’s intervals are not Student’s ¢ in-
tervals.

POINT ESTIMATION VS. INTERVAL
ESTIMATION

Ludwig (1996) calculates point estimates of near-
extinction probabilities for three species under a simple
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FiG. 1. Frequency distributions for 1000 realizations of the early-collapse probability under each of the posterior distri-

butions derived by Ludwig (1996).

linear regression model using both the frequentist
(maximum likelihood) method and a Bayesian nonin-
formative prior approach. He shows that the estimated
probabilities as computed by these two methods are
quite different, in order to ‘‘point out the large differ-
ences between ... [methods] ... that ignore our un-
certainty and those that take uncertainty into account,”
implying that he prefers the Bayesian estimates. It is
ironic that, in the first draft of his paper, Ludwig re-
ported point estimates with no accompanying measure
of their uncertainty; the posterior distributions of his
Fig. 1 provide this, but these were added in the second
draft. The moral of his story should be that a point
estimate (Bayesian or frequentist) with no accompa-
nying measure of its accuracy is worse than no estimate
at all. Instead he tries to argue that the Bayesian point
estimates are more reliable than the frequentist ones.
It is obvious from his posterior distributions and the
supporting analysis provided below that neither point
estimate is adequate as a full report of the information
in the data.

Since Ludwig did not originally provide any measure
of the accuracy of his estimates, in writing this com-
ment [ endeavored to do so by simulating his early-
collapse probability u(x, xo, x;, By, B, @), as suggested
by Ver Hoef (1996). Under the Bayesian approach, for
any fixed choice of the x’s, this quantity is a random
variable whose probability distribution is determined
by the joint posterior distribution of 8, 8,, and o. Lud-
wig rigorously and lucidly derives this distribution and
displays it in terms of transformed quantities p, 0, and
w. These quantities are a posteriori independent, with
distributions up to multiplicative constants given by
the F(2,n — 2), Uniform(0,2mw), and x?(n) distributions,
respectively. A thousand realizations of the quantities
p, 0, and w were generated using Splus (Becker et al.
1988), and the value of u computed for each using the
numerical details provided by Ludwig.

The results of the simulation are displayed as his-
tograms in my Fig. 1. These approximate the posterior
density functions of the early-collapse probability, i.e.,
the derivatives of the functions shown in Ludwig’s Fig.
1. The story told in each figure is the same, though
many readers will see it more clearly using the histo-
grams. Clearly there is a great deal of variability re-
maining in each posterior distribution, so it should
come as no surprise that point estimates by different
methods seem very different. As pointed out by Ludwig
in his second draft, the probability of collapse for the
Palila and Snow Goose species is indeterminate, pos-
sibly small but possibly quite large as well; the prob-
ability of collapse for Laysan Finch is clearly small,
on the order of 0.001 or less. Both the Bayesian point
estimates and the maximum likelihood estimates are
well within the range of plausible values described by
the posterior distributions.

It would be very interesting to compute and compare
frequentist confidence intervals for the early collapse
probabilities, for comparison with the Bayesian cred-
ible intervals. This is a much more difficult problem,
however, and time constraints did not allow its solution
for this comment.

DEcCISION THEORY

The elements of Bayesian decision theory are well
described by Wolfson et al. (1996). It is a stimulating
and logically beautiful theory, but many stimulating
and logically beautiful theories do not work well in the
real world. For example, the instructions state that ‘‘all
possible actions must be enumerated” in the action
space. Over what time frame? The difficulty with spec-
ifying an action space is that the time frame considered
must be limited, since considering the great number of
possible actions over a long time frame results in a
mathematically intractable problem. This will have the
effect of blocking out useful strategies and blinding the
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analyst to long-term effects of decisions; we become
chess players who cannot think beyond their next move.
For example, in the first case study of Wolfson et al.,
one obvious strategy was omitted: taking the sample
sequentially, a few observations at a time, was not con-
sidered. Confronted with this particular situation, a se-
quential sampling scheme seems a very obvious and
viable compromise.

The specification of a loss function is also problem-
atic, involving the assignment of “‘utility,”” a jargonese
euphemism for dollar value, to outcomes that are qual-
itatively very different, and whose relative costs are
very difficult to weigh. Here is a tragic true story of a
former Mayor of Columbus, Ohio: when asked what
his administration had done about the serious problem
of rape around the Ohio State campus, he blurted out
a frustrated reply to the effect that there were ‘““many
serious problems on campus, for example the littering
problem.” He lost the election. To all decision theo-
rists: how many Baby Ruth wrappers equals one rape?
Whatever the Mayor’s optimal strategy, it would most
likely not include the publicizing of his own loss func-
tion. That’s a good way to alienate registered voters.

This would often be the case for a politician or political -

entity, such as the EPA. The optimal decision-theoretic
strategies for a political entity will place excessive
weight on strategies improving the chances of its self-
preservation, again ignoring long-term consequences.

As another specific example in this feature, to aid in
specification of loss functions, Wolfson et al. specify
some typical elements of a loss function related to
health and environmental issues: monetary costs, loss
or gain of goodwill, increase in life expectancy, med-
ical problems, loss of quality of life, potential threat
of litigation. Though they point out that this is not an
exhaustive list, it is clearly focused on short-term hu-
man losses. It must be especially disappointing to ecol-
ogists that the very serious long-term loss due to low-
level, steady degradation of the Earth’s ecosystem did
not make the list! This is blatantly obvious in the sec-
ond example, where a local cemetery was not consid-
ered for remediation simply because no human beings
lived there at present. In saying this, it is assumed that
“remediation” means remedying (cleaning up) the
contamination, as opposed to paying off any current
residents who might sue the company. This latter ac-
tivity would more accurately be termed ‘‘remunera-
tion.”

HIERARCHICAL MODELS

Empirical Bayes methods, as discussed by Ver Hoef
(1996), are considered by many to be the best idea to
come along in statistics in the past 40 yr. They are
examples of a class of exciting new statistical methods
known as hierarchical models; other examples include
meta-analysis (Gurevitch and Hedges 1993) and certain
mixed-effects ANOVA models. As Ver Hoef points out,
to call them “Empirical Bayes” models is somewhat
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misleading, since one need not adopt the subjective
interpretation of probability to use them; they are so
named because they use the Bayesian conjugate-prior
mathematical framework as the top level of the hier-
archical model structure.

Ver Hoef’s first example is an excellent backdrop for
discussion. Yearly estimates of harbor seals are not
particularly accurate, individually. It is reasonable to
assume some similarity in the true (unobservable) pop-
ulation size over consecutive years. In this case, Ver
Hoef assumes a linear trend. Thus, the analytical model
has a hierarchy of assumptions, one set for the unob-
servable true population sizes over years, another set
for the sampled data within years. Unknowns at all
levels of the hierarchy are estimated with the data. If
the assumptions at all levels are fairly accurate, indi-
vidual estimates (now called ‘““‘predictions’’) of yearly
population sizes are improved. Though the improve-
ment in this example is modest, in some cases it can
be quite dramatic.

There is much to be gained in the use of these so-
phisticated models. Is anything lost? Most of the fol-
lowing criticisms apply to Bayesian methods as well
as frequentist hierarchical models: (1) the models are
so complex as to be outside the reach of individuals
who are not operating at the M.S. level or above in
statistical knowledge; (2) they are ‘‘assumption
heavy’’: the more structure adopted, the greater is the
chance of serious misspecification; these dangers
mount exponentially with added assumptions, not lin-
early; (3) assumptions are much more difficult to check
in these models, especially assumptions made on unob-
servables. All the papers in this symposium, with the
possible exception of Wolfson et al., are disappointing
in their lack of reference to model diagnostic checks;
(4) perhaps most seriously, as examples of ‘‘smooth-
ing”’ methods, these models trade increased bias for
reduced variance. If the top-level structure is too rigid,
the data are oversmoothed, and as a result important
discoveries may be missed. For example, the true pop-
ulation of harbor seals may be trending, but the trend
is surely not rigidly linear. By assuming it so, bias is
introduced into yearly population estimates. Referring
to Ver Hoef’s Fig. 1, the seal population in 1991 seems
to be unusually high relative to the line. Had some
unusual event occurred that allowed the seals to thrive
that year? In his third example, the assumption of only
two underlying mean densities, a and 3, may be leading
to a nondiscovery, in that the vegetation densities at
low transects 1-35 seem consistently different as a
group from those at high transects 70—-100 (see Ver
Hoef’s Fig. 3).

These criticisms are stated in the spirit of devil’s
advocacy. In this author’s opinion, the gains that are
possible using carefully built hierarchical models far
outweigh the concerns. To the extent that assumed
structure is reliable, it should be used. Since the ap-
propriate data analytic model will vary with the situ-



1094

ation, the case-study approach taken by Ver Hoef
(1996), Wolfson et al. (1996), Ludwig (1996), and Tay-
lor et al. (1996) is necessary, and these authors are to
be commended for doing the hard work required by
this approach. These case studies are somewhat less
than ideal, however, since in the real-data cases there
is no way to know the truth, and in the single simulated-
data case (the second example in Ver Hoef) the setting
is somewhat artificial, and no investigation into effects
of misspecified assumptions was made. The most con-
vincing sort of evidence for any statistical methodology
is the use of real data in a “verifiable’ case study, one
where the population truth is available. For example,
we could subsample from a complete GIS layer, apply
the various methods to the sample, and see how they
perform in estimation of overall layer parameters,
which are known. Several excellent examples of ver-
ifiable case studies are offered in Efron and Morris
(1975), one of the pioneering Empirical Bayes works.
In one example from that article, batting averages for
the first 45 at-bats of the 1970 season were used to
estimate final season batting averages for 18 major
league baseball players. The Empirical Bayes approach
assumed a normal distribution of (unobservable) innate
abilities for the players, using the first 45 at-bats for
all players to estimate the mean and variance of this
ability distribution. The resulting empirical Bayes es-
timates of final batting averages were a dramatic im-
provement over the use of each player’s 45-at-bats av-
erage, closer for 15 of the 18 players. The overall im-
provement in accuracy was equivalent to increasing the
sample size by more than threefold.

CoNCLUSION: EDITORIALS HAVE THEIR
PLACE, BUT . ..

It is not uncommon to find staunch, opposing atti-
tudes to open research questions in ecology. Audiences
are sometimes hostile; at the very least, they will ag-
gressively challenge any arbitrary decisions made in
the analysis and interpretation of data. Instances in
which one could incorporate substantial amounts of
prior information into an analysis, without rousing a
shouting argument from an audience of ecologists,
seem hard to imagine to this author. In the reporting
of an ecological study, as in a newspaper, there may
be a place for the author’s opinion, but it is not on the
front page. The first responsibility is to present the data
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without opinion (with the exception of clearly stated
structural assumptions), in a form that will allow read-
ers, formally or informally, to ‘“‘update their own pri-
ors.”” To this end, a frequentist confidence interval anal-
ysis or a noninformative Bayesian credible interval
analysis will be the most useful and appropriate pri-
mary analysis. These will provide similar interpreta-
tions, as was discovered in the section entitled: Can’t
we all just get along, and by Taylor et al. (1996).
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