
Science as a Bayesian algorithm 

             There is a new way to think about sci-
ence and its power and limits, which is gaining 
favor among scientists and philosophers alike, 
and which I think beautifully clears up many 
common misunderstandings that both scientists 
and the general public seem to have about the 
nature of science. I am referring to an old and 
until recently rather obscure way to think about 
probability invented by Reverend Thomas Bayes 
back in 1763.  

Bayes realized that when we think of the 
probability of a hypothesis to be true we base 
our judgment on our previous knowledge about 
the phenomenon under study (i.e., we use induc-
tion). We then assess new information in the 
light of this prior probability and modify our be-
lief (meant as degree of confidence, not as blind 
faith) in the hypothesis based on the new infor-
mation. This process can be repeated indefi-
nitely, so that the degree of trust we have in any 
hypothesis is always due to the current (and ever 
changing) balance between what we knew be-
fore and the new knowledge that additional data 
bring in.  

Here is the fundamental equation of 
Bayesian statistics, known as Bayes rule: 

 
Where P(H|D) (which reads “the probability of 
H given D”) is the probability that our hypothe-
sis is correct given the available data; P(D|H) is 
the probability that the data would be observed 
given the hypothesis; P(H) is the unconditional 
probability of the hypothesis (i.e., its probability 
before we knew of the new data); and the de-
nominator is a product of the numerator plus an 
equivalent term which includes the probability 
to observe the data if the hypothesis is actually 
wrong (or, in the case of multiple hypotheses, 
the probabilities of observing the data if each 
additional hypothesis is correct). The denomina-
tor of the right hand of the equation is also 
known as the likelihood of all hypotheses being 

considered. The left hand of the equation is 
called the posterior probability of the hypothesis 
in question; the left part of the numerator on the 
right side of the equation is known as the condi-
tional likelihood of the hypothesis in question; 
and the right part of the same numerator is called 
the prior probability of the hypothesis being 
considered. This sounds very complicated until 
we examine a particular example, so bear with 
me for a few more minutes.  
             A family has plans to go fishing on a 
Sunday afternoon, but their plans are dependent 
on the 
weather at 
noon on Sun-
day: if it is 
sunny, then 
there is a 90 
% chance 
that they will 
go fishing; if 
it is cloudy, 
then the 
probability 
that they will 
go fishing 
drops to 50 
%; and if it 
is raining, 
the chances drop to 15 %. The weather predic-
tion at the point we first consider the situation 
call for a 10 % chance of rain, a 25 % chance of 
clouds, and a 65 % chance of sunshine. The 
question is: given that we know that the family 
eventually did go fishing, was the weather 
sunny, cloudy, or rainy? You will probably have 
your intuitions about this, and they may well be 
correct. But science goes beyond intuition to em-
pirically-based reasoning. Here is how Bayes 
would solve the problem:  
 
•     First, let’s plug our preliminary assessment 

of the situation into Bayes rule: the probabil-
ity of fishing given that it is sunny, P(F|S) = 
0.90; the probability of fishing given that it 
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Reverend Thomas Bayes, 1702-1761. 



is cloudy, P(F|C) = 0.50; and the probability 
of fishing given that it is rainy, P(F|R) = 
0.10 . 

•     Second, the probability of each kind of 
weather given the predictions of the weather 
report can be summarized as: probability of 
sunny weather, P(S) = 0.65; probability of 
cloudy weather, P(C) = 0.25; and probability 
of rainy weather, P(R) = 0.10 . 

•     Third, notice that the sum of the probabili-
ties of each weather condition is 100%: P(S) 
+ P(C) + P(R) = 0.65 + 0.25 + 0.10 = 1.00 
and these hypotheses are mutually exclusive 
(in the sense that it was either sunny, or 
cloudy, or rainy, but not a combination of 
them). 

•     Fourth, the overall likelihood of going fish-
ing (the denominator of the right side of 
Bayes rule), P(F) is 0.725 = P(F|S)*P(S) + P
(F|C)*P(C) + P(F|R)*P(R) = 0.90*0.65 + 
0.50*0.25 + 0.15*.10 . 

•     We can now get to the new conclusions 
about our hypotheses on the weather, given 
the prior and new information (the latter be-
ing that the family did go fishing): 

o The probability that the weather was 
sunny given that the family went 
fishing is, according to Bayes rule: P
(S|F) = P(F|S)*P(S) / P(F) = 
0.90*0.65 / 0.725 = 0.807 . 

o The probability that the weather was 
cloudy given that the family went 
fishing is, according to Bayes rule: P
(C|F) = P(F|C)*P(C) / P(F) = 
0.50*0.25 / 0.725 = 0.172 . 

o The probability that the weather was 
rainy given that the family went 
fishing is, according to Bayes rule: P
(F|R)*P(R) / P(F) = 0.15*0.10 / 
0.725 = 0.021 . 

•     Finally, note that P(S|F) + P(C|F) + P(R|F) = 
0.807 + 0.172 + 0.021 = 1.00, because one 
of the hypotheses must be true (it either was 
sunny, or cloudy, or rainy, no other possi-
bilities are in the game). 

 
Bayes rule, therefore, tells you that—

given the prior knowledge of the situation we 
had and the new information that the family did 

go fishing, the likelihood that the weather was 
sunny was the highest. Well, you could have 
guessed that, no? Yes, in this simple case. But 
notice that Bayes rule gives you additional in-
formation: first, it tells you what the best avail-
able estimates of the probabilities of all three 
hypotheses are; consequently, it tells you how 
much confident you can be that the weather was 
sunny (which is better than simply saying “it’s 
more likely”); also, it is clear from the equations 
that the probability of the hypothesis that the 
weather was sunny went up with the new infor-
mation (from 0.65 to 0.807); finally, Bayes theo-
rem reminds you that your degree of confidence 
in any hypothesis is never either zero or one 
hundred per cent, although it can get very close 
to those extremes. 

Bayesian statistical analysis is a good 
metaphor (some philosophers of science would 
say a good description) of how science really 
works. More, it is a good description of how any 
logical inquiry into the world goes if it is based 
on a combination of hypotheses and data. The 
scientist (and in general the rationally thinking 
person) is always evaluating several hypotheses 
based on her previous understanding and knowl-
edge on the one hand and on new information 
gathered by observation or experiment on the 
other hand. Her judgment of the validity of a 
theory therefore changes constantly, although 
very rarely it does so in a dramatic fashion. 
Bayesian analysis, therefore, clearly shows why 
the extremes of anti-science and scientism are 
naïve positions: they correspond respectively to 
having certainty into the hypotheses that science 
never works (e.g., creationism) or always works 
(i.e., scientism). But attaching a probability of 
zero or one to a given hypothesis, as the Bayes-
ian framework makes clear, is the same as say-
ing that our conclusions are valid no matter 
what the data say, i.e., we take them on faith.  
 
——– 
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