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Dennis’ critique of Bayesian inference is motivated in large measure by a strong aversion to the lapping1

waves of “popular postmodernism” on the shoals of science, and the impact of feminist theory in the sciences.  In
reality, Dennis is concerned about the distinction between relativism and objectivism within the scientific method
(see Feyerabend 1987 for an historically-informed, philosophical review).  Postmodernism is a reaction to modernism
and denies an unbridled faith in progress (see Cahoone 1996).  Dennis further muddies the waters by lumping
deconstructionism, a method of literary criticism invented by Paul de Man (1989) and Jacques Derrida (1967) with
postmodernism.  Although many postmodernists are also relativists (see Gross and Levitt 1994) and engage in
literary (or scientific) deconstruction, it is possible to be an objective scientist within a postmodern framework, just
as it is possible to be a relativist within a modernist framework, and neither need engage in deconstructionism. 
Einstein and Heisenberg were successful relativist-modernists, whereas I consider Bayesians to be objectivist-
postmodernists.

I comment on three substantive issues raised by Dennis (2000): (1) the scientific method; (2)

differences between Bayesian and frequentist statistics; and (3) statistical education for ecologists.   I

draw inspiration for this essay from the writings of Neil Postman (e.g., Postman and Weingartner 1969,

Postman 1995), Paul Feyerabend (1975, 1978, 1987) and David Orr (1992), who, being firmly rooted in

the postmodernist camp, provide valuable insights about education, science, and society.1

Scientists construct convincing explanations and acquire reliable knowledge.  We do this through

rigorous application of “the scientific method”, a device for eliminating or reducing points of reasoned

skepticism.  All scientists share a common vision that objective truth is “out there”, but because there is a

diversity of reasons that we become scientists, we approach that truth in many ways (Feyerabend 1975,

1978).  In the end, however, the “collective process of empirical investigation, weeding out of untenable

notions, and careful checking of working hypotheses” is independent of frequentist or Bayesian (or other)

methods (Galileo had neither to use); that this process leads to progress is a core belief of modernism

(see footnote 1).  Straight-jacketing ourselves to one method, as advocated by Dennis, recalls an

observation by Heisenberg (1958): “[w]e have to remember that what we observe is not nature itself, but

nature exposed to our methods of questioning”, and may slow that progress, if in fact, it exists.  “Tobacco-

company science” can benefit by having only one acceptable method of scientific inquiry, and many
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political decisions, to our collective detriment and in the face of more than adequate scientific evidence,

hinge on the distinction between P = 0.05 and P = 0.06.

It is worth noting that “science” (and the science of ecology) is not equivalent to truth.  Rather (to

extend a concept developed by Postman 1995), science is a specialized language and method that we

employ to learn about truth (objective reality) and to explain errors (arising from non-scientific, objectively

false versions of reality).  Similarly, statistics is not science, it is a specialized language and tool that we

employ to speak about science and to describe scientific results.  Thus, statistics is a language used to

interpret another language (science) to learn about truth and explain error.  As a plethora of human

languages enriches our social lives, so a multiplicity of statistical languages can enrich our understanding

of science and bring us closer to understanding reality.

“The” scientific method

Ecologists are preoccupied with the hypothetico-deductive, falsificationist method laid out by

Popper (1959), viewed through the lens of statistics developed by Fisher (1922), and Neyman and

Pearson (1928), and placed on a pedestal by Platt (1964), Strong (1980), Simberloff (1980), and Peters

(1991).  When published, the papers by Strong (1980) and Simberloff (1980) were useful and important

antidotes to decades of fuzzy thought and story-telling masquerading as ecological science (although there

is much useful data in those old papers), but subsequent ossification of hypothetico-deductivist methods in

ecology shares much with the spread of gospel by religious disciples blindly following their master. 

Advances in modern science, including ecology, owe much to the professed use of the hypothetico-

deductive, falsificationist method, but in many (most?) instances, it is applied post-hoc to ideas conceived

inductively and tested with experiments deliberately designed to address the favored, “alternative”

hypothesis.  We should not forget that induction, which Popper attempted to toss into the dustbin of
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scientific history, is still widely used in “real” mathematics, and undergirds most (ecological) modeling

activities (Nicholls et al. 1999 is a recent example with real-world policy implications), activities which

Dennis does not consider to be science.  This is indeed odd, as models are convincing explanations based

on reliable knowledge, and often generate falsifiable hypotheses.  Feyerabend (1975, 1978), Howson and

Urbach (1993), and Schrader-Frechette and McCoy (1993) provide useful antidotes to knee-jerk

hypothetico-deductivism, and are recommended reading for all ecologists who want to become more than

just producers and curators of ANOVA tables.

The language of science: frequentist and Bayesian statistical inference

I have discussed elsewhere in greater detail some of the contrasts between frequentist and

Bayesian inference (Ellison 1996; see Howson and Urbach 1993 for a readable review, and the papers

collected by Earman 1983 for a thorough vetting of the philosophical arguments concerning hypothetico-

deductivist and Bayesian methods).  I only emphasize here that frequentist statistics answer the question

“how probable are my data, given my (null) hypothesis?” (i.e., P(data | H)), whereas Bayesian inference

answers the question, “how probable is my hypothesis (null or alternative(s)), given my data?” (i.e., P(H |

data)).  Far from asserting that frequentist methods are “an anachronistic yoke impeding ecological

progress”, I suggested that Bayesian inference had utility both in ecological research (where it would

allow us to use effectively unbiased results from previous research, as in the “macroecological”

approach advocated by Brown and Maurer [1989, Brown 1999], among others), and more importantly, in

expressing degrees of uncertainty in a policy- and decision-making framework.  My interest in this topic

initially grew out of teaching a course in decision theory, where Bayesian inference is used extensively

(e.g., Berger 1985, Smith 1988, Chechile and Carlisle 1991).
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Dennis’ example examining copper concentrations is cooked in at least two ways.  First, the2

“expert opinion” of the investigator employed by the mining company is clearly biased.  Second, and
statistically more importantly, Dennis has changed the point-null hypothesis from that presented in the
frequentist example (µ  = 48) to that presented in the Bayesian example (µ  = N(20,4)).  Dennis equates0          0

the expert prior with the null hypothesis, when in fact, the Bayesian would also be testing the same null
hypothesis as the frequentist.  There are other, known problems with testing point null hypotheses using
Bayesian inference (see Lee 1997: 124ff), notably that it is impossible to put a continuous prior probability
density on a point estimate (Lee 1997: 126).  However, it is possible to put a prior probability density on a
very small interval around the point estimate, as in µ , (µ  - g, µ  + g).  The data, and a properly identified0   0

prior on a point-null hypothesis would clearly have helped to identify the mining scientist as biased.

Fundamentally, we scientists seek to understand the world around us.  We do this by drawing

objective conclusions from observations and experiments that also allow for accurate predictions of future

events.  Frequentist statistics are very useful for drawing objective conclusions from observations and

experiments, but are not well-suited for prediction and inference.  Bayesian methods are useful for

prediction and inference, given objective, unbiased data (Bayesian priors) from careful observations,

controlled experiments, appropriate null hypotheses, and, when necessary, formal elicitation of expert

opinion (unlike, in all respects, the “cooked” example Dennis presents ).  For example, whereas clinical2

trials of new drugs are grounded firmly in frequentist methods, medical diagnosis and consequent

improvements in healthcare and longevity owe much to the principles of “specificity” and “sensitivity” that

emerge directly from Bayes theorem (e.g., Rosner 2000).  Like clinicians who are responsible for the

health and well-being of their patients, ecologists would be well-served by using all available tools to

understand the mechanics of ecological systems (frequentist analysis) and to predict their responses to

future conditions (model selection with or without Bayesian or frequentist inference; see for example

Burnham and Anderson 1998).   

Until recently, ecologists, like statisticians, have had only asymptotically accurate, frequentist

methods available in their statistical toolkit.  Increasing computational speed allowed for the development

and use of exact statistical tests, many of which do not require knowledge of underlying distributions. 
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Neither should be called adherents to “frequentism” or “Bayesianism”.  These terms conjure up visions of3

religion and politics (pick your favorite “ism”), neither of which has a place in objective modernist or postmodernist
science.

Further increases in the power of desktop computers, and improved methods of numerical analysis and

approximation, have meant that Bayesian software can now be implemented more easily (e.g., Pole et al.

1994, Cook and Broemeling 1995, Albert 1996).  Not surprisingly given these tools, a careful examination

of assumptions of, and similarities and differences between Bayesian and frequentist inference has led to

a greater diversity of approaches in the major statistical journals.  Contrary to Dennis’ assertion,

practitioners  of frequentist and Bayesian inference interact and discuss areas of overlap and3

disagreement (e.g., Pratt 1965, Smith 1984, Efron 1986, 1998, Casella and Berger 1987, Lewis and Berry

1994, Samaniego and Reneau 1994, Hill 1995, Robbins 1995, Moore 1997, Gopalan and Berry 1998).  It

makes sense for ecologists to adopt the same degree of pluralism.  I suggest that ecologists adopt good

statistical practice and use whatever method is appropriate to the question (P(data | H) or P(H | data)?)

— frequentist, exact, likelihood, information-theoretic, or Bayesian.

Statistical education for ecologists

Dennis argues that statistics is a post-calculus subject, and therefore all ecologists should have

one year of calculus prior to entry into graduate school, wherein they should take a standard “math-stat”

course in statistical theory.  In principle I agree, but I suspect that this blanket prescription would not

accomplish very much.  “Real” undergraduate calculus generally is poor preparation for anything other

than the follow-on, advanced calculus courses and undergraduates do not readily transfer their calculus

skills to other courses (e.g., ecology, physics, statistics).

Statistics (and mathematics) is neither truth nor science, rather, it is a specialized language that

has been developed to speak about science.  Statistical education (I explicitly avoid the term “training”,
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which, as Orr [1992] has pointed out, is what we do to animals) therefore should be about understanding

the language of statistics, and understanding what limitations that language places on our understanding

and interpretation of scientific results.  Of course, to develop that understanding, it helps to know what

statistics are, how they are used, how they are interpreted, and why society reveres them when it tells us

what we want to know, and disparages them otherwise (contrast the front section of any issue of USA

Today with Huff’s classic book How to lie with statistics [1954]).  Substitute “ecologists” for “society”

in the last sentence, and we have the kernel of statistical education for ecologists.  This has been broadly

recognized by statisticians, who have developed curricula addressing these goals not only narrowly within

statistics classes, but also across disciplinary boundaries, at both high school and university levels (e.g.,

Mosteller 1988, Cobb and Moore 1997, Nolan and Speed 1999, Roberts et al. 1999).  Ecologists need to

catch up to this trend, not form a rear-guard protecting the gates of a decaying castle.  We also need this

education so that we know how to provide unbiased, objective information to the individuals and groups

we have charged with making ecological and environmental policy decisions.  Otherwise, we will have

nothing left to study.
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