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Lab 1:

Calculating Likelihood and Likelihood Surfaces

Section 1: Maximum Likelihood Estimation

You have been conditioned to use arithmetic (and method of moment) estimates for simple things like the mean and variance of a sample. But statisticians have known for years that maximum likelihood estimates of those parameters often have superior properties (in the formal terms they care about: consistency, efficiency, invariance, etc.). 

Thus, regardless of your philosophical leanings (frequentist, likelihoodist, or Bayesian), what statisticians call “point estimation” is typically done nowadays with maximum likelihood methods.

Exercise in R:

Load the R code for Lab 1 – Section 1 from the Course Schedule website

The point of the first exercise is to get you to understand how simple maximum likelihood estimation is (at least in principle).

Remember:

(1). The maximum likelihood estimate of a parameter (θ) is the value of the parameter that maximizes the probability of observing the actual data (x), given the parameter (i.e. P(x|θ)),

(2) the log of the probability of observing the data is the sum of the logs of observing each individual datapoint (so, we sum log-likelihoods across each observation in the dataset).

The R code:

We will work through the supplied R code together, so that you learn how to

(1) Create a sample of data

(2) Set up to do a simple grid search to find the ML estimates of the mean and standard deviation of the sample. 
Things to try:

(1) run the code with samples where you vary the mean and variance used to generate the dataset, and see how close the MLEs of the sample mean and variance are to the values used to generate the data

(2) examine the likelihood response surfaces as you vary sample size (n). How sensitive is the response surface to sample size. How does “strength of evidence” for your estimate of the mean versus the standard deviation vary with sample size.
Section 2: Regression in a maximum likelihood context

The detailed example we just worked through to find the maximum likelihood estimate of the mean and standard deviation of a set of observations is almost trivial, but the transition to fitting regression models using maximum likelihood is almost just as trivially easy. There are lots of subtleties and special cases and complexities that we will deal with later in the course, but essentially all of it derives from the basic procedures used in Section 1.

Exercise

Load the R code for Lab 1 – Section 2 to use as a template:

1. Create a dataset in which the observations (x) are a normally distributed around an expected mean that is some function of an independent variable (y).

You’re natural inclination will be to use a linear model, because you’ve been conditioned to think of a linear model as somehow easier (and more parsimonious). Neither of those is necessarily true in a likelihood context, and nonlinear models are not necessarily more complicated computationally than linear models when using true maximum likelihood methods (rather than least-squares estimation)

2. Modify the code to do a grid search on the slope of the relationship (you can decide whether or not to use a non-zero intercept). The only new concept to grasp here is that the “mean” in dnorm is essentially the “predicted” value from the regression.
3 (optional).  Create a dataset with heteroscedasticity (for example, have the standard deviation be a power function of the mean).  Then redo step 2 and see whether the grid search is sensitive to this (i.e. treating the problem as if the variance is constant).
