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Abstract. Dispersal affects community dynamics and vegetation response to global
change. Understanding these effects requires descriptions of dispersal at local and regional
scales and statistical models that permit estimation. Classical models of dispersal describe
local or long-distance dispersal, but not both. The lack of statistical methods means that
models have rarely been fitted to seed dispersal in closed forests. We present a mixture
model of dispersal that assumes a range of disperal patterns, both local and long distance.
The bivariate Student’s t or ‘‘2Dt’’ follows from an assumption that the distance parameter
in a Gaussian model varies randomly, thus having a density of its own. We use an inverse
approach to ‘‘compete’’ our mixture model against classical alternatives, using seed rain
databases from temperate broadleaf, temperate mixed-conifer, and tropical floodplain for-
ests. For most species, the 2Dt model fits dispersal data better than do classical models.
The superior fit results from the potential for a convex shape near the source tree and a
‘‘fat tail.’’ Our parameter estimates have implications for community dynamics at local
scales, for vegetation responses to global change at regional scales, and for differences in
seed dispersal among biomes. The 2Dt model predicts that less seed travels beyond the
immediate crown influence (,5 m) than is predicted under a Gaussian model, but that more
seed travels longer distances (.30 m). Although Gaussian and exponential models predict
slow population spread in the face of environmental change, our dispersal estimates suggest
rapid spread. The preponderance of animal-dispersed and rare seed types in tropical forests
results in noisier patterns of dispersal than occur in temperate hardwood and conifer stands.

Key words: Bayesian analysis; dispersal kernel; exponential model; forest dynamics; gamma;
Gaussian model; migration; seed dispersal; seed shadow; Student’s t.

INTRODUCTION

An understanding of dispersal is needed to assess
recruitment limitation in plant communities and to pre-
dict population responses to global change (Schupp
1990, Ribbens et al. 1994, Pitelka et al. 1997, Clark et
al. 1998a). Dispersal is summarized by a ‘‘seed shad-
ow,’’ describing the density of juveniles with distance
from the parent. A seed shadow model consists of two
elements: (1) an estimate of fecundity, or the rate of
seed production, and (2) a dispersal ‘‘kernel,’’ or prob-
ability density, describing the scatter of that seed about
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the parent. The seed shadow is the product of these
two elements:

seed shadow 5 fecundity 3 dispersal kernel

no. seeds no. seeds 1
5 3 . (1)

2 21 2 1 2 1 2m yr yr m

Seed shadows describe movement at several spatial
scales. At fine scales, the fraction of seed that remains
near the parent vs. that dispersed broadly affects ag-
gregation and, thus, competition (Janzen 1970, Levin
1976, Geritz et al. 1984, Levin et al. 1984, Shmida and
Ellner 1984, Augspurger and Franson 1988, Augspur-
ger and Kitajima 1992, Venable and Brown 1993, Hurtt
and Pacala 1996). At coarse scales, the seed shadow
determines whether colonization of new habitats occurs
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FIG. 1. Comparison of the shapes of kernel
tails fitted to Acer rubrum seed rain. (a) Dif-
ferent models in an exponential family (Eq. 3)
predict convexity at the source (c . 1) or a fat
tail (c , 1), but not both. Exponential and fat-
tailed kernels are more leptokurtic (more peaked
and fat tailed) than is the Gaussian. (b) The 2Dt
model (Eq. 7) predicts convexity at the source
and a fat tail. Note the log scale of the y-axes.

mostly from patch edges, where seed rain from nearby
adults is dense (Bjorkbom 1971, Hughes and Fahey
1988, Greene and Johnson 1989), or from seed trav-
eling long distances (Davis 1981, Ritchie and Mac-
Donald 1986, Fastie 1995). Plant migrations during
climate change may be controlled by the ‘‘tail’’ of the
kernel, with accelerating spread well in advance of the
population frontier (Kot et al. 1996, Clark 1998). Taken
together, these observations point to the need for an
understanding of dispersal both near parent crowns and
over long distances.

Two challenges stand in the way of predicting dis-
persal within natural communities. First is the need for
kernel models that accurately describe dispersal across
a range of spatial scales. The shapes of seed shadows
assumed by dispersal biologists, modelers, and theo-
rists reflect focus on a particular scale. Models applied
at a fine scale usually assume a kernel that is convex
near the source and platykurtic (e.g., the Gaussian ker-
nel in Fig. 1a), because this shape describes the influ-
ence of the nearby (and sometimes overhanging) can-
opy (Green 1983, Geritz et al. 1984, Ribbens et al.
1994, Clark et al. 1998b). Seed density declines with
distance from the parent tree, slowly at first, and then
more rapidly beyond the crown edge. This ‘‘local’’ con-
vexity requires a kernel f(r) having a negative second
derivative at the source, d2f(r)/dr2zr50 , 0, where r is
distance (Fig. 1a). Such dispersal kernels have been
used to estimate probabilities of finding safe sites (Jan-
zen 1970, Green 1983, Geritz et al. 1984), competition
within tree communities (Ribbens et al. 1994), and re-
cruitment limitation (Clark et al. 1998b). The restricted
dispersal described by such kernels predicts species
compositions that can contrast with those from models
that assume global dispersal (Leishman et al. 1992,
Hurtt and Pacala 1993, Ribbens et al. 1994, Clark and
Ji 1995).

Ecologists concerned with processes that operate at

broad spatial scales, such as reforestation of habitat
fragments and population spread, commonly employ
models that are concave near the source and leptokurtic
(‘‘fat-tailed’’ in Fig. 1a). Exponential densities and
power functions (Portnoy and Willson 1993, Willson
1993) are examples of models chosen principally for
the shape of the ‘‘tail’’ of the seed shadow, i.e., on seed
dispersed beyond the direct crown influence. Relatively
small differences in the shapes of tails can have large
effects on rates of population spread (Clark 1998). Pla-
tykurtic kernels estimated by dispersal biologists and
community ecologists are of little use at coarse scales,
whereas the leptokurtic models that appear more rea-
sonable at coarse scales are likewise poorly suited for
application at fine scales.

A second challenge has been the development of
statistical methods for estimation and model testing.
Past efforts to describe the scatter of seed about parent
plants have enjoyed limited success. Observations from
isolated trees in open or edge situations (Bjorkbom
1971, Smith 1975, Carkin et al. 1978, Gladstone 1979,
Holthuijzen and Sharik 1985, Lamont 1985, Johnson
1988, Greene and Johnson 1989, Guevara and Laborde
1993) are hard to generalize to closed forests, because
exposed crowns have higher seed production and are
subject to different dispersal conditions than are their
counterparts in closed stands (Ruth and Berntsen 1955,
Fowells and Schubert 1956, Barrett 1966, Mair 1973).
Seed shadows are a black box in models of stand dy-
namics, because there are no obvious ways to measure
seed transport in closed canopies where seed shadows
of individual trees overlap (Houle 1992, Martinez-Ra-
mos and Soto-Castor 1993). Empirical approaches are
summarized by a collection of functions (reviewed by
Willson 1993) that are restricted in application to par-
ticular spatial scales and that yield inconsistent fits to
data (Portnoy and Willson 1993). Although migration
in response to global change has been critical to species
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persistence, both past and present, seed dispersal has
yet to be incorporated in Dynamic Global Vegetation
Models (DGVMs), because existing empirical models
are not relevant at coarse scales (Pitelka et al. 1997,
Clark et al. 1998a).

Mechanistic approaches represent an alternative ap-
proach. Forces that act on an ensemble of seeds, in-
cluding settling, diffusion, and advection (wind), are
the components of Gaussian plume models. Applica-
tions to forest community dynamics are limited thus
far (we are aware of none), because solutions generally
assume simplistic boundary conditions (e.g., a point
source) and constant wind profile. The distributed
source, represented by a tree crown or by a stand of
trees contributing seed to an open field (Okubo and
Levin 1989), is responsible for the convex kernel shape
close to that source. The ‘‘skip distance’’ predicted by
a Gaussian plume model with an elevated point source
and constant wind profile is not expected in real stands
where winds vary and crowns are broad. Relaxing the
assumption of a constant wind profile requires many
parameters that are difficult to obtain and are dependent
on specific conditions (Sharpe and Fields 1982, An-
dersen 1991).

Inverse modeling represents a powerful methodol-
ogy for estimating fecundity and dispersal (Ribbens et
al. 1994, Clark et al. 1998a, b). The approach uses the
spatial pattern of seed recovered from seed traps and
adult trees to statistically estimate the seed shadow.
Although the transport of individual seeds is not ob-
served, the model of seed arrival in traps can be in-
verted to provide parameter estimates, to estimate
goodness-of-fit, and to propagate error. The method-
ology itself is quite general, accommodating a range
of assumptions regarding kernel shape and error dis-
tribution. Alternative views of dispersal are represented
by competing functional forms that can be compared
based on field data.

Here, we integrate notions of dispersal that cut across
spatial scales, and we determine the extent to which a
classical vs. a new model derived from this integrated
view explains dispersal in three biomes. The novel as-
sumption of our model is that of a seed shadow con-
stituting a continuous range of dispersal processes, in-
cluding ones responsible for local (e.g., settling under
conditions of light winds) to long-distance (e.g., move-
ment by strong winds and transport by vertebrates) dis-
persal. This assumption is incorporated by modifying
a standard dispersal model to include a density of dis-
persal parameters, with the resultant, new seed shadow
being a ‘‘continuous mixture.’’ The resultant mixture
model has desirable features at both local (i.e., con-
vexity near the source) and long (i.e., high kurtosis, or
a fat tail) distances. We then apply an inverse approach
to parameterize the model, and we ‘‘compete’’ this
model against the classical alternatives using data as
arbitrator. Our tests are based on data from southern
Appalachian, Sierra Nevada mixed-conifer, and Peru-

vian tropical floodplain forests. Comparisons demon-
strate commonalities and differences across these con-
trasting biomes.

A FIELD GUIDE TO SEED SHADOWS

A brief background summarizes differences among
the dispersal kernels used to model dispersal, devel-
opment of our new kernel, and inferences that can be
drawn from our competitions among kernels using an
inverse approach. We begin by describing a kernel in
two dimensions, because this is a source of confusion
in the literature.

A dispersal kernel in two dimensions

A tree’s ‘‘seed shadow,’’ the flux of seeds at distance
r (in meters), is the product of seed production rate Q
(per year) and a density function, or kernel f(r, f):

s(r, f) 5 Qf(r, f) (2)

where f is direction (e.g., radians), and f(r, f) is seed
density per square meter; Eq. 2 is a restatement of Eq.
1. We assume rotational symmetry, so direction f is
eventually suppressed; it is explicit initially to assure
that we arrive at a proper normalization constant (a
scalar guaranteeing that all seeds land somewhere). The
probability that a seed originating at r 5 0 falls on an
area of ground surface (or in a seed trap) with diameter
dr and subtending arc angle u is the integral

r1drr1dr

f (r9, f) df dr9 5 u r9 f (r9) dr9E R E u
r u r

ø ur f (r, f) dr. (3)

Note that integration of f(r, f) over arc angle u yields
urfu(r). Integration over both u and r yields a dimen-
sionless fraction, which, upon multiplication by fecun-
dity, gives the annual seed flux (i.e., number of seeds
per year) to the area (u, dr). This result is not the seed
shadow of Eq. 2, which is a density and has units of
number of seeds per square meter per year (Eq. 1), but,
rather, the integration of it. The integration over 2p is
2prf2p(r), which is the marginal density for the random
variable r. Moments represent a convenient summary
of r and are solved in Appendix A. To simplify notation,
we hereafter represent f(r, f) as f(r).

A family of dispersal kernels

Many functional forms can be, and have been, used
to describe how offspring abundances vary with dis-
tance from the parent tree. We limit consideration here
to proper density functions. We do not consider power
functions, for example, because they contain a singu-
larity (infinite density at zero); they cannot be parame-
terized to yield finite moments.

Many previous models and the new model developed
here can be placed within the general context of one
analyzed by Clark et al. (1998b):
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c1 r
f (r) 5 exp 2 (4)1 2[ ]N a

where a is a distance parameter (in meters), c is a
dimensionless shape parameter, N is the normalization
constant,

c` 2r 2pa G(2/c)
N 5 exp 2 df dr 5E R 1 2[ ]a c0 2p

and

`

a21 2zG(a) 5 z e dzE
0

is the gamma function. The kernel can be concave at
the source and fat tailed (c # 1) or convex at the source
and platykurtic (c . 1). The exponential (c 5 1) is
most common:

1 r
f (r) 5 exp 2 . (5a)

2 [ ]2pa a

Alternative kernels in this family include the Gaussian
(c 5 2),

21 r
f (r) 5 exp 2 . (5b)

2 1 2[ ]pa a

Clark et al. (1998a) and various others; Ribbens et al.
(1994) use c 5 3, and Kot et al. (1996) and Clark (1998)
use c 5 1/2. Kurtosis, summarized from the second and
fourth moments of the marginal density of r,

m 4 G(6/c)G(2/c)R 5 (6)
2 2m 2 G (4/c)R

(see Appendix A), tends to infinity as c tends to zero
and to zero as c becomes large. Thus, Eq. 4 accom-
modates the large kurtotsis that power functions at-
tempt to capture, while still qualifying as a proper den-
sity function.

There are two limitations of dispersal kernels based
on Eq. 4. First, although flexible (e.g., zero to infinite
kurtosis), the seed shadow can be either convex at the
source or leptokurtic, but not both (Fig. 1a). Second,
statistical models used to fit kernels from seed or seed-
ling data become unstable if estimation of a and c is
attempted simultaneously. For five stands analyzed by
Clark et al. (1998b), it was necessary to assume a value
of c and then fit a. Ribbens et al. (1994) report similar
difficulties. A more flexible kernel is obtained with a
two-part model having ‘‘local’’ and ‘‘long-distance’’
components. The likelihood for this two-part model is
ill-conditioned, however, prohibiting direct parameter
estimation of the long-distance component (Clark 1998).

THE RIGHT SHAPE NEAR AND FAR:
A CONTINUOUS MIXTURE

A kernel that accurately describes dispersal at both
local and long-distance scales is obtained by charac-

terizing the seed shadow as a composite process, sum-
marized by a continuous range of dispersal parameters
a. The Gaussian kernel (Eq. 5b) is a reasonable model
for a restricted set of conditions. The model fits field
data for most of the tree species that we tested, and
species differences in dispersal parameters a matched
closely the predictions based on fall velocities (Clark
et al. 1998b). Nonetheless, the model is most sensitive
to seeds dispersed over short distances, and it fails to
describe sporadic seed dispersed over long distances:
the tail of the kernel is essentially overlooked.

We modified the Gaussian kernel (Eq. 5b) by assum-
ing that it varies continuously with prevailing condi-
tions. For example, a small value of a might describe
the kernel for seed released during times of light winds,
whereas a large value might apply when winds are high,
or for seeds dispersed by frugivorous birds, primates,
or other vertebrates. Assuming then that a represents
a random variable, we require a density of a values,
call it f(a), to describe the probability of a values dur-
ing seed release or transport. There are two restrictions
on our choice for density f(a). First, it must be flexible.
Second, it must have a form such that the product of
f(a) and f(r z a) can be integrated to yield a new kernel
f(r) that incorporates variability in a. In other words,
we must be able to solve for the marginal density f(r)
that results from the jointly distributed random vari-
ables r and a.

We searched for a density f(a) that is both flexible
and permits a solution to (marginal density for) Eq. 5b.
Such a solution is obtained by introducing a new vari-
able A, that is defined in terms of a and scaling pa-
rameter u,

u
A [ (7)

2a

where A is gamma-distributed with shape parameter p:

p21 2AA e
f (A; p) 5 .

G(p)

Writing Eq. 5b as a density f(r z A) conditioned on the
random variable A (which depends, in turn, on a), the
new kernel becomes

` p
f (r) 5 f (r z A) f (A) dA 5 . (8)E p11

20 r
pu 1 1[ ]u

A rescaling of parameters would show this to be a
bivariate version of Student’s t distribution. The density
is two dimensional, because the normalization constant
includes the arc-wise integration. Rotational symmetry
suppresses arc angle, but the density is expressed per
square meter rather than per meter. We therefore refer
to this mixture as a ‘‘two-dimensional t’’ (2Dt) kernel.
It tends to a Gaussian as p becomes large, and to a
Cauchy as p tends to zero.
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FIG. 2. The problem of estimating individual seed shad-
ows when they overlap. The map shows individual trees (cir-
cles are scaled to relative diameter) and contours of seed
density fitted by inverse modeling. The contours represent
the sum of seed contributions from many nearby trees and
thus are smoothed relative to individual seed shadows (lower
panel, which shows a transect along the dashed line in the
upper map). The individual seed shadows in the lower panel
are estimated from total seed rain. The example here is from
the temperate deciduous forest (Table 1).

Advantages of our 2Dt mixture over variants on Eq.
3 are threefold. First, it has the right shape at local and
long distances. Although convex at the source, it ac-
commodates both fat and exponentially bounded tails.
Moments ,2p are finite (Appendix A); thus, all mo-
ments are finite in the Gaussian limit ( p → `), and all
are infinite in the Cauchy limit ( p → 0). Kurtosis (in-
volving the fourth moment) is finite for p . 2.

A second advantage of the 2Dt distribution is the
fact that the density of a is obtained as a by-product
of fitting the kernel itself. Rather than simply obtaining
best estimates of a and confidence intervals (e.g., Clark
et al. 1998b), we obtain a full density of dispersal val-
ues with the variable change:

pdA 2u u
f (a) 5 f (A) 5 exp 2 . (9)

2p11 2) ) [ ]da a G(p) a

This density can be viewed as a type of inverse x2.
Moments of a can be expressed in terms of the mo-
ments of the kernel itself:

2m mRm m 5 .a mG(m /2)

These moments are finite so long as the corresponding
moments of the kernel are finite. Thus, the mean of a
is 1.12 times as large as the mean dispersal distance.
The mode, which obtains at d ln f(a)/da 5 0, is

2u
a 5 .mode !2p 1 1

A third advantage of this mixture is the fact that the
density of a represents a conjugate prior for Bayesian
estimation of the traditional exponential family (e.g.,
Gaussian and exponential). Although there is no such
tractable Bayesian approach for the mixture likelihood
that we will fit numerically, the conjugate pair provides
a basis for rapid updating of exponential kernels from
seed release data (Appendix B).

We will see that the 2Dt density is flexible and varies
substantially among species. We interpret this density
in terms of the mixture of processes that might con-
tribute to dispersal.

ESTIMATION: INVERTING THE SEED SHADOW

The inverse problem presented by seed rain beneath
closed canopies is summarized in Fig. 2. Multiple seed
sources contribute to a given location. The seed rain
from these multiple sources is a smoothed version of
individual seed shadows, making it difficult to assign
recovered seeds to specific sources. To avoid this prob-
lem, studies frequently focus on isolated trees in open
fields or parking lots, at forest edges, or along hedge-
rows. We have noted that fecundities and transport at
such locations are unrepresentative of closed canopies.
It happens that the problem illustrated by Fig. 2 can
be solved, in the sense that statistical estimates of the
individual seed shadows can be obtained by inversion.

The statistical model includes the two elements of the
seed shadow (fecundity and a kernel from Eq. 1), to-
gether with a distribution of error.

Summed seed shadow model

Assume that overlapping seed shadows can be ex-
pressed as the summed contributions from each tree.
Each seed shadow (Eq. 1) depends on distance and on
tree size. The distance effect is simply the kernel f(r)
(Eq. 8). We assume that fecundity is proportional to
basal area b (see also Ribbens et al. 1994):

Q(b) 5 bb, (10)

where b is a parameter, because it represents the sim-
plest assumption in light of few data. This assumption
overestimates fecundity for old trees with senescing
crowns, but more complex assumptions come at the
cost of additional parameters. J. Clark (unpublished
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TABLE 1. Forest stands used to model dispersal.

Forest type
(location)

Annual
precipitation

(mm)
Elevation

(m) Stand number, type
Dominant species

(based on basal area)

Temperate deciduous
(358039 N, 838279 W)

1900 790 1, xeric ridge Quercus spp., Pinus rigida, Acer
rubrum

800 2, cove hardwood Liriodendron tulipifera, Quercus
spp., Acer rubrum

870 3, mixed oak Quercus spp., Acer rubrum, Carya
glabra

1090 4, mixed oak Quercus spp., Acer rubrum, Nyssa
sylvatica

1390 5, northern hardwood Betula spp., Quercus spp., Tilia
americana

Temperate mixed-conifer
(368349 N, 1188469 W)

1000 2200 1, Sierra Nevada mixed-
conifer

Abies concolor, Abies magnifica
var. shastensis, Sequoiadendron
giganteum

2200 2, sequoia–mixed-conifer Sequoiadendron giganteum, Abies
concolor, Abies magnifica var.
shastensis

1600 3, Sierra Nevada mixed-
conifer

Calocedrus decurrens, Abies
concolor, Quercus kelloggii

1600 4, Sierra Nevada mixed-
conifer

Calocedrus decurrens, Quercus
kelloggii, Pinus ponderosa

Tropical floodplain
(118549 S, 718229 W)

2000 350
Otoba parvifolia, Quararibea witti

TABLE 2. Summary of data sets analyzed in this study.

Forest type No. stands (q)
Area of each stand

(ha)
No. seed traps

per stand
Area per seed trap

(m2) Duration (yr)

Temperate deciduous
Temperate mixed-conifer
Tropic floodplain

5
4
1

0.36
1.0–2.5

2.25

20
25
40

0.18
0.25
0.50

5
3–4†

2

† Durations of seed collections were four years in stand 1 and three years in all others.

manuscript) is examining nonlinear fecundity models
for one of our data sets. In most cases, Eq. 10 fits the
data better than do more complex assumptions.

The model of seed rain is the sum of individual seed
shadows in Eq. 2. Using functional forms for Q (Eq.
10) and f(r) (Eq. 8), we write the summed model as

mtrees

ŝ(b, r ; w ) 5 bb f (r ; u, p) (11)Oj z i ij
i51

where ŝ(b, rj; wz) is the seed density predicted at seed
trap j, based on an m-length vector of tree basal areas
b, an m 3 n matrix of distances r, and a vector of z
fitted parameters, which, for the 2Dt model in Eq. 8,
is wz 5 [b, u, p]. We find parameter values that fit the
‘‘sum’’ in Fig. 2, which, by implication, allows us to
draw the ‘‘individual seed shadows’’ that together de-
fine that sum.

Likelihood: data and distribution of error

Assuming a model, the likelihood of obtaining a data
set is the joint likelihood (i.e., product) of observing
each datum. Our data consist of mapped tree plots with
seed traps in three forests (Table 1). Stand composition,
dispersal biology, and data sets are described elsewhere
(Clark et al. 1998b; M. Silman and J. Clark, unpub-

lished manuscript; R. Kern et al., unpublished manu-
script). In brief, mapped stands include the location
(coordinates), diameter at breast height, and species of
each tree. The finite areas of our maps (Table 2) can
affect parameter estimates for the best dispersed spe-
cies (Betula, Liriodendron) only on our smallest plots,
those from the southern Appalachians (Clark et al.
1998b). Seeds were identified to the lowest possible
taxonomic unit and were expressed as density per year.
Each datum is the seed accumulation in one seed trap,
averaged over the duration of the study (Table 2).

Seed traps do not receive precisely the number of
seeds predicted by Eq. 11, but rather some stochastic
realization of it. The error distribution describes the
scatter of seed densities about the mean value predicted
by the seed shadow. Clark et al. (1998b) used a negative
binomial, because seed rain was found to be more
clumped than a Poisson distribution. The negative bi-
nomial permits this clumping at the cost of an extra
fitted parameter. Because our mixture kernel introduces
a random variable (a) that tends to accommodate ad-
ditional variability, our attempts to fit the 2Dt kernel
with negative binomial error resulted in unstable pa-
rameter estimates. We therefore use the Poisson like-
lihood:
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sn jŝ(b, r ; w ) exp(2ŝ[b, r ; w ])j z j z
L(S z w ) 5 (12)Pz s !j51 j

where S is an n-length vector of observed seed densities
(seed trap counts), and sj is the observed density of
seed in trap j. Although we do not observe the travel
from trees to seed traps, the likelihood (Eq. 12) pro-
vides a means for ‘‘inverting’’ the problem and, thus,
estimating parameters.

Parameter estimation for the alternative dispersal
models (Eqs. 5a, b, 8) follows Clark et al. (1998b). We
outline the approach for the 2Dt kernel, because similar
methodology applies to the exponential (5a) and Gauss-
ian (5b) models. Maximum likelihood (ML) estimates
for the parameter vector w 5 [u, b, p] maximize the
likelihood of observing data set S (Eq. 12), given the
model represented by Eq. 11. In numerically minimiz-
ing Eq. 12, we constrained our search for p estimates
on the interval (1/2, 10), because a tendency for cor-
relation between parameters p and u in bootstrapped
estimates outside this range became severe. In most
cases, fitted p values tended to low values (1/2), in-
dicating a fat-tailed kernel. Less frequently, p tended
to high values, or a Gaussian kernel. We determined
95% confidence intervals on parameters, and we prop-
agated error through the seed shadow s(r) and the den-
sity of a values, f(a). We bootstrapped 500 estimates
on resamples (with replacement) from seed traps, and
we constructed corresponding s(r) and f(a) functions
for each resample. Our method is Efron and Tibshir-
ani’s (1993) ‘‘nonparametric’’ bootstrap; we sample di-
rectly from the data rather than from a parametric dis-
tribution. Confidence intervals are 95% quantiles of
each parameter and at 1-m intervals for f(r) and f(a).
Clark et al. (1998b) found that bias-corrected and ac-
celerated confidence intervals (Efron and Tishirani
1993) did not differ substantially from simple boot-
strapped quantiles, so we report quantiles here. Con-
fidence intervals about the functions s(r) and f(a) prop-
agate parameter error and correlation through to the
confidence in the seed shadow and in the density of
dispersal variables.

We estimated parameters for one to several stands
for data sets having more than one stand (temperate
deciduous and temperate mixed-conifer). Some species
were too rare to obtain fits in all stands. In a few cases,
trees were so abundant that seed rain was too uniform
across plots to permit parameter estimates. Thus, each
fit is obtained on q # 5 (temperate deciduous) or q #
4 (temperate mixed-conifer) stands, with the likelihood

qstands

L(S z w) 5 L(S z w). (13)Oq k
k51

L(Sk z w) is the likelihood of the data observed in the
kth stand (Eq. 12). The vector of fitted parameters w
depends on q and on one of several hypotheses that we
tested from our data. We report a weighted r2 as a
goodness-of-fit index, where weights are variance es-

timates taken as the predicted mean for this Poisson
model.

Which model is best?

Hypothesis tests were used to assess parameter con-
sistency and to guide model selection. Data were used
to arbitrate among three competing models (Gaussian,
exponential, and 2Dt) on the basis of likelihoods. The
Gaussian model (parameter vector w 5 [b, a]) is nested
within the 2Dt model, being obtained in the limit as p
becomes large. Although nested, the classical likeli-
hood ratio test with 1 df is not quite correct. Because
the Gaussian obtains at the boundary p → `, the like-
lihood ratio is a mixture of x2 distributions having 0
and 1 df, each with probability 1/2, the former being
a delta function centered on zero (Chernoff 1954).
Probabilities for our comparisons of Gaussian vs. 2Dt
use this mixed distribution.

The exponential model (parameter vector w 5 [b, a])
differs from the Gaussian only in the value of the ex-
ponent (c in Eq. 4), so the best fitting model is that
having the lowest 2ln L. For comparing the ‘‘gener-
alized exponential’’ and 2Dt models, we treated pa-
rameter c in Eq. 4 as a fitted parameter to give param-
eter vector w 5 [b, a, c]. These two models are not
nested, but they contain the same number of parameters
(3); the best fitting model is simply the one with the
lowest 2ln L. Our parameter search for c was bounded
on (1, 4), because parameter correlations became severe
for c , 1, and likelihoods were insensitive to values
of c . 4.

Hypothesis tests for goodness-of-fit

Hypothesis testing for the 2Dt kernel follows Clark
et al. (1998b). Provided that parameters (and the seed
shadows they represent) are consistent from stand to
stand, the most general parameter estimates come when
fitted simultaneously to all stands having sufficient
trees and seeds of a species. Three parameters represent
the fits obtained when all possible information is in-
cluded:

p3 5 [b, u, p]. (14)

The null model is simply the Poisson, where each seed
trap receives the mean density. The deviance

L(S z p )q 3
D 5 22 ln (15)2 [ ]L(S z s̄)q

is distributed as x2 with 2 degrees of freedom, three
parameters for the fitted model minus one (the mean)
for the null Poisson.

Although Eq. 14 includes the maximum information
on the seed shadow for a species, we tested whether
dispersal differs among plots by comparing this ‘‘glob-
al’’ seed shadow with the likelihood of the data under
the hypothesis of q different seed shadows (i.e., a seed
shadow differs from plot to plot) with parameter vector
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TABLE 3. Goodness-of-fit for competing dispersal kernels.
Likelihoods for best fitting models are in boldface. Prob-
abilities for 2Dt (in parentheses) are for likelihood ratio
tests against the Gaussian model.

Species

2ln L

2Dt Gaussian
Exponential

family†

a) Temperate deciduous, wind-dispersed

Acer rubrum 1059
(,0.001)

1089 1045

Betula lenta 8155
(,0.001)

8297 8196

Fraxinus americana 108
(0.0039)

227 108

Liriodendron tulipi-
fera

2250
(,0.001)

4701 2250

Pinus rigida 92.1
(0.001)

99.4 95.9

Tilia americana 765
(,0.001)

890 824

Tsuga canadensis 99.6
(0.297)

99.8 99.6

b) Temperate deciduous, animal-dispersed

Castanea dentata 15.9 15.9 17.8

Carya spp. 196
(,0.001)

260 215

Cornus florida 122
(,0.001)

180 138

Nyssa sylvatica 493
(,0.001)

745 580

Quercus spp. 880 880 933

c) Temperate mixed-conifer

Abies concolor 983
(0.028)

985 997

Abies magnifica var.
shastensis

557 557 571

Pinus lambertiana 31.1
(0.044)

32.5 31.7

Pinus ponderosa 22.6 22.6 22.5

Sequoiadendron
giganteum

109
(,0.001)

139 119

d) Tropical floodplain

Calycophyllum
spruceanum

281
(,0.001)

322 295

Hyeronima laxiflora 111
(,0.001)

129 121

Iriartea deltoidea 91.8 91.8 88.7†

Quararibea witti 16.8
(0.12)

17.5 17.0

Sapium marmieri 80.8 80.8 80.8†

Spondias mombin 3.42 3.42 3.07

Virola sebifera 18.0
(0.0089)

20.8 19.0

Number of wins‡ 14 8 4§

† The ‘‘exponential family’’ has c 5 1 in all cases except
Iriartea deltoidea and Sapium marmieri, where c . 4 con-
stituted the best fit.

‡ The total number of cases in which a model represented
the best fit.

§ Three wins with c 5 1 and one win with c . 2.

p2q11 5 [b1, . . . , bq, u1, . . . , uq, p]. (16)

The hypothesis of q different seed shadows is tested
using the likelihood ratio test, where the deviance

L(S z pq 2q11
D 5 22 ln (17)2(q21) [ ]L(S z p )q 3

is asymptotically distributed as x2 with 2(q 2 1) de-
grees of freedom (difference in the number of param-
eters for Eqs. 14 and 16). Clark et al. (1998b) present
tests for fecundity differences among plots. For species
having significant differences in seed shadows among
stands (deviance 17), we fitted an additional model to
determine whether dispersal was consistent among
plots. The parameter vector for stand-specific fecundity
fits is

pq12 5 [b1, . . . , bq, u, p]. (18)

We tested for dispersal differences with the deviance

L(S z pq 2q11
D 5 22 ln (19)q21 [ ]L(S z p )q q12

for parameter vectors given by Eqs. 16 and 18 with q
2 1 degrees of freedom. Dispersal distance is judged
‘‘inconsistent’’ among stands if plot-specific dispersal
parameters (Eq. 16) substantially improve the fit over
that obtained with a single, ‘‘global’’ dispersal param-
eter (Eq. 18). The null model for the likelihood fitted
to Eq. 18 is

L(S z pq 2(q11)
D 5 22 ln (20)q12 [ ]L(S z s̄ )q q

which has q 1 2 degrees of freedom, 2(q 1 1) param-
eters for the fitted model minus q means.

For some species having fecundity differences
among stands, we still report the ‘‘global’’ seed shadow
obtained for multiple stands. Large sample sizes could
always produce significant differences among stands,
but those differences should not obscure the search for
a general model. Although we report results for both
models, we focus on results of the global model.

RESULTS

The 2Dt model provided the best fit for most species
(Table 3). The cases in which the 2Dt did not outper-
form other models were mostly those for which con-
fident fits could not be obtained for any of the three
models. The Gaussian model provided the best fit most-
ly for animal-dispersed species (Castanea dentata,
Quercus spp., Quararibea witti, Sapium marmieri, and
Spondias mombin). There were three exceptions in
which wind-dispersed species were best fit by the
Gaussian model (Tsuga canadensis, Abies magnifica
var. shastensis, and Pinus ponderosa), two of which
(T. canadensis and P. ponderosa) did not significantly
improve on the null Poisson model and had low weight-
ed r 2 values (Table 4). The sole case in which a pla-
tykurtic model provided the best fit was for an animal-
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TABLE 4. Parameter estimates for 2Dt model. For cases in which a single fecundity parameter b did not provide a fit, the
seed shadow was fitted with a separate b for each stand.

Species and
stand numbers

Parameter 6 SE

Fecundity b
(no. seeds/cm2

basal area)
Dispersal u

(m2)
p

(dimensionless)
amode

(m)
Kurto-

sis

H0:
Poisson

seed
rain‡

H0:
dispersal
consis-
tent§

Weight-
ed r 2

a) Temperate deciduous, wind-dispersed

Acer rubrum (1, 2, 3,
4, 5)

84.1 6 19.9 602 6 400† ,0.5 24.5 ` 0 0 0.86

Betula lenta (1, 2, 3, 4) 1084 6 318 777 6 734† ,0.5 27.9 ` 0 0 0.95
Fraxinus americana 5 8.32 6 4.51 217 6 627† ,0.5 14.7 ` 0 0.37
Liriodendron tulipifera

(1, 2, 3, 4)
73.0 6 13.5 302 6 165† ,0.5 17.4 ` 0 0 0.98

Pinus rigida 1 2.19 6 5.94 18.6 6 332 ,0.5 4.31 ` 0 0.74
Tilia americana (2, 5) 17.3 6 4.87 10.4 6 102† ,0.5 3.22 ` 0 0 0.56
Tsuga canadensis (1,

2, 4)
27.8 6 18.6 1839 6 1980† ,0.5 42.9 ` 0.90 0 0.41

b) Temperate deciduous, animal-dispersed

Castanea dentata
1
4

5.63 6 65.9
0.209 6 22.42

141 6 55.2 .10 3.66 2 0 0 0.95

Carya glabra (1, 2, 3,
4, 5)

1.38 6 0.231 8.82 6 60.8 ,0.5 2.97 ` 0 0 0.82

Cornus florida
1
2
3
4

13.1 6 6.36
2.35 6 3.11
1.40 6 21.8

0.798 6 2.29

4.48 6 76.0 0.61 6 0.224 2.00 ` 0 0 0.63

Nyssa sylvatica (1, 2,
3, 4)

9.82 6 2.50 1.91 6 148 ,0.5 1.38 ` 0 0 0.92

Quercus
1
2
3
5

2.24 6 0.369
1.30 6 0.417

0.526 6 0.107
6.08 6 2.46

1893 6 751 .10 13.4 2 0 0 0.63

c) Temperate mixed-conifer

Abies concolor (1, 2, 3, 4) 3.20 6 0.236 552 6 335 6.57 6 3.03 8.83 2.44 0 0 0.92
Abies magnifica var.

shastensis (3, 4)
7.24 6 0.704 7511 6 2372† .10 26.7 2 0 0 0.48

Pinus lambertiana (3, 4) 0.342 6 0.110 175 6 346 ,0.5 13.2 ` 0.00016 0.017 0.84
Pinus ponderosa 2 0.145 6 0.0544 2645 6 3528 .10 15.9 2 0.11 0.22
Sequoiadendron

giganteum (3, 4)
0.632 6 0.0508 109 6 16.1 ,0.5 10.4 ` 0 0.035 0.98

d) Tropical floodplain

Calycophyllum
spruceanum

17.9 6 79.5 195 6 758 2.94 6 3.31 7.52 ` 0 0.97

Hyeronima laxiflora \ 17.4 6 1401† 0.816 6 2.80 2.24 ` 0 0.83
Iriartea deltoidea 1.42 6 10.2 5378 6 2662 .10 22.6 2 0 0.27
Quararibea witti 0.24 6 0.185 7.82 6 1100 ,0.5 2.80 ` 0.0017 0.28
Sapium marmieri 2.17 6 1.10 6104 6 3373 .10 24.1 2 0 0.42
Spondias mombin 0.0438 6 0.127 996 6 246 .10 9.74 2 0.012 0.97
Virola sebifera 1.17 6 21.0 163 6 366 1.82 6 4.01 8.38 ` 0 0.91

† Fits for which correlation between parameters b and u exceeds z0.5z.
‡ P values for the null hypothesis that dispersal is independent of trees, using deviances in Eqs. 15 or 20, depending on

numbers of plots.
§ P values for the hypothesis that dispersal parameters u differ among plots, tested with the deviance given by Eq. 19.
\ Model instability for the sparse data precluded estimation of a fecundity parameter for Hyeronima laxiflora.

dispersed species (Iriartea deltoidea, c . 4), and the
fit was marginal (weighted r 2 5 0.158). The exponen-
tial model was the best fitting model in only one case
(Acer rubrum), and it provided as good a fit as the 2Dt
model for two other wind-dispersed species (Fraxinus
americana and Liriodendron tulipifera).

Good fits for the 2Dt model result from its potential
to admit large kurtosis. The few cases in which the
Gaussian model provided the best fit were those for
which the shape parameter p tended to high (.10) val-
ues (Table 4), simply indicating the Gaussian limit of
the 2Dt model as p becomes large. The 2Dt model
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FIG. 3. Demonstration of how the 2Dt model better describes seed rain data than does the Gaussian model for most of
the species that we analyzed. (a) The predicted seed shadows include the 2Dt model with dashed 95% confidence intervals
and the more platykurtic Gaussian fit. Insets demonstrate the observed and predicted values with the dashed line of agreement.
The likelihood ratio test for this comparison is included in Table 3. (b) The density of a values (dispersal parameters) for
the seed shadow in (a) compared with the maximum likelihood (ML) estimate for the Gaussian model (arrow).

FIG. 4. Fecundity parameter estimates (with 95% confi-
dence intervals) and modal dispersal parameters from the 2Dt
model. Note the log scales.

provided a better fit than the Gaussian in most cases,
because the convexity near the source captures the high
seed densities directly beneath canopies, whereas the
fat tail describes more distant travel. Sequoiadendron
giganteum is a typical example (Fig. 3a, b). Like the
2Dt, the Gaussian model is convex at the source, but
it ‘‘splits the difference’’ between local and long-dis-
tance dispersal, causing it to underestimate the source
and overestimate intermediate distances (Fig. 3a, in-
sets). The Sequoiadendron kernel implies a broad range
of a values (Fig. 3b).

Fecundity variability among stands for the 2Dt mod-
el was similar to that obtained by Clark et al. (1998b)
for a Gaussian model, but dispersal variability among
stands for the 2Dt was consistently high. Species hav-
ing significant fecundity differences among stands
(Castanea, Cornus, and Quercus) are dispersed by an-
imals. Unlike the Gaussian model, which rarely ob-
tained better fits for stand-specific a estimates (Clark
et al. 1998b), only one species (Sequoiadendron) was
best described by a stand-specific estimate of u.

The correlation among species in fecundity and dis-
persal for temperate species (Clark et al. 1998b) ap-
plies, to a lesser degree, across the three forest types
examined here (Fig. 4). Animal-dispersed species
(‘‘temperate, animal’’ and most ‘‘tropical floodplain’’
in Fig. 4) tended to have lower fecundity estimates and
lower modal dispersal than did wind-dispersed decid-
uous species. Mixed conifers had lower fecundities
than did their wind-dispersed, deciduous counterparts
(Table 4). Although they generally had low fecundities,
the restricted dispersal of animal-dispersed species
meant that their seed densities near adult trees were as

great as those of the more fecund, wind-dispersed spe-
cies (Fig. 5).

Fig. 5 illustrates the fat tails that best describe seed
shadows for most species. Although convex near the
source, most kernels flatten with distance, approaching
zero more slowly than exponential (Fig. 1). Kurtosis
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FIG. 5. Maximum-likelihood seed-shadow
estimates. Confidence intervals are omitted for
clarity. Dashed lines indicate conifers. Note the
y-axis log scale.

estimates for these fitted seed shadows are not finite
(Table 4). Densities of the dispersal parameter f(a) are
likewise fat tailed (Fig. 6). Wind-dispersed types have
broad densities of a ranging from 5 to 100 m, whereas
animal-dispersed types have values concentrated at
,10 m (Fig. 6, insets).

The flexibility of the 2Dt kernel, which allows for
superior fits in Table 3, is cause for instability when
data are sparse. Although Hyeronima laxiflora was best
fitted by the 2Dt (Table 3), the model was unable to
resolve parameter estimates. Large accumulation near
a single adult tree appears as an outlier (insets in Fig.
7a). The ‘‘inflexibility’’ of the Gaussian model allowed
us to obtain stable parameter estimates for these data
(M. Silman and J. Clark, unpublished manuscript). The
2Dt, however, finds a continuous range of parameters
to fit the scatter of data by trading off fecundity and
dispersal parameters. Negative correlation between b
and a is responsible for wide confidence intervals on
the seed shadow (Fig. 7a) and for bimodal confidence
intervals on f(a) (Fig. 7b).

The 2Dt is unstable at extreme values of p. Although
stabilized by our truncated search interval of 1/2 # p
# 10, there was greater parameter correlation in this
model (Table 4) than for the Gaussian (Clark et al.
1998b: Table 3). Parameter p is especially susceptible,
because p can have a small effect on the likelihood,

and it can be offset by trade-offs with u. This tendency
is reduced by adequate distribution of data and by suf-
ficiently long-term data sets to average over noise. Pa-
rameter correlation in the 2Dt model is greatest for
wind-dispersed taxa (Table 4). Despite the tendency for
instability, parameter error does not translate into wide
confidence intervals on seed shadows and densities of
a (Fig. 6), due, in part, to correlations.

DISCUSSION

The inverse approach allows us to compete alter-
native views within a closed canopy, where we cannot
directly observe dispersal (Fig. 2). The method allows
‘‘direct’’ comparisons. Rather than selecting models
based on how much better each does in comparison
with a null model known to be wrong, our likelihoods
for each model permit direct comparison.

Model competition arbitrated by three data sets sug-
gests a kernel that accommodates a range (mixture) of
processes that result in convexity near the source and
a fat tail (Figs. 1b, 5). When given the choice between
models that assume the ‘‘right’’ shape at local scales
vs. long distances, the data choose the model that gets
both (2Dt) for 14 of 26 species (Table 3). Competing
models did better than the 2Dt in cases in which no
model provided confident fits (Tsuga, Pinus ponderosa,
and Spondias mombin in Table 4). The exceptions,
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FIG. 6. Example of seed shadows and a densities (insets) with bootstrapped 95% confidence intervals. Animal-dispersed
species (right side) contrast with wind-dispersed species (left side) in having seed densities (and a parameter values) clustered
near sources.

where fits were best for the Gaussian or a more pla-
tykurtic distribution (parameter c . 2 in Eq. 3), oc-
curred mostly where seed densities were low (animal-
dispersed types) and data were of limited extent (two
or four years for temperate mixed-conifer and tropical
floodplain).

The tail is hard to estimate (Portnoy and Willson
1993, Clark et al. 1998b, Turchin 1998). Extrapolating
a tail beyond the data is speculative; to do so from our
results would be inappropriate. Plots range from 60 to
150 m on a side, so our data include seeds traveling
well beyond direct crown influence. Although the fit is
most influenced by the high densities near the source,
the 2Dt model has the flexibility to fit these local den-
sities, while simultaneously responding to low densi-
ties at distance. Inflexible models (e.g., Gaussian) have
a tail shape that is controlled by the preponderance of
seed at short distances. Our model comparisons indi-

cate that a flexible kernel can be sensitive to tail shape,
and that a fat tail fits the data better than does the
alternative.

Data likewise preferred convexity at the source over
the concave exponential model. Although concave seed
shadows (exponential and power functions) are widely
used, we found only one case in which an exponential
model provided the best fit (Table 3). Concave models
are reasonable at distances beyond the immediate in-
fluence of the crown, but they performed worse than
the 2Dt model over the scales included here.

In summary, the 2Dt provides a better description of
data than do previous models. This flexibility is ob-
tained with few parameters. Our results suggest that,
in most cases, the parameter p might be fixed at a low
value (e.g., 1 or 1/2), because it lends stability to the
likelihood (Eq. 12). With p fixed and only two fitted
parameters, the 2Dt kernel is no more complex than
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FIG. 7. A fit demonstrating the tendency for model instability when data are sparse; a single seed trap accumulated large
densities (insets). Confidence intervals near the source range over several orders of magnitude due to negative parameter
correlation (a), and there is tendency for bimodality in the a parameter (b).

Gaussian or exponential models. This advantage of
simplicity is no reason to avoid more complex models.
Indeed, if and when large data sets come available, it
would be valuable to test mechanistic models with
more parameters. Because minimal models are a goal
of community and global ecology, however, simplicity
has advantages.

Dispersal in temperate vs. tropical forests

Our three data sets form continua in diversity and
in the importances of animal dispersal and lianas. Our
mixed-conifer forest, with low diversity, few lianas,
and a preponderance of wind dispersal, contrasts with
the tropical floodplain, where diversity is high, lianas
are abundant, and dispersal is mostly by vertebrates.
The southern Appalachian forest is intermediate in both
respects.

Differences among biomes in tree diversity are re-
flected in seed diversity (Fig. 8a). High diversity in the
tropics means that any given species is rare. Mapped
plots contain fewer individuals of a species, so seed
traps represent less of the variability than they do in
our temperate forests. Most tree taxa are represented
by only one or two individuals per hectare, and most
seed taxa are present in a single trap. Frequency of
seed vs. rank abundance shows strong differences
among biomes (Fig. 8).

Diversity affects the sampling effort needed to es-
timate dispersal. In the tropics, dispersal could not be
estimated for most taxa, because they were represented
by one seed. Seed richness (number of species per plot),
including unknown morphotypes, was 284 species on
this 2.25 ha plot. Of 72 tree species having at least one
individual .10 cm dbh, we obtained dispersal esti-
mates for seven species. By contrast, we obtained dis-
persal estimates for most species in mixed-conifer and

southern Appalachians forests. We obtained few dis-
persal estimates for any taxa having frequencies of ,10
traps (Fig. 8b–d).

Dispersal modes affect estimation. Seed traps are
most conducive to estimating wind (passive) dispersal.
Primary and secondary dispersal by vertebrates is spo-
radic, clumped, and, thus, unpredictable. Especially in
the tropics, animals (e.g., bats) consume fruits at roosts
that can be distant from the parent tree. Secondary
dispersal by scatterhoarding mammals is not described
by seed traps. The effect of vertebrate dispersal is ev-
ident in Fig. 8b, where most seed taxa at frequencies
of ,20 seed traps are animal dispersed, and the ma-
jority originate from outside the 2.25-ha plot. Seeds
from species that do not grow on the plot are rare for
the other two data sets (Fig. 8c, d). The many lianas
in our tropical site are difficult to estimate, because the
seeds do not originate from a coherent canopy.

Learning from experience: Bayesian analysis

Dispersal characterization for many species will be
limited, for the near future, by data availability. Seed
rain is sporadic. Our best fits come from the study area
having six years of data from 100 seed traps (temperate
deciduous, Table 4). Such data sets are few. Fits for
our two other sites would improve with greater duration
of sampling, because interannual variability is high
(Ruth and Berntsen 1955, Curtis and Foiles 1961, Clark
et al., 1999). Correlations between dispersal and seed
fall velocity, and between dispersal and fecundity
(Clark et al. 1998b; Fig. 4 in this study) provide insights
that can be broadly applied. Each new analysis might
build on previous results toward development of gen-
eral models.

Bayesian analysis can be used to develop dispersal
kernels, demonstrated here with an example. The re-
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FIG. 8. Frequency of seeds in seed traps plotted against rank abundance for the three data sets. Panel (a) shows all stands
and all sites. Panels (b–d) show rank abundances with dispersal vectors, showing seed types for which no trees occurred on
the plots, and types having significant fits to one or more dispersal models (indicated by asterisks). For the tropical floodplain
(b), most rare taxa come from outside the plot. The temperate forest (c) supports a mixture of animal- and wind-dispersed
types. The mixed-conifer forest (d) includes almost exclusively wind-dispersed types. Note the y-axis log scale.

lationship between fall velocities and a estimates
(Greene and Johnson 1989, Okubo and Levin 1989,
Andersen 1991, Clark et al. 1998b) suggests that seed
type provides initial information on the dispersal pa-
rameter. Therefore, we might exploit confident fits for
Pinus rigida that result from six years of data in the
southern Appalachians as a prior for estimating P. lam-
bertiana and P. ponderosa. One could argue that this
prior is biased, because P. rigida seeds are smaller (an
upward bias in a), or are released from lower heights
(a downward bias in a) than are P. lambertiana and P.
ponderosa seeds. We do not defend this particular
choice for the prior, as our concern here is simply to
demonstrate the approach. (Gelman et al. [1995] review
methods for checking the fit with data sets simulated
from the posterior density.) The normalized likelihood

L(S z a)
NL 5

`

f (a)L(S z a) daE
0

where S is the new data set, and f(a) is a prior density
of a (here, based on P. rigida), is rather broad for P.
lambertiana (Fig. 9a) and quite broad for P. ponderosa
(Fig. 9b). The breadths of these likelihoods do not re-
flect impossibly great dispersal. Rather, the noise in the
data tends to result in relatively flat likelihood surfaces.
P. ponderosa densities in clearcuts suggest dispersal
more restricted than that in Fig. 9b (Barrett 1966). By
contrast, the density for P. rigida (used here as the
prior) is concentrated at short distances. The posterior
densities obtained from this Bayesian approach,

f(a z S) 5 f(a) 3 NL

probably represent more realistic descriptions for P.
lambertiana and P. ponderosa. For example, 95% of
the density for P. lambertiana decreases from (6.1,
76.9) (normalized likelihood) to (4.6, 31.4) (posterior
density of a).

Moreover, the functional forms used here are es-
pecially attractive for fitting the exponential family. For
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FIG. 9. Bayesian analysis of dispersal parameters using
estimates from Pinus rigida as a prior for P. lambertiana and
P. ponderosa.

direct estimation (i.e., seed release data), the density
for a that derives from our assumptions (Eq. 9) is a
conjugate prior for the exponential family of kernels
(Eq. 4), thus providing an analytically tractable esti-
mation procedure (Appendix B).

Implications of the 2Dt kernel for
recruitment limitation

Theory and models suggest that diversity in plant
communities depends on the fraction of seed dispersed
beyond the influence of the parent plant (Janzen 1970,
Shmida and Ellner 1984, Clark and Ji 1995, Pacala et
al. 1997). The role of dispersal in many such models
can be traced to how it affects the balance between
intra- and interspecific competition. Seed remaining
close to the adult increases intraspecific competition,
both directly (inhibition by the parent and sib com-
petition) and indirectly (frequency- or density-depen-
dent predation and pathogens). Distant dispersal con-
tributes more to interspecific competition. Coexistence
is promoted when restricted dispersal limits interspe-
cific competition below that which prevails in a ‘‘well-
mixed’’ community.

Although fitted to the same data sets, the 2Dt model
predicts a different balance between local and nonlocal
dispersal than do the Gaussian (Clark et al. 1998a) or
more platykurtic (Ribbens et al. 1994) kernels (Fig. 9).
The fraction of seed dispersed beyond radius R is given
by )2p f(r, u) du dr. For the 2Dt kernel, that fraction is`#R

pu
.

21 2u 1 R

In the limit as p becomes large, this tends to the Gauss-
ian result:

2R
exp 2 .1 2[ ]a

Fig. 10 demonstrates substantial differences between
the predictions of these two models for our parameters.
For the same data sets, the Gaussian kernel substan-
tially overestimates the fraction dispersed beyond the
influence of 5 m radius crowns. The bias is severe for
poorly dispersed types and negligible for well-dis-
persed types (Fig. 10b). The Gaussian kernel under-
estimates the fraction dispersed outside the patch sizes
typically employed in gap models (Fig. 10c). Depend-
ing on the spatial scale, inaccurate kernel shapes will
bias the balance between intra- and interspecific com-
petition.

Implications for population spread

The shape of the tail controls population spread. A
shift in migration potential from diffusion to acceler-
ating spread occurs as the tail fattens beyond the ex-
ponential bound (Fig. 1; see Mollison 1972, Kot et al.
1996). The Gaussian model approaches zero rapidly
with distance, making migration a coherent, stepwise
process, paced by the dispersal parameter a and the
rate of population increase. This coherent spread breaks
down for fat-tailed dispersal kernels, producing a noisy,
irregular, and accelerating spread (Lewis 1997, Clark
et al. 1998a). Clark et al. (1998a) suggested that fat-
tailed dispersal kernels might explain the high rates of
spread of tree populations at the end of the Pleistocene
(.103 m/yr), an explanation consistent with specula-
tions of previous authors (Davis 1987). Such rates are
consistent with observed dispersal (Clark 1998). Our
finding here that fat-tailed kernels actually provide the
best description of dispersal in forest stands bolsters
the interpretation that population spread could be rapid
in response to climate changes in the past and future.
The shapes of these kernels suggest that predicting re-
sponses to future climate change (e.g., Leishman et al.
1992, Pitelka et al. 1997, Clark et al. 1998a) will de-
pend on understanding the processes that govern the
tail of the dispersal kernels, i.e., the tails of the a dis-
tributions in Fig. 6.

CONCLUSIONS

Finding a kernel that predicts more realistic patterns
and that fits the data better than do classical models
does not mean that we have fully acquired the tools
needed for analysis of dispersal at all scales. Our results
describe dispersal at local and ‘‘intermediate’’ spatial
scales. We state parameter confidence, and we translate
that degree of confidence to the seed shadows them-
selves. That description helps us to interpret how seed
shadows influence community dynamics (Fig. 8), in-
cluding recruitment limitation (Ribbens et al. 1994,
Clark et al. 1998b), and the qualitative patterns of pop-



1490 Ecology, Vol. 80, No. 5JAMES S. CLARK ET AL.

C
o
nc

ep
ts

&
S
yn

th
es

is

FIG. 10. Predicted fraction of seed dispersed
beyond radii of 5 m (a, b) and 30 m (c) for
Gaussian and 2Dt models with parameter p 5
0.5. (a) Both models predict an increasing frac-
tion of seed beyond the 5-m radius with in-
creasing dispersal parameter (u or a). Symbols
represent actual fits for the two models. Solid
symbols are the 2Dt model. Triangles represent
animal-dispersed seed, and circles represent
wind-dispersed seed. The Gaussian model ov-
erpredicts the fraction of seed traveling beyond
5 m (b) but underestimates the fraction traveling
beyond 30 m (c).

ulation spread that might be expected with climate
change (Clark et al. 1998a). Our results do not fully
resolve the need for dispersal data at regional scales,
because we cannot safely extrapolate a kernel para-
meterized at the 102-m scale to whole regions. For
many problems, however, including population spread,
such extrapolation is not as critical at it might first
appear. Clark (1998) found that the fat-tail kernels can
cause accelerating spread to rates exceeding 102 m/yr,
even when the kernel is truncated at 103 m. Although
this distance exceeds the sizes of mapped plots used
to parameterize our kernels, it demonstrates that ‘‘in-
finite tails’’ are not required for rapid spread. Seed
dispersal up to 10 km is plausible for many species
during severe storms and when transported by frugiv-
orous birds and bats, corvids that cache fagaceous nuts,
and large vertebrates, such as bears, elephants, rhinos,
foxes, and primates.

Just as important as the specific results relating to a
new model is the methodology for competing alter-
native models, as new data sets and mechanistic inter-
pretations become available. Our inverse approach is
not bound to the particular models that we analyzed
here, or to a particular scale. Spatial relationships be-
tween offspring and parents can be used to translate
the composite pattern of seed rain to the forest floor
into seed shadows for individual plants (Fig. 2) and

distributions of dispersal parameters (Fig. 7). Such re-
lationships can be parameterized at much broader
scales than attempted here, including ones of relevance
for analysis of migration and forest recovery from frag-
mentation.
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APPENDIX A

MOMENTS AND INDICES DERIVED FROM THEM

To compare dispersal kernels, we require an index that
quantifies shape. Although the term ‘‘kurtosis’’ evokes this
notion of shape, there is no standard index that enjoys general
acceptance. In this Appendix, we summarize the concept and
propose a simple measure for the case at hand, i.e., a bivariate
dispersal kernel with rotational symmetry.

Kurtosis ‘‘can be vaguely defined as the location and scale-
free movement of probability mass from the shoulders of a
distribution to its center and tails’’ (Balanda and MacGillivray
1988: 111), and can be formalized in many ways (see also
Mosteller and Tukey 1977). One class of measures is based
on moments. Moments are expected values of powers of a
variable, which, in some sense, summarize distribution shape.
The mean, variance, skewness, and kurtosis involve the first
through fourth moments, respectively. The fourth central mo-
ment standardized for variance is the most common kurtosis
measure for univariate distributions, but it has an unclear
relationship to shape, and a given value can correspond to
more than one distribution. Moreover, the method used to
quantify a shift of mass from the shoulders to peak and tails
(scaling) affects the value. (The squared variance is the scal-
ing option often used for moment-based measures.) The prob-
lems are more complex for bivariate distributions, which in-
volve product moments. Despite absence of convention, there
is general agreement that kurtosis measures should be inde-
pendent of scale and location. Beyond these criteria, the index
needs to convey useful information regarding shape.

Here, we describe our moment-based index that is simple
and appropriate for this application (bivariate, rotationally
symmetric distributions in polar coordinates), that is scale
and location-invariant, and that allows comparisons with stan-
dard distributions (e.g., Gaussian, exponential). Our moment-
based method begins with one for bivariate distributions
(Mardia 1970) included in a standard reference (Stuart and
Ord 1994), but follows with an argument for simplification.
We solve for Mardia’s bivariate moments and then demon-
strate that the useful information for symmetric distributions
is fully summarized by the simpler (marginal) moments about
distance r.

Shape measures for bivariate kernels

Mardia (1970) suggests a measure of kurtosis for the bi-
variate case:

m m 2m40 04 22k5 1 1 , (A.1)
2 2m m m m20 02 20 02

where mm,n is mth and nth central moment over two random
variables. This formula is typically applied (see examples in
Mardia 1970 and Stuart and Ord 1994) to distributions defined
on the Cartesian plane for random variables (x, y). For the
2Dt case, we substitute r2 5 x2 1 y2 in Eq. 8 and take moment
integrals to obtain the following complex expression:

` `p m nu p x y dy dx
m 5rs E E 2 2 p11p [u 1 x 1 y ]2` 2`

m 1 1 n 1 1 m 1 n
(m1n)/2u G G G p 21 2 1 2 1 22 2 2

5 . (A.2)
pG(p)

The resulting kurtosis from the three terms of A.1 is

3(p 2 1) 3(p 2 1) 2(p 2 1)
k(x, y) 5 1 1 . (A.3)

p 2 2 p 2 2 p 2 2

For instance, a Gaussian dispersal kernal (obtained in the limit
p → `) yields a value of 8 for the Cartesian coordinates (x, y).

The bivariate moments (Eq. A.2) for the rotationally sym-
metric kernels that dispersal biologists typically consider are
unnecessarily complex and redundant. The complexity of bi-
variate moments for the Cartesian locations x and y is un-
desirable, because (1) the variable r (distance from the source)
is meaningful, whereas location (x, y) is meaningful only
indirectly; and (2) the solution for r is simple, whereas the
moments of (x, y) can be complex (e.g., Stuart and Ord 1994).
The first of these two claims is borne out by the fact that
seed dispersal is usually reported as distance from the source,
not as Cartesian coordinates. The three terms in Eq. A.3 come
from the marginal distribution of x, from the marginal dis-
tribution of y, and from cross products, respectively. Each
describes the same influence of shape parameter p, i.e., (p 2
1)/(p 2 2). We can learn from any one of these terms that
kurtosis is finite so long as p . 2, and that kurtosis declines
to an asymptote as p becomes large. Thus, a measure based
on bivariate moments is unnecessarily complex.

Given that bivariate moments add redundancy, but not in-
sight, we consider marginal (univariate) moments of distance
r. A simple kurtosis measure for rotationally symmetric dis-
tributions is obtained by first integrating the non-informative
arc angle out of existence and then solving the moment in-
tegral for the marginal density 2pf2p(r):

``
m m11r f (r, u) du dr 5 2p r f (r) drm 5 E 2pRm E

02p0

` m112p r
5 dr. (A.4)E p11

2u r0
1 1[ ]u

The substitution v 5 r2/u yields
` m/2n

m/2m 5 u p dv.m E p11(1 1 n)0

Recognizing the integral expression as a beta function,
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` a11z G(a)G(b)
B(a, b) 5 dz 5E a1b(1 1 z) G(a 1 b)0

we obtain a simple expression for the mth moment:

m m
m/2m 5 u pB 1 1 , p 2 .m 1 22 2

Because arguments of the beta function involve integers (mo-
ments), it is convenient to recast this result in terms of gamma
functions:

m/2mu G(m /2)G(p 2 m /2)
m 5 . (A.5)m 2G(p)

Kurtosis is the first term of Eq. A.1:

m 2(p 2 1)k(r) 45 5 . (A.6a)
2(2Dt) m p 2 22

This compares with that for the exponential family:

G(6/c)G(2/c)k(r)
5 . (A.6b)

2(exponential family) G (4/c)

Both are scale and location-invariate, involving only the di-
mensionless shape parameters p and c, respectively.

One aspect of our foregoing approach deserves mention.
Because r is the distance from the mean of a rotationally
symmetric density, Eq. A.4 represents ‘‘central’’ moments,
in the sense that they are taken about the mean of the dispersal
kernel. They are not centered on the mean of r, because those
moments would be hard to relate to the density symmetric
about r 5 0. Because moments are centered on zero, rather
than the mean of r, odd moments are not zero; r is the distance

traveled in any direction (we begin the derivation of Eq. A.3
by integrating arc angle out of existence). Although the nu-
merical values of moments of r (Eq. A.6a) differ from those
of (x, y) (Eq. A.3), they summarize the same quantity. For
example, the existence of moments of r implies finite mo-
ments in Cartesian space (compare Eqs. A.2 and A.5).

The marginal moments of r (Eq. A.5) and the kurtosis
measure that is based on them (Eq. A.6) capture the essential
features of kernel shape. The simplicity and insight of Eq.
A.6 recommends it as a general shape measure for rotationally
symmetric dispersal kernels.

Shape comparisons

Eqs. A.6a and A.6b allow comparison of kernel shape for
the two densities considered here. For the 2Dt density, mo-
ments smaller than 2p are finite, and kurtosis tends to infinity
as p decreases to 2 (Eq. A1.6a). Kurtosis asymptotes at 2 as
p becomes large (the Gaussian limit). Potentially large kur-
tosis results from the fact that the tail can be extremely fat,
precluding convergence of moment integrals. For the expo-
nential family, kurtosis is finite, tending to large values as c
tends to zero. Values are 2 and 3.33 for Gaussian (c 5 2) and
exponential (c 5 1), respectively. Distributions that are more
peaked and fatter tailed than exponential have kurtosis mea-
sures .3.33. This value is important in migration studies,
because it represents the point at which traveling wave so-
lutions yield to accelerating spread (Mollison 1977). Other
kernels in the exponential family used to model dispersal
include c 5 3 (Ribbens et al. 1994) and c 5 1/2 (Kot et al.
1996, Clark 1998), with kurtosis values from Eq. A.6b of
1.70 and 9.43, respectively.

APPENDIX B

A BAYESIAN LINK TO DIRECT KERNEL ESTIMATION

The inverse approach is applied to spatial patterns of seed
rain having a complex, distributed source. The model devel-
oped here can also be applied to the direct approach, in which
seeds are released and settling distances r are recorded (e.g.,
Augspurger and Franson 1987, Matlack 1987). We demon-
strate the connection between variability in a and kernel
shape, as represented by our densities f (a) and f (r z a), in a
Bayesian context. To simplify our likelihood, we assume that
all released seed is recovered. This assumption allows us to
write a likelihood based directly on the density of r, as op-
posed to a binomial (with some probability of recovery) with-
in which f (r) is embedded.

The 2Dt model involves a conjugate prior

Assume that seed is dispersed according to an exponential
kernel family. The sampling distribution is given by Eq. 4.
Assuming that the variable

n
A 5

ca

is gamma distributed, we use the previous approach to obtain
the prior density of a:

pcu u0 0f (a) 5 exp 2 , (B.1)
cp11 c[ ]a G(p) a

where u0 is our prior estimate of u. Integrating Eq. 4 over
variability in a gives the marginal density for this exponential
family:

` pcu
f (r) 5 f (a) f (r z a) da 5E c P2pB(2/c, p)(u 1 r )0

where P 5 2/c 1 p.

The likelihood of observing n seeds, each of which travels
distance ri, is given by

n

f (r z a) 5 f (r za)P i
i51

nnc 1
c5 exp 2 r (B.2)O in n 2n n c[ ]2 p a G (2/c) a i51

and the marginal density is
pnc u G(P )0 nf (r) 5

n n n Pn2 p G (2/c)G(p)U n

where Un 5 u0 1 and Pn 5 2n/c 1 p. The posteriorn cS ri51 i

density is also inverse x2:
PncU Un nf (a z r) 5 exp 2 (B.3)

cP 11 cn [ ]a G(P ) an

which has the same form as Eq. B.1, thus showing Eq. B.1
to be a conjugate prior for the exponential family f (r z a). The
prior estimate of u0 has a contribution equivalent to 1/n. It is
further evident from Eq. B.3 that the posterior becomes in-
creasingly peaked with increasing sample size, and the kernel
f (r) tends to the exponential family.

Example

A simple data set demonstrates application of the direct
method. Dispersal distances of Fraxinus americana seeds
were recorded from the point of release at a height of 4 m
on a calm day. Wind speeds during the experiment ranged
from 0 to 0.7 m/s and averaged 0.2 m/s. Seeds were released
three times in groups of five to produce the vector of radii
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FIG. B1. Dispersal kernel f (r) and Bayesian
posterior f (a z r) estimates after sequential ad-
dition of 5, 10, and 15 observations from data
in the Example. Prior estimates are indicated by
black arrows for these Gaussian (top panel, a)
and exponential (bottom panel, b) kernels.

r 5 (22, 27, 35, 53, 54, 64, 67, 36, 88, 92, 8, 10, 12, 15,
33).

Two examples are shown for parameter values of c 5 2
(Fig. B1a) and c 5 1 (Fig. B1b), updated after collection of
each of three data sets. Prior estimates of u0 5 5c were used
for these examples, although results are insensitive to it. As

data are added, posterior densities become increasingly
peaked, and dispersal kernels estimated from the posterior
mean show modest adjustment. Continuing to add data in this
manner rapidly leads to focused posterior density with tight
confidence intervals.


