
odeling has become an important tool in the
study of ecological systems,as a scan of the table
of con tents of a ny major eco l ogical journ a l

makes abundantly clear. A number of books have recently
been published that provide excellent advice on model
construction, building, and use (e.g.,Gotelli 1995, Gurney
and Nisbet 1998, Roughgarden 1998) and add to the clas-
sic literature on modeling ecological systems and their
dynamics (e.g., Maynard Smith 1974, Nisbet and Gurney
1 9 8 2 ) . Un fortu n a tely, h owever, l i t t l e — i f a ny — of t h i s
growing literature on ecological modeling addresses the
motivation to model and the initial stages of the modeling
process, information that beginning students would find
useful.

Fast computers and graphical software packages have
removed much of the drudgery of creating models with a
programming language and opened new avenues of mod-
el construction,use,and even misuse. There are many rea-
sons why a student might want to consider modeling as a
component of his or her education. Models provide an
opportunity to explore ideas regarding ecological systems
that it may not be possible to field-test for logistical, polit-
ical, or financial reasons. Often, learning occurs from
apparently st range results and unexpected surprises. The
process of formulating an ecological model is extremely
helpful for organizing one’s thinking, bringing hidden
assumptions to light, and identifying data needs. More
and more,students want to “do something” with modeling
but are not sure how to get started.

The goals of this article are to outline issues concerning
the value of ecological models and some possible motiva-
tions for mo deling, and to provide an entry point to the
established modeling literature so that those who are
beginning to think about using models in their research
can integrate modeling usefully. We therefore envision the
typical reader to be an advanced undergraduate, a begin-
ning graduate student, or a new modeler. We first consid-
er some of the values of models and the motivation for
modeling. We then discuss the steps involved in develop-
ing a model from an initial idea to something that is
implemented on a computer, outlining some of the deci-
sions that must be made along the way. Many excellent
texts and journal articles deal with the technical details of
models and model construction; we do not attempt to
replace this literature, but rather try to make the reader
aware of the issues that must be considered and point to
some of the sources we have found particularly useful.

We begin with the assumption that the reader has
decided that he or she would like to “do something” with
modeling as part of his or her research (Figure 1). It is
important to recognize the difference between models and
the modeling process. A model is a representation of a par-
ticular thing, idea, or condition. Models can be as simple
as a verbal statement about a subject or two boxes con-
nected by an arrow to represent some relationship. Alter-
natively, models can be extremely complex and detailed,
such as a mathematical description of the pathways of
nitrogen transformations within ecosystems. The model -
ing process is the series of steps taken to convert an idea
first into a conceptual model and then into a quantitative
m odel . Because part of what eco l ogists do is revi s e
hypotheses and collect new data, the model and the view
of nature that it represents often undergo many changes
from the initial conception to what is deemed the final
product.

The discussion that follows is organized to consider
issues in a sequence similar to what a new modeler would
encounter. Because individuals’ backgrounds differ, the
sequence is not fixed. We map one possible route through
the sorts of decisions that will most likely need to be con-
sidered; this course is derived from our individual experi-
ences plus the collective knowledge o f our reviewers. We
begin with conceptual models because many people, even
self-labeled nonmodelers, formulate conceptual models.

The co n ceptual mod el
The development of a conceptual model can be an integral
part of designing and carrying out any research project.
Conceptual models are generally written as diagrams with
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boxes and arrows, thereby providing a compact, visual
statement of a research problem that helps determine the
questions to ask and the part of the system to study. The
boxes represent state variables, which describe the state or
con d i ti on of the eco s ys tem com pon en t s . The arrows

i l lu s t ra te  r e l a ti o nships  am ong s ta te  va ri a bl e s ,
su c h as  th e movement of materials and energy (called
flows) or ecological interactions (e.g., competition).Shoe-
maker (1977) provides an excellent discussion about how
to develop conceptual models.

Fi g u re 1. Fl ow ch a rt su m m a rizing the pro cess of crea ting an ecol ogical simu l a tion mod el . The mod el building pro ce s s
d i s ti lls current knowl e d ge into a co n ceptual fra m ewo rk , wh i ch fo rms the sc a f folding for the mod el ’s co n s tru cti o n . A
nu m ber of s teps involve itera tions or ref i n em ents that foll ow from co n su l ting data, experi en ced mod el ers , or ot h er
e col ogi s t s . On ce there is ou tput from the mod el , the ori ginal idea or state of k n owl e d ge may be modified and additi o n a l
m od el ref i n em en t s , data coll e ction or experi m ents might be pl a n n e d . Ben efits of the mod eling pro cess include el i m i n a ti n g
a l tern a tive s , i d en ti f ying gaps in knowl e d ge ,i d en ti f ying te s t a ble hypot h e se s , and indicating avenues for additi o n a l
experi m en t a tion and data coll e cti o n .
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The development of a conceptual model
is an iterative process. The skeleton of a
con ceptual model begins to take shape
when a general research question is formu-
lated. For example, suppose the goal of a
research project is to determine the rela-
tionship between different strategies for
stocking e xotic salmon in the Great Lakes
and the concentrations of potentially toxic
contaminants in the salmon and thei r
alewife prey. The initial conceptual mo del
might consist of two linked boxes labeled
“alewife” and “chinook salmon,” with an
additional arrow labeled “stocking” point-
ing to the salmon’s box (Figure 2a). We
h ave ch o s en to place two - w ay arrows
between the boxes to reflect the flow of
biomass and contaminants from alewife to
salmon and the effect of salmon on the
alewife; an alternative model might have
used only one arrow, since the flow of
material between boxes is the result of pre-
dation by salmon on alewife. Details would
then be added to the conceptual model
based on the answ ers to questions such as,
Are there other important species besides
alewife and chinook salmon? What mecha-
nistic processes should be included? What
envi ron m ental factors influ en ce each
species? What currency should be used to
describe compartment interactions (e.g.,
elements, biomass, individuals, energy)? 

Af ter making ref i n em ents driven by
su ch qu e s ti on s , the con ceptual model
might have alewife, chinook salmon, rain-
bow smelt, and lake trout (Figure 2b),

although the research interest might still be
with the original two species. The next round
of ref i n em ents to the con ceptual model
might be based on available data or consulta-
tion with ecologists who have studied the
interactions of the four species shown in Fig-
ure 2b. For example, if contaminant concen-
trations are a function of prey body size, and
if predators seek certain size classes of prey,
then size structure might be added to the
model to more accurately reflect these eco-
logical features and to better simulate conta-
minant intake by pred a tors (Figure 2c).
Depending on the nature of the research
question,the addition of size structure might
be made for just the alewife and chinook
salmon. This simple example assumes that
there are changes only in the state variables,
but there could also be changes in the rela-
tionships among the state variables.

Fi g u re 2. Exa m ple of the itera tive natu re of building a co n ceptual mod el
from an initial idea . The first itera tion (a) descri bes a simple rel a ti o n s h i p
betwe en one pre d a tor and prey. One arrow iden tifies biomass and
contaminants as the material flowing from alewife to ch i n ook salmon,
and the ot h er arrow iden tifies pre d a tion as an impo rtant ecol ogi c a l
pro cess stru ctu ring the alewife popu l a ti o n . In this exa m pl e ,i n terest is in
h ow the ra te at wh i ch salmon are sto cked affects the rel a tionship betwe en
salmon and alewi f e . Ad d i tional info rm a tion at the se cond itera tion migh t
i n d i c a te that the dyn a m i cs of the salmon and alewife (a) are also affecte d
by ra i n b ow smelt and lake trou t , wh i ch are su b seq u en t ly inco rpo ra te d
i n to the co n ceptual mod el (b). Fi n a lly, i n fo rm a tion on co n t a m i n a n t
co n cen tra tions as a fu n ction of b ody size and more detail on pre d a to r
pref eren ce of prey might indicate that age or size stru ctu re should be
i n cluded (c). Depending on the goal of the mod eling ex erci se , d etailed age
s tru ctu re might be examined for the ori ginal two spe cies of i n tere s t . In b
and c, the dou bl e - h eaded arrows indicate state va ri a bles that dire ct ly
i n tera ct . In c, the wide gray arrows repre sent the movem ent of fish to
ol d er age cl a s se s . Box labels repre sent the age of fish; YOY are you n g - of -
yea r. Two quanti t a tive mod els might be co n s tru cted: one for co n ceptu a l
m od el b and one for co n ceptual mod el c.
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In general,a parsimonious approach is best for creating
an appropri a te con ceptual model . The model should
strike a balance between incorporating enough detail to
capture the necessary ecological structure and processes
and being simple enough to be useful in generating
hypotheses and organizing one’s thoughts. Creating a
good conceptual model forces an ecologist to formulate
hypotheses, determine what data are available and what
data are needed, and assess the degree of understanding
about key components of the system. Because outside
viewpoints and questions often force clarification of bias-
es and assumptions, discussing the evolving conceptual
model with colleagues can be helpful. Group construction
of a conceptual model can also be a useful consensus-
building tool in collaborative research (Walters 1986, Car-
penter 1992). Conceptual models should therefore be
included in disse rtation and g rant proposals, especially in
the early stages of project development. Revisions of the
initial conceptual model then become focal points for dis-
cussion in subsequent meetings of the dissertation com-
mittee or research planning group.

The role of q u a n ti t a tive mod els in
e col ogical re sea rch 
A quantitative model is a set of mathematical expressions
for which coefficients and data have been attached to the
boxes and arrows of conceptual models; with those coeffi-
cients and data in place, predictions can be made for the
value of state variables under particular circumstances.
Ecologists use quantitative models for various purposes,
including explaining existing data, formulating predic-
tions, and guiding research. Simple quantitative models
can be solved with pencil and paper (see mathematical
ecology textbooks such as Pielou 1977, Hallam and Levin
1986, and Edelstein-Keshet 1988), but most ecological
models are now implemented on a computer.

Quantitative ecological models can guide research in a
number of ways. Constructing a quantitative model and
running simulations may help in the design of experi-
ments (Carpenter 1989, Hilborn and Mangel 1997), for
example, to evaluate experimental power for different
hypothesized effect sizes. Sensitivity analysis of a quantita-
tive model can reveal which processes and coefficients
have the most influence on observed results and therefore
suggest how to prioritize sampling efforts. Quantitative
models can even be used to generate “surrogate” data on
which to test potential environmental indicators or evalu-
ate potential sampling schemes. Most important, quanti-
tative models translate ecological hypotheses into predic-
tions that can be evaluated in light of existing or new data.

The equations used to convert a process or relationship
from a conceptual mo del to a quantitative mo del can be
thought of as specific expressions of a general hypothesis
(Hilborn and Mangel 1997). Suppose, for example,that an
ecologist wants to evaluate how predator consumption
(the dependent variable) varies as a function of prey avail-

ability (the independent variable) using data on predator
consumption across a range of prey availabilities. At least
three equations (hypotheses) could be used to relate con-
sumption to availability:

(1) C = aP
(2) C = bP

1 + cP
(3) C = dPe–fP

where C is the predator’s consumption rate; P is the mea-
sure of prey availability; a, b, c, d, and f are coefficients
determined from data;and e is the base of the natural log-
arithms. Equation 1 states that consumption rises as a lin-
ear function of prey availability. Equation 2 states that
consumption rises at low prey availability and saturates at
high prey availability. Equation 3 states that consumption
rises at low prey availability but decreases at high prey
availability. Equations 1–3 and their parameters can be
thought of as specific formulations of the general hypoth-
esis that a predator’s consumption is a function of its prey
availability. After supplying these models with appropriate
initial conditions, each can be tested to determine which
(if any) produces patterns that best fit the existing data for
C and P and to identify plausible values for the coefficients
(parameters). Once the most likely form of the model is
k n own , a bi o l ogical interpret a ti on can be adva n ced .
Hilborn and Mangel (1997) refer to this process as “eco-
logical detection.”

Ecologists often use quantitative models to formulate
predictions about the systems they study. Some predictive
models are empirical, meaning that they represent rela-
tionships determined strictly by data. Because empirical
models are not based on a knowledge of underlying mech-
anisms,they are most useful within the bounds of the data
with which they are developed (Weiner 1995). A well-
known empirical model from aquatic ecology predicts the
level of summer chlorophyll from spring total phosphorus
(Dillon and Rigler 1974). Other predictive models are
more mechanistic, based on hypotheses about the partic-
ular ecological processes that cause an observed pattern.
The incorporation of key ecological features, such as size-
selective predation and increasing contaminant concen-
trations with increasing prey body size (to use an example
similar to that in Figure 2), leads to the prediction of a
tradeoff between decreasing concentrations of PCBs in
salmon and the probability of survival of salmon prey
(Figure 3; Jackson 1997). In the absence of these me cha-
nistic ecological details, lower contaminant concentra-
tions are predicted in predators (Jackson 1996a,1996b).

Predictive models can b ecome quite complex, especial-
ly when their forecasts are used as the basis for resource
management and policy decisions. Examples include glob-
al climate models, fisheries management models for set-
ting catch and harvest quotas, watershed management
models for nutrient control strategies,and risk assessment
models for environmental engineering. Often, these com-
plex predictive models are used to generate predictions for
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scenarios for which actual tests are difficult or impossible
to run for ecological,social, or economic reasons.

Like a conceptual model, a quantitat ive model is rarely
an end in itself. Often learning results from considering a
changing suite of several quantitative models, or several
formulations of processes within a par ticular model (Pas-
cual et al. 1997). The assessment of different models and
processes allows an evaluation of the assumptions specific
to those formulations and processes. In this context, it is
useful to remember that models are only tools and not
reality, and there is no “correct” model.

Wh en should a quanti t a tive mod el be
d evel ope d ?
Models should follow from specific research questions
rather than questions following from models. Thus, the
decision to build a quantitative model from a conceptual
model should occur only after a clear, focused research
question has been distilled from initial ideas. A full-scale
quantitative model should be created only when each of
the following questions can be answered with a yes:

l Wi ll a qu a n ti t a tive model add to the scien tific con-
tent of the stu dy? 

l Is there su f f i c i ent motiva ti on to devo te the nece s s a ry
time to devel op a qu a n ti t a tive model? 

l Wi ll the inve s tm ent in modeling en h a n ce the qu a l i ty
of k n owl ed ge produ ced? 

There are clear advantages to the incorporation of
quantitative modeling in a research program. We have
already touched on some of these benefits, such as formu-
lating predictions and identifying data needs or knowl-
edge gaps. Models are also useful for organizing one’s
thinking about a problem. Once a conceptual model is
converted to a quantitative model and used,new questions
may arise as a result of interesting and unexpected results.
However, the time it takes to build a useful quantitative
model should not be underestimated. Model building
becomes easier with practice, but modelers should expect
to sp end se veral w eeks or months constructing, parame-
terizing, testing, and running a modestly complex model.
(The time spent depends to some degree on the software
used, which is discussed more below.)

Building quanti t a tive ecol ogical mod el s
Once an ecologist has decided to build a quantitative
model, how should he or she choose the type of model to
build? Some general classes of models used in ecology
include energy and mass balance models (e.g., Hewett
1989), population genetics models (e.g., Roughgarden
1979), optimization and game theory models (e.g., Man-
gel and Clark 1988), individual-based population models
(e.g., DeAngelis and Gross 1992), size- or age-structured
population models (e.g., Caswell 1989), community and
ecosystem models (e.g., Scavia and Robertson 1980), and
landscape models (e.g., Baker 1989). Because the degree of
detail varies widely within these broad categorizations
(Table 1), we recommend reading pap ers that discuss the
merits of various modeling approaches (e.g., Levins 1966,
DeAngelis and Waterhouse 1987, DeAngelis 1988). An
overview of model types and formulations can also be
obtained from a survey course in mathematical modeling,
and we strongly recommend taking such a course as soon
as the idea to “do something” with models arises. The spe-
cific types of models being considered may suggest further
course work. For example, differential equations are used
in many models, matrix algebra underlies size- and age-
structured models, and geographical information systems
(GIS) are needed to work with many spatial and metapop-
ulation models.

The choice of model type and detail will depend on the
system studied,the questions asked,and the data available.
Quantitative models can quickly become complex and
clear problem definition is essential to keeping the model
focused.A good conceptual model is invaluable for decid-
ing what ecological detail to include and what to ignore.
For example, suppose an ecologist is studying two forest
stands: One stand is intact, whereas a presumedly impor-
tant seed disperser has been removed from the other. Has
the removal of the seed-dispersing animal caused any
changes in the population of a particular tree species in
the experimental stand? There are several ways in which
quantitative modeling can be used to address this ques-
tion.A simple age-structured model (e.g., Caswell 1989) of

Fi g u re 3. PCB co n cen tra tions (solid line) of a ge class 4+
ch i n ook salmon and the proba bi l i ty of an alewi f e
popu l a tion crash (dashed line) for ch i n ook salmon
s to cking ra tes and a Sh ep h erd sto ck - re cru i tm en t
rel a ti o n s h i p. PCB co n cen tra tions are the re sult of 2 0 0
m od el runs to year 2015, at ea ch sto cking ra te , ba sed on
b oot s tra pped esti m a tes of the Sh ep h erd sto ck -
re cru i tm ent rel a tionship from 14 yea rs of data for La ke
On t a ri o. The arrow indicates 1994 sto cking ra te s . Th e
d ot ted line around the ch i n ook salmon PCB
co n cen tra tions repre sents +/– 2 SE.
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the tree population may be useful if the ecologist wants to
look for changes in age structure. Alternatively, a spatial ly
explicit model might be needed if the ecologist wants to
explore differences in spatial pattern. If the ultimate goal is
to test the findings from the quantitative model in the
field, then the model that is developed will dictate the
types of data that will need to be collected from the two
forest stands.

Once the general type of quantitative model has been
chosen, the ecologist must determine the appropriate lev-
el of abstraction for the model. Consulting papers on the
value of simple (Fagerström 1987, Scheffer and Beets
1993) versus complex (Logan 1994) models may help
guide this decision. Good models never include all possi-
ble compartments and interactions (Fagerström 1987,
Starfield 1997), and the complexity of a model depends

This troubleshooting box outlines
some common mistakes made during
m odel con s tru cti on . It is not an
ex h a u s tive list. We hope that the
novice modeler will profit from our
experience in solving these problems,
which arise largely from writing one’s
own code in a programming language.

Pay careful attention to units, scal-
i n g, and convers i on s . For ex a m p l e ,
translating prey eaten by one trophic
level (units of mass) to a mortality rate
for another (numbers) requires a con-
version and change of units. We go
through our equations and write the
dimensions and units to ensure that
we are making appropriate conver-
s i on s . Units and dimen s i ons for
empirically derived relationships tend
to be built into regression parameters
(e.g., ungulate biomass [kg] derived
from grass productivity [g · m–2 · d–1 of
carbon]). Problems often arise when
different state variables operate on dif-
ferent spatial scales, which is some-
times less obvious than when the vari-
abes operate on different time scales.
Fish, for example, occupy a volume (g
· m–3) but may eat benthic inverte-
brates that occupy a surface (g · m–2),
requiring rescaling when computing
trophic transfers. Apparent conversion
problems can also be caused by failure
to properly share va ri a bles amon g
subroutines.

Be careful with time steps and mod-
el stabilit y, especially for mo dels with
d i f feren tial equ a ti on s . The model er
typically must choose a single step size
(e.g., hourly, daily, monthly, yearly)
over which to have the algorithm solve
the equations, even though the time
step appropriate for evaluating one

process (e.g., hourly nutrient uptake
by phytoplankton) may not be ap pro-
pri a te for eva lu a ting another (e.g. ,
annual growth of fishes). Equations
whose dynamics suffer when indepen-
dent variables change on widely dis-
parate time scales are known as “stiff ”
equ a ti on s . Probl ems of ten occ u r
because small roundoff or t runcation
errors in one variable lead to enor-
m o u s ly inflated errors in another;
such problems can be diagnosed by
evaluating output variables at a variety
of step sizes. An alternative approach
to manual ly manipulating step size is
to use an algorithm with an adaptive
step size (Press et al. 1992), which
gives smoo t h er dynamics but take s
more work to program. One can also
explicitly divide the model into “fast”
and “s l ow ” com pon ents and then
u p d a te the fast com pon ents mu ch
more frequently than the slow compo-
nents.

Pay attention to setting and reset-
ting values. Arrays and matrices are a
common source of computer bugs,
t hus warra n ting ex tra atten ti on to
their dimensioning, initializing, and
indexing. We assign values to parame-
ters before they are used rather than
relying on the software to initialize
them. We also check that parameters
and initial conditions obtained from
an input file are properly read and
assigned. After the lapse of important
time periods, we check that variables
h ave been zeroed or ren ewed as
appropriate. For example, in a model
in which seed germination for a plant
proceeds only when certain environ-
mental conditions are met, the value
for seedlings should be set to zero each

time germ i n a ti on fails ra t h er than
( u n i n ten ti on a lly) taking the va lu e
f rom the previous ye a r. Si m i l a rly,
when all individuals in a particular
size or age class die or are eaten, the
variables tracking their characteristics
must be properly reset to prevent car-
ryover ef fects wh en a new co h ort
arrives. Populations modeled with real
numbers will approach b ut not equal
zero wh en su bj ected to a con s t a n t
mortality rate, and should be set to
zero after some minimum population
size is attained. Inspecting graphs of
state variables will elucidate what is
happening.

Test ra n dom nu m ber gen era tors
before using them. Random number
generators vary in quality and should
be tested before use. A statistics pack-
age can be used to analyze the results
of 10,000 or so sequential random
nu m bers to en su re that the mean,
standard deviation, and distribution
are as specified and the shape is as
ex pected . If qu a l i t a tively differen t
results occur when initializing the ran-
dom number generator at the begin-
ning of the program versus the begin-
ning of each replicate, we look for
another random number generator.
We recommend reading Press et al.’s
(1992) discussion of random-number
gen era ting algori t h m s . One way to
keep random numbers the same from
run to ru n , wh i ch is useful wh en
developing or debugging a model,is to
start each simulation with the same
“seed”(the initial number from which
the random numbers are generated).
When the time comes to use different
seeds, the computer’s clock can be
used for the seed value.

Common pitfalls and potential solutions
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very much on the purpose and question addressed by the
model. There are tradeoffs between the generality of a
model and its practical utility for a particular situation
(Levins 1966). A highly abstract model with few parame-
ters may be best to test general ecological hypotheses.
However, for sp ecific questions, such as whether changes
in fire frequency have affected the spatial pattern of a
species, a detailed spatial model coupled to GIS data may
be required. Thus, a model’s st ructure should be consis-
tent with both the question(s) asked and the measure-
ments made (Costanza and Sklar 1985, Ludwig and Wal-
ters 1985, De An gelis et al. 1 9 9 0 ) . Data for many
populations are collected by size or developmental stage or
at fixed time intervals, leading naturally to models with
size or stage structure and certain time steps (see the box
on page 700 for more on time steps). With too little detail
in the model, the mechanisms driving the response of
interest may not be captured. On the other hand, too
much detail makes a model difficult to parameterize
(determine coefficients for equations) and to validate
(Beck 1983, Ludwig and Walters 1985, DeAngelis et al.
1990). An active area of research therefore considers how
to reduce model complexity while retaining essential sys-
tem behavior (Rastetter et al. 1992, Cale 1995).

Nuts and bolts of a s sem bling a
q u a n ti t a tive ecol ogical mod el
Once the decision to build a quantitative model has been
made, and issues of model complexity and structure have
been dealt with,it is necessary to develop algebraic formu-
l a ti ons (equ a ti ons) for model proce s s e s , to establ i s h
means for solving them, and to choose parameters for
each equation before implementing the model on a com-
puter. Thinking about these issues in advance may save a
modeler from having to go back and redevelop portions of
the model.
The impo rt a n ce of ke eping good note s . The litmus
test for a model description is that a relatively experienced
modeler must be able to reproduce the model and its out-
put, just as experiments should be capable of being repli-
cated. Therefore, it is important to document decisions
about equation forms, parameter values, and computa-
tional details,as well as any sources of information used to
make these decisions. Good notes taken during model
building will save hours combing the literature to redis-
cover the source of assumptions or parameter values.
C h oosing eq u a ti o n s . One of the initial steps in con-
verting a con ceptual model to a qu a n ti t a tive model
involves quantifying the arrows between the state vari-
ables. This process actually involves two steps: choosing
appropriate equations and determining the parameters for
those equations. Equations represent mathematically the
interactions among or transfers of energy or materials
between state variables in a model. For example, equations
1, 2, and 3 represented different (hypothesized) ways to
describe the process of predator consumption. Parameters

are constants in the equations that make the algebraic
expressions correspond to actual data.

Equations appropriate to a particular situation may be
available in the literature. Certain constructs (e.g., feeding
relationships, energetic equations) are common to many
ecological models, although they may need to be repara-
meterized for different systems. Many relationships can be
found in modeling textbooks, including Models in Ecology
(Maynard Smith 1974), Ecological Implications of Body Size
(Peters 1983), Handbook of Ecological Parameters and Eco -
toxicology (Jorgensen et al. 1991), Dynamics of Nutrient
Cycling and Food Webs (DeAngelis 1992), A Primer of Ecol -
o gy ( G o telli 1995), and Pri m er of Ecol o gical T h e o ry
(Roughgarden 1998). First principles (i.e., physical laws)
can also provi de useful rel a ti on s h i p s . Ma t h em a ti c a lly
i m portant differen ces among altern a tive formu l a ti on s
may or may not be important for a particular situation. If
the particular form of an equation is of concern, the
ef fects of e ach formu l a ti on on model re sults can be
explored as part o f the modeling exercise.
Co m pu t a tional issues asso ci a ted with eq u a ti o n s .
Two important computational issues concern the type of
equations (difference or differential) used to determine
changes in state variables and the algorithm used to solve
these equations through time. Difference equations sepa-
rate time into discrete intervals (for example, a day or a
year) and in the context of a scalar variable x have the gen-
eral form

(4) xt+1 = F(xt)
where xt and xt+1 represent the value of the state variable at
the beginning of two successive time intervals,and F is the
function describing the change. State variables that fall
naturally into this type of analysis include populations
with discrete life stages (e.g., insect larvae instars) or that
have nonoverlapping generations (in which the adults die
and are replaced by their offspring at fixed intervals). In
contrast, differential equations describe processes that
occur continuously and for a scalar variable x have the
general form

(5) dx = G(x)
dt

where dx/dt is the rate of change of the state variable and
G is the function describing the processes that contribute
to the rate of change. One reason for using differential
equations is that continuous processes might be difficult
to approximate with a difference equation formulation.
For example, a differential equation approach is required
to accurately describe dynamics such as limit cycles that
come about from predator–prey interactions.A difference
equation, even with very small time steps, is likely to pre-
dict the extinction of one or both species because of inac-
curacies at small population values.

Difference equations are simply solved by recursion;
that is, later predictions depend on earlier predictions.
Differential equations describe continuous processes, but
must nevertheless be solved in discrete time steps on a
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computer. The two principal methods used to solve differ-
ential equations are the Euler and the Runge-Kutta meth-
ods. The Euler method steps through the differential equa-
ti on as if it were a differen ce equ a ti on by using
information at the beginning of each time interval to cal-
culate values at the next time interval. The Euler metho d
can be unstable when the interval between solutions (the
step size) is small, because rapid accumulation of errors
prevents convergence on the real solution. The Euler
method may also be unstable at large step sizes because
small changes in rates and local maxima and minima in
the solution may be missed, which can be particularly
problematic if the differential equations are nonlinear
(Press et al. 1992). Runge-Kutta algorithms also start with
the information at the beginning of a time interval but
then sample the solution at several points between the
beginning and end of the interval. For most differential
equation mo dels, the Runge-Kutta is more a ccurate than

the Euler method, and fourth-order Runge-Kutta is par-
ticularly recommended (Press et al. 1992). Graphical and
algebraic explanations of the Euler and Runge-Kutta algo-
rithms appear in Press et al. (1992) and in textbooks on
nu m eric met h ods in com p uting (e.g. , At k i n s on 1989).
Va ri a ble step - s i ze met h ods can be used to find the opti-
mum balance bet ween acc u racy and com p ut a ti onal speed
by using small step sizes wh en va ri a bles are ra p i dly ch a n g-
ing and long step sizes wh en va ri a bles are ch a n ging slowly.

Determ i n i s tic or sto ch a s ti c ?
A deterministic model has no random components; for
the same initial conditions and time period projected, it
always gives the same result. In contrast,a stochastic mod-
el incorporates at least one random factor, and thus the
results are different every time the model is run.One type
of stochastic model assumes that the values of some or all
parameters vary through time or across individuals and

Issues concerning how numbers are
stored and updated, how calculations
are sequenced, and how inputs and
outputs are made may seem unimpor-
tant to the novice modeler, but our
ex peri en ce is that com p ut a ti on a l
details merit attention early in the
modeling process because they can
h ave su b s t a n tial implicati ons for
model use and behavior.

The nature of inputs and outputs
determines how easily a model is used
and analyzed. If inputs are part of the
m odel code , the model must be
recompiled (translated from text into
instructions the computer executes)
each time the inputs are changed. If
inputs are read in as a separate file
(which takes more work to program),
the model can be run many times with
different inputs without recompiling.
It is worth formatting output with the
planned analysis in mind—select for-
mats amenable to processing with sta-
tistical or graphics software. Excessive
output slows the simulation time, but
representative subsets of intermediate
calculations should be inspected to
ensure that everything is reasonable.

The sequence in which events pro-
ceed can affect re su l t s . Events that
h a ppen simu l t a n eo u s ly in natu re
must occur in sequence in computer

models. For example, if the organism
or size class that is first in numerical
order in a vector of state variables is
always the first for which foraging is
evaluated, it may unintentionally be
the one that gets the most food!

Sep a ra ting old from new va lu e s
a ll ows sequ en tial calculati ons of
simultaneous events to proceed cor-
rectly. Newly calculated values should
be assigned to temporary variables so
that subsequent calculations are not
based on a mixture of old and new
state variables. The value of the state
variables should be updated with the
values in the temporary variables only
after all calculations have been com-
pleted for that time step.

Decide whether to model popula-
tions as whole or real numbers. Nei-
ther choice is perfect. Using real num-
bers gives fracti ons of i n d ivi du a l s ,
whereas using integers presents sto-
chasticity and rounding problems. For
example,if the number of survivors is
calculated by multiplying the survival
rate by the number of starting indi-
vi duals and then rounding to the
nearest integer, then a single individ-
ual with a survival rate of 0.8 will live
forever! It would be better to use 0.8 as
a probability and then do the equiva-
lent of flipping a coin—that is,draw a

random number.

Decide how many stability checks

and assurances to build into a model.

The inherent mathematical and archi-

tectural constraints of computers can

lead to unexpected model behavior

(Acton 1996). It is important to antic-

i p a te both mathem a ti c a lly ill ega l

operations (e.g.,division by zero) that

would cause the simulation to crash

and circumstances that would cause

the simulation to become invalid. For

example, it might be appropriate to

stop the simulation if one species in a

multispecies model goes extinct, to

build in a means for its reestablish-

ment if it goes extinct, or to build in a

refuge or alternate food supply so that

extinction is prevented. These types of

stability guarantees should be used

prudently. Excessive stabilizing com-

ponents can hide programming errors

or even dominate model dynamics; on

the other hand,if used sparingly, they

can prevent the frustration of having a

long simulation rendered useless by a

c i rc u m s t a n ce for wh i ch a stabi l i ty

ch eck could easily have been pro-

grammed.

Decisions about model implementation
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are therefore describ ed by probability dist ributions. Each
time the model is run, the parameter values are drawn
from their specified probability distributions. Other st o-
chastic models add random errors following each calcula-
tion to simulate the effects of environmental variability.
One reason to add stochasticity is to produce realistic vari-
ability in the trajectories of the state variables through
time, either because the variance as well as the average val-
ue is of interest or because the effect of variability in one

state variable on another state variable is of interest. Mod-
el results might be cast in terms of probabilities—for
example, as the percentage of simulations in which a cer-
tain outcome (such as a catastrophic population crash)
was attained. A stochastic model is not necessarily more
“correct” than a deterministic model, and it is more work
to create. It does provide additional information, but
whether this information is of value depends on the pur-
pose of the model. We recommend Nisbet and Gurney

Table 1. Ecological models for representing populations.a

Common applications Spatially explicit 
Model type Basic features Single-species models Multispecies models Ecosystem models landscape models

C o m p a rtment or Population represented Theoretical models (e.g. , Theoretical models (e.g. , As building blocks for Diffusion modelsf,
a g g r e g a t eb by a single model com- logistic growth), s i m p l e p r e d a t o r – p r ey models), ecosystem modelse m e t a p o p u l a t i o n

p a rtment. Future num- management models as building blocks for m o d e l sg

b e rs or biomass can be ( e . g. ,s t o c k - r e c ruit fisheries community modelsd

made functions of densi- m o d e l s )c

t y, food supply, or env i -
ronment.    

S t ru c t u r e dh Population divided into Demographic and life Two interacting populations Key populations may S t ructured popula-
s i z e ,a g e , or life-stage h i s t o ry analyses i, p o p u l a t i o n or some subset of species be structured as needed tions not commonly
classes. Each class at management modelsj in a multispecies models to capture allometry or modeled on land-
a minimum described m ay be stru c t u r e dk changing ecological s c a p e s .
by rate of surv i v a l ,r e - r o l e s l

p r o d u c t i o n , and transi- 
tion to next class. Rates 
can be made functions 
of density, food supply,
e nv i r o n m e n t ,e t c .

I n d i v i d u a l - b a s e d Simulate many individ- D e m o g r a p h i c s , life history Vegetation models are Bioaccumulation M ovement or 
( I B M )m uals and aggregate to a n a l y s e s commonly IBMs, key m o d e l sp, distribution of plants

obtain population char- analysis of variabilityn species in other models vegetation modelsq a n i m a l s ,a n d
acteris tics.Individual  m ay be represented d i s e a s e s r

traits such as size, a g e , i n d i v i d u a l l yo

l o c a t i o n , and history 
are commonly tracked. 
Degree of detail in pro-
jecting these traits  is 
highly variable

aReferen ces provi de en try points to rel evant modeling litera tu re . We cite tex tboo k s , ed i ted vo lu m e s , and revi ew arti cles wh ere po s s i bl e . In d ivi dual model i n g
s tudies cited are from the aqu a tic litera tu re but many other examples can be found thro u gh o ut the eco l ogical litera tu re .

bP i l eou (1977), Ch a pra and Reck h ow (1983), Ha llam and Levin (1986), Va n derm eer (1990), Jor gen s en (1994)
cDe An gelis et al. ( 1 9 9 0 ) , Hi l born and Wa l ters (1992), G o telli (1995)
dSw a rtzman and Ben t l ey (1979), O’ Nei ll and Giddings (1980), Dale et al. ( 1 9 8 5 ) , Ba rtell et al. ( 1 9 8 8 )
eS c avia and Robert s on (1980), Jones et al. ( 1 9 9 3 ) , Co t ti n gham and Ca rpen ter (1994), Ha k a n s on (1994)
fDe An gelis and Wa terhouse (1987), An ders on and May (1991)
gG i bbs (1993), Dunning et al. ( 1 9 9 5 ) , Mc Cu ll o u gh (1996), Gren fell and Ha rwood (1997)
hP i l eou (1977), Ha llam and Levin (1986), Ca s well (1989), Va n derm eer (1990)
iDe Roos et al. ( 1 9 9 2 )
jMa rs ch a ll and Crowder (1996)
kPost and Rudstam (1992), Trebitz et al. ( 1 9 9 7 )
lHe et al. ( 1 9 9 3 ) , Jack s on (1997)
mDe An gelis and Gross (1992), Tyl er and Rose (1994)
nDe An gelis and Gross (1992), Hu s ton et al. ( 1 9 8 8 )
oDale et al. ( 1 9 8 5 ) , De An gelis and Gross (1992), L iu and As h ton (1995), Cl a rk and Rose (1997)
pMadenjian and Ca rpen ter (1993), S tow and Ca rpen ter (1994)
qDe An gelis and Gross (1992)
rDe An gelis and Wa terhouse (1987), Ba ker (1989), Ja ger et al. ( 1 9 9 3 ) , Tu rn er et al. ( 1 9 9 5 ) , Tyl er and Rose (1994), Gren fell and Ha rwood (1997) 
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(1982) as the starting point for an introduction to deter-
ministic and stochastic models.
S el e cting mod eling sof twa re . Implementation of a
quantitative model on a computer requires the modeler
(or the computer program) to keep track of many details.
Some of these details, while necessary for the model to
run, are irrelevant to the model predictions (e.g., allocat-
ing computer memory for arrays and matrices, creating a
user interface, and writing output). Other details, such as
how variables are initialized, how random numbers are
generated,the order in which equations are solved,and the
algorithm (computer instructions) used for solving them,
do affect the predictions. We discuss some of these details
further in the boxes on pages 697 and 699.

The computer software selected should be determined
by the degree to which the modeler wishes to control these
details. At one extreme are general programming lan-
guages (e.g.,C, Basic, Fortran, Pascal) that allow the mod-
eler complete control over the model construction but also
require the modeler to handle all of the sometimes tedious
details. Model building gets easier with practice and by
reusing bits of previously generated code, but it can still be
quite time-consuming even for relatively experienced pro-
grammers. Prewri t ten ro utines for ra n dom nu m bers ,
m a trix algebra , and other algorithms are ava i l a ble for
most programming language s , reducing the need to
rei nvent some wheels (e.g., Numerical Recipes; Press et al.
1992). If this option is chosen, coursework in at least one
programming language might be helpful; general pro-
gramming concepts and skills translate across languages.

At the other extreme are graphical programs (e.g.,
STELLA, SimuLink, ModelMaker) that allow the user to
create the computer program (the model) by choosing
icons from a menu while the software handles the details.
Models can be constructed quickly, but there are limits on
what can be built and the implementation details are often
hidden from the user. This final point is a significant
weakness of graphical mo deling packages, and we there-
fore tend to create our own models using programming
languages. However, intelligent use of modeling packages
can permit incorporation of modeling into a study with
far less effort than building a model from scratch.

Between these two extremes are programming packages
that include functions to handle many of the details but
still leave some control to the modeler (e.g., Matlab; see
Roughgarden 1998) and spreadsheets (e.g., Excel;see Wel-
don 1999). This intermediate approach may appeal to
those who want to know how equations are being solved
without becoming mired in the syntax of a programming
language.
Pa ra m eter esti m a tion and mod el calibra ti o n .
Parameter estimation is the process of finding parame ter
values for each equation in the quantitative model. The
source of parameter values depends on how the model is
going to be used. If the model is being developed to
explore the consequences of different parameter values,

then the model will be run for a wide range of different
parameters without reference to par ticular ecological sys-
tems. However, if a model is being developed to predict
behavior in a particular system, then usually a single
(mean) value will be chosen for each parameter. In this
case,parameter values are estimated by fitting equations to
the data from the system, or perhaps from data available in
the literature. Sometimes data are not available, in which
case a modeler might estimate parameters by an iterative
process of matching model output to observed system
behavior. This latter practice is referred to as tuning (cali-
bration) by direct search, and the parameters are altered
until the model produces a reasonable fit with observa-
tions of the state variables. Tuning can be done systemati-
cally or by trial and error. Either way, keeping good notes
is essential. Parameters determined by direct search are
best viewed as hypotheses to be tested as data become
available.

When parameters are estimated from observed data,the
modeler seeks the parameters that lead to the best fit
between an equation and the observed data (e.g., Hilborn
and Mangel 1997). The least-squares criterion and maxi-
mum likelihood estimation are the two most commonly
employed methods f or this kind of parameter estimation.
Least-squares estimates of parameters minimize the value
of the squared deviations between the simulated and
observed data; these estimates can be used for just about
any deterministic component of a model for which distri-
butions are near normal and variance is constant through-
out the range of an independent variable (Brown and
Rothery 1993). However, for models that are nonlinear in
the parameters,least squares may produce biased parame-
ter estimates; for these mo dels, maximum likelihood may
yield better parameter estimates. Maximum likelihood
algorithms determine the parameter values that maximize
the probability that the observations would have occurred
if the parameters were correct (Hilborn and Walters 1992).
Un l i ke least squ a re s , m a x i mum likel i h ood does not
require that error terms be normally distributed (Hilborn
and Mangel 1997). It is beyond the scope of this article to
review parameter estimation techniques, but useful infor-
mation on that subject can be found in Draper and Smith
(1981), Hilborn and Walters (1992), and Hilborn and
Mangel (1997).
Debu ggi n g , sen s i tivi ty analys i s , and va l i d a ti o n .
Once a quantitat ive model is assembled, it must be tested
to ensure that it is functioning properly; that process is
called “debugging.” We recommend that the equations be
calculated by hand to ensure that the code is performing as
it should—that is, a rrays and matri ces are properly
indexed, equations are properly calculated, and so forth.
Each module or subroutine of a mo del developed with a
programming language should be test ed separately before
the completed model is run. Output should be tabulated,
state variables graphed, and intermediate parameter and
rate values monitored to ensure that they a re re a l i s tic du ri n g
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s i mu l a ti on s . One also should check that the model behaves
as expected in situations for which the analytical solution
is known.

Sensitivity analysis explores whether the conclusions
would change if the parameters, initial values, or equa-
tions were different. Consequently, sensitivity analyses can
be used to guide further research (for example, to identify
those parameters that would be worth the investment of
additional field measurements or experiments), to corrob-
orate the model, and to improve parameter estimates.
There are three basic approaches to sensitivity analysis:
varying parameter values one at a time, systematic sam-
pling, and random sampling (Hamby 1994). Swartzman
and Kaluzny (1987) provide an excellent discussion of the
advantages and disadvantages of each of these approaches.
The simplest sensitivity analysis examines the effect of
each parameter on model dynamics individually (Bartell
et al. 1986). The model is typically deemed sensit ive to a
particular parameter if changing that parameter’s value by
10% leads to more than a 10% change in the output from
the baseline scenario. Because analysis of one parameter at
a time will not identify sensitive interactions among para-
meters, it may also be worthwhile to explore the effects of
variation in two or more parameters at the same time
using either systematic or random sampling (Swartzman
and Kaluzny 1987). When many parameters may interact,
random sampling may be the best approach. Random
sampling is most often done with Monte Carlo techniques
(e.g., Swartzman and Kaluzny 1987, Bartell et al. 1988),
whereby, during each of perhaps 1000 model runs,a value
for each parameter is “sampled”from a range or probabil-
ity distribution. Model runs then undergo partial correla-
tion analyses, which yield estimates of the contribution of
each parameter to the overall variance in the output. Para-
meters with high partial correlations have the most influ-
ence on results.

In addition to doing a sensit ivity analysis on parameter
values, the model should be che cked for sensitivity to ini-
tial conditions and equations. For example,the model can
be initialized with different species ratios or size structures
to find out whether output is driven by these choices.
Model sensitivity to alternative equations for relationships
among state variables can also be checked by rerunning
the model with different equations and seeing whether the
conclusions change.

Once a model works, the modeler may need to ask
whether it sufficiently resembles reality, but whether that
question can be answered at all is a matter of considerable
philosophical debate (Mankin et al. 1975, Oreskes et al.
1994, Rastetter 1996, Rykiel 1996). Nevertheless, at some
point the researcher must decide that the model is good
enough and no more tinkering is necessary. For many sys-
tem - s pecific eco l ogical model s , this dec i s i on is made
based on comparisons of simulated data with field or
experimental data. If the simulated data are sufficiently
similar to the observed data, then the model is judged to

be validated or corroborated, and simulations with the
model proceed. If the simulated data do not match the
observed data, then further work is necessary. Objective
criteria for model validation include the standard error of
m odel pred i cti ons and the proporti on of va ri a n ce
explained by the model (Caswell 1976, Power 1993). It is
preferable to have independent data for model corrobora-
tion and calibration, although in practice independent
data are often hard to find, particularly for whole ecosys-
tems.

A way fo rwa rd
Modeling offers exciting possibilities for the exploration of
ideas that are not easily pursued through field experimen-
tation or laboratory studies. Ecologists, for example, use
models to simulate the systems they study and to investi-
gate general theories of the way those systems operate.
Moreover, simulation of systems with models helps iden-
tify data needs and knowledge gaps.

Many research programs can benefit from the integra-
tion and development of conceptual and quantitative
models. The process of creating a conceptual model begins
with a question; from there, the researcher formulates
hypo t h e s e s , eva lu a tes ava i l a ble and needed data, a n d
assesses the degree of understanding of the system under
consideration. Then the conceptual model is converted to
a quantitat ive model; that process is iterative, evolving as
new data and ideas are discovered.

We cannot possibly cover every aspect of ecological
modeling—which is both a skill and a process—in one
short article. We do hope, however, that we have success-
fully raised the issues that a b eginning modeler must con-
sider, provided an entry point to the modeling literature,
and discussed the role of modeling in ecological research.
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