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SPATIAL AUTOCORRELATION: TROUBLE OR NEW PARADIGM?!
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Abstract. Autocorrelation is a very general statistical property of ecological variables
observed across geographic space; its most common forms are patches and gradients. Spatial
autocorrelation, which comes either from the physical forcing of environmental variables
or from community processes, presents a problem for statistical testing because autocor-
related data violate the assumption of independence of most standard statistical procedures.
The paper discusses first how autocorrelation in ecological variables can be described and
measured, with emphasis on mapping techniques. Then, proper statistical testing in the
presence of autocorrelation is briefly discussed. Finally, ways are presented of explicitly
introducing spatial structures into ecological models. Two approaches are proposed; in the
raw-data approach, the spatial structure takes the form of a polynomial of the x and y
geographic coordinates of the sampling stations; in the matrix approach, the spatial structure
is introduced in the form of a geographic distance matrix among locations. These two
approaches are compared in the concluding section. A table provides a list of computer

programs available for spatial analysis.

INTRODUCTION

Spatial autocorrelation may be loosely defined as the
property of random variables taking values, at pairs of
locations a certain distance apart, that are more similar
(positive autocorrelation) or less similar (negative au-
tocorrelation) than expected for randomly associated
pairs of observations. Autocorrelation is a very general
property of ecological variables and, indeed, of all vari-
ables observed along time series (temporal autocor-
relation) or across geographic space (spatial autocor-
relation).

Most natural ecological phenomena display geo-
graphical patchiness, and it is found at all spatial scales—
from micrometres to continental and ocean-wide scales.
Picturing the spatial variation of the variable(s) under
study in the form of a map shows the structure to be
smoothly continuous or marked by sharp discontinu-
ities. Most real-case studies concern only a part of a
spatial structure; the special case where the part under
study essentially looks like a gradient is discussed at
more length in the third section of this paper.

The statistical problem that accompanies the spatial
structuring of ecological data can be illustrated using
the following common case of spatially autocorrelated
data. The observed values of the variable of interest—
for instance, species composition—are most often in-
fluenced, at any given locality, by the species assem-

' For reprints of this Special Feature, see footnote 1, p.
1615.

blage structure at surrounding localities, because of
contagious biotic processes such as growth, reproduc-
tion, mortality, migration, and so on. In such a case,
because the value at any one locality can be at least
partly predicted by the values at neighboring points,
these values are not stochastically independent from
one another. This may come as a surprise to ecologists
who have been trained in the belief that nature follows
the assumptions of classical statistics, one of them be-
ing the independence of the observations. However,
field ecologists know from experience that living beings
in nature are distributed neither uniformly nor at ran-
dom; the same applies to the physical variables that
we use to describe environments. Following hierarchy
theory (Allen and Starr 1982), we may look at the
environment as primarily structured by large-scale
physical processes—geomorphologic processes on land,
currents and winds in fluid environments—that, through
energy inputs, cause the appearance of gradients on the
one hand, and of patchy structures separated by dis-
continuities (interfaces) on the other. These large-scale
structures induce the formation of similar responses in
biological systems, spatially and temporally. Within
these relatively homogeneous zones, smaller scale con-
tagious biotic processes take place that cause the ap-
pearance of more spatial structuring through repro-
duction and death, predator-prey interactions, food
availability, parasitism, and so on. Spatial heteroge-
neity is then functional in ecosystems, and not the result
of some random, noise-generating process, so it be-
comes important to study it for its own sake. One of
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the consequences is that ecosystems without spatial
structuring would be unlikely to function. Imagine the
consequences: large-scale homogeneity would cut down
on diversity of habitats; feeders would not be found
close to their food; mates would be located at random
throughout the landscape; soil conditions in the im-
mediate surrounding of a plant would not be more
suitable for its seedlings than any other location on
earth; newborn animals would be spread around in-
stead of remaining in favorable environments; and so
on. Irrealistic as this view may seem, it is still common
in many of our theories and models describing popu-
lation and community functioning. This shift in views
translates into a new paradigm for ecologists: spatial
structuring is an important component for ecosystems.
The first message of this paper is then that we have to
revise our theories and models, to make them include
realistic assumptions about spatial and temporal struc-
turing of communities. The second message is that
statistical concepts and techniques are now becoming
available to handle such data.

Autocorrelation in a variable brings with it a statis-
tical problem: it impairs our ability to perform stan-
dard statistical tests of hypotheses. The reason can best
be illustrated by the case of the correlation coefficient.
The problem lies in the fact that, when both variables
are positively autocorrelated, the confidence interval
estimated by the classical procedure around a Pearson
correlation coeflicient is narrower than it is when cal-
culated correctly, so one declares too often that the
coeflicient is significantly different from zero (Fig. 1;
see Bivand 1980). With all other standard statistical
tests, positive autocorrelation induces the same bias:
computed test statistics are too often declared signifi-
cant under the null hypothesis. Negative autocorrela-
tion may produce the opposite effect, for instance in
ANOVA. This problem is discussed in more detail by
CIiff and Ord (1981), and by Dutilleul and Legendre
(1992) in the context of the tests of normality (good-
ness-of-fit).

Confidence interval computed
from the usual tables: r # () ***

Effect of spatial autocorrelation on tests of correlation coefficients for randomly generated, positively autocorrelated

This question can be contemplated from the point
of view of the degrees of freedom: in classical statistical
testing, one counts one degree of freedom for each
independent observation, and this procedure allows
one to choose the statistical distribution appropriate
for the given test. As we have seen above, the problem
with autocorrelated data is their lack of independence
or, in other words, the fact that new observations do
not each bring with them one full degree of freedom.
Indeed, knowledge of the variable’s value at some lo-
cations gives the observer some prior knowledge of the
value the variable will take at new locations. The con-
sequence is that these new observations cannot be
counted for one full degree of freedom. Corrections are
available for the number of degrees of freedom and
will be mentioned below.

The scope of this paper is threefold. First, I will show
how spatial autocorrelation can be described and mea-
sured. Next, I will examine how valid tests can be
performed. Finally, I will give substance to the new
paradigm by presenting ways of introducing spatial
structures into ecological modeling, in both univariate
and multivariate situations. The paper by Dutilleul
(1993a) addresses the companion problem of designing
controlled experiments, especially in nature, in a spa-
tially structured environment. The presence of spatial
autocorrelation (two sites located near one another are
unlikely to be independent from one another) is part
of the larger problem of pseudoreplication (Hurlbert
1984) often encountered in mensurative and manip-
ulative experiments.

ASSESSING SPATIAL STRUCTURES

The analysis of spatial ecological patterns comprises
two families of methods. Point pattern analysis is con-
cerned with the distribution of individual objects
through space—for instance individual plants or ani-
mals. The chief purpose of this type of analysis is to
determine whether the geographic distribution of data
points is random or not and to describe the type of
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pattern, in order to infer what kind of process may
have created the observed structure. From this family
of methods, the quadrat-density and the nearest neigh-
bor methods have been widely used in vegetation sci-
ence (Galiano 1982, Carpenter and Chaney 1983). Point
pattern analysis will not be discussed further here, as
it has been authoritatively reviewed by a number of
authors listed in the last section of this paper.

Surface pattern analysis, on the other hand, is con-
cerned with the study of spatially continuous phenom-
ena. The spatial distribution of the variables is known,
as usual, through sampling at discrete sampling sta-
tions. One or several variables are observed, each ob-
servation point representing its surrounding portion of
space; the analysis of continuous transect data, such as
echolocation data, is not specifically discussed here.
Surface pattern analysis includes a family of methods
designed to answer a variety of questions, which can
be summarized under the following headings.

1) Description of spatial autocorrelation

Ecologists are first interested in quantifying the au-
tocorrelation present in their data. The objective may
be to demonstrate that no significant spatial autocor-
relation is present (or remains, after it is extracted), in
order to make valid use of the standard univariate or
multivariate statistical tests of hypotheses. Or, the in-
vestigator may be interested in demonstrating that sig-
nificant spatial autocorrelation is present, in order to
use it in conceptual or statistical models. Spatial struc-
tures are first described through so-called structure
functions, which allow us to quantify the spatial de-
pendency and partition it along the various distance
classes. The most commonly used structure functions
are correlograms, variograms, and periodograms, which
have been reviewed in more detail by Legendre and
Fortin (1989). A correlogram is a graph in which au-
tocorrelation values are plotted on the ordinate, against
distance classes among sampling stations (localities) on
the abscissa. Correlograms (Cliffand Ord 1981) can be
obtained for single variables (Moran’s I, 1950, or
Geary’s ¢, 1954, autocorrelation coefhicients), or for
multivariate data (Mantel correlogram: Sokal 1986).
In all cases, a test of significance is available for each
individual autocorrelation coeflicient plotted in the
correlogram; with proper correction for multiple test-
ing, one can then determine whether a significant spa-
tial structure is present in the data. (This test requires
that the condition of second-order [or weak] station-
arity be satisfied; that condition says that the expected
value [mean] and variance of the variable over the
study area must have constant and finite values, and
the autocorrelation function must depend only on the
length and orientation of the vector between any two
points, not on their position in the study area.) The

shape of the correlogram also indicates the type of
spatial structure. In a semi-variogram (often called a
variogram for simplicity), the function of autocorre-
lation plotted on the ordinate is the semi-variance, a
measure closely related to Geary’s ¢ autocorrelation
coeflicient. When computing a semi-variogram, one
only assumes that the autocorrelation function is apt
to describe the whole surface under study. (This relaxed
form of stationarity is called the “intrinsic hypothesis,”
i.e., the increments y, — y, must have zero mean and
constant variance over the study area.) In the geosta-
tistical tradition, semi-variances are not tested for sig-
nificance, although they could be through the test de-
veloped for Geary’s ¢, if the condition of second-order
stationarity is satisfied. Statistical models can be fitted
to variograms (linear, exponential, spherical, Gaus-
sian, etc.) that allow the investigator to relate the ob-
served structure to hypothesized generating processes.
Because they measure the relationship between pairs
of observation points located a certain distance apart,
correlograms and variograms can be computed either
for preferred geographic directions or, when the phe-
nomenon is assumed to be isotropic in space, in an all-
directional way. When the structure under study can
be assumed to consist of a combination of sine waves
propagated through space, a Schuster (1898) periodo-
gram can be computed. The basic idea is to fit sines
and cosines of various periods, one period at a time,
and to determine the proportion of the series’ variance
(r?) that can be explained by that period. In periodo-
grams, the abscissa is either a period or its inverse, a
frequency; the ordinate is the proportion of variance
explained. Two-dimensional periodograms can be
plotted for all combinations of directions and spatial
frequencies (Priestley 1964, Ripley 1981, Renshaw and
Ford 1984).

2) Estimation and mapping

Structure functions require an interpretation. Be-
cause their shape may not unambiguously correspond
to a single type of spatial structure, they must be com-
plemented by maps of various kinds representing the
spatial variation of the variable(s) of interest, or some-
times the variations of the variables’ variance. Recent
reviews for ecologists are by Burrough (1987) and Le-
gendre and Fortin (1989). Several programs are avail-
able for mapping (Table 3). The easiest way to obtain
a contour map of a single variable is to use inverse-
square distance, which is but one case of moving av-
erage interpolation (Ripley 1981), or other such inter-
polation methods. The older method of trend-surface
analysis (Student 1914), in which the variation of the
variable of interest is expressed as a function of the
geographic coordinates of the sampling locations, does
not produce very accurate maps except in the most
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simple cases; it remains useful when ecologists want
to remove a simple spatial structure, for instance a
spatial trend or large-scale patches, from their data,
either because they want to study finer scale spatial
structures or because they hope that, after the spatial
component is extracted, no significant spatial structure
will be left in the data (see also the next section, The
special case of gradients). The use of trend-surface func-
tions in spatial modeling is also discussed below (Eq.
5). More sophisticated maps can be obtained by the
geostatistical method of kriging, which makes use of
variograms (above) to take the spatial autocorrelation
into account during the interpolation process. (Among
other applications, kriging is interesting for ecologists
in that it allows an unbiased estimation of the amount
of a resource available in a given area [stock assess-
ment] even after nonrandom sampling, but this is by
no means an easy task [Simard et al. 1992]. Notice,
however, that if one of the classical types of random
sampling [Cochran 1977] has been used in the survey
sampling program, spatial means with associated stan-
dard errors can be estimated in the usual way, by means
of using the design-based approach [de Gruijter and
ter Braak 1990].) Rough maps can be obtained by at-
tribution of the closest observed value to each locality
(Thiessen or Dirichlet polygons method), or sloping
Delaunay triangles connecting triplets of observed
points can be drawn in three-dimensional plots; see
Isaaks and Srivastava (1989). Finally, ecologists who
are studying community structure, or other multivar-
iate data sets, may not be interested in mapping in-
dividual species or variables. The geographic vari-
ability of the whole data set can be represented in any
of three ways. The first is to compute a reduced-space
ordination (correspondence analysis for species pres-
ence or abundance data; principal components or other
scalings for other data for which linear relationships
can be assumed) and to map the first few components
separately; this method may fail to produce interesting
maps, however, if the main components of the vari-
ability are not spatial. The second method, suggested
by Legendre (1990), solves this problem; a canonical
ordination (CCA or RDA: see The raw data approach
below) of the multivariate data set is computed, con-
strained by a high-order trend surface equation; the
resulting canonical variables are then mapped as above.
The third method is to use clustering techniques, with
or without constraint of spatial contiguity, to divide
the map into more homogeneous subsets; see the re-
view by Legendre (1987).

Spatial and temporal autocorrelation are present
jointly in historical biogeographic studies. Recent re-
views include Wiley (19884, b), Humphries et al. (1988),
Brooks (1990), and Legendre (1990). The concept of
correlograms has recently been extended by Gittleman
and Kot (1990) to phylogenetic cladograms, in which

the abscissa corresponds to systematic categories;
cladograms are also used by cladistic biogeographers.

THE SPECIAL CASE OF GRADIENTS

Ecologists are often studying small sections of larger
scale autocorrelated spatial structures. These sections
may look like gradients when, for instance, a mountain
slope or a riverbank is the focus of the study. This type
of study is so widespread that it has led to a consid-
erable amount of ecological literature on gradient anal-
ysis (Whittaker 1967, ter Braak and Prentice 1988).
Gradients can be seen as a spatial structure that can
easily be expressed as a simple function of the x and
y geographic coordinates of the sampling stations and
extracted from the data before further analysis, thus
satisfying the second-order stationarity condition de-
scribed above. Legendre et al. (1990) have distin-
guished between “‘true” and “‘false” gradients; these
can be formally defined as follows.

In a “true” gradient (trend), the value z, observed
at any location (i, j) can be expressed as a function of
its geographic coordinates x, and y,, plus an error term
¢, that is independent from location to location. Thus,
a linear gradient could be modeled by

z, = by, + bx, + by, + ¢, (1)

In a true gradient, the error terms at neighboring points
are not correlated with one another. A true gradient
structure violates the stationarity assumption of most
spatial-analysis methods because the expected value,
given by (b, + b,x, + b,y,), varies from place to place
as a function of the geographic coordinates. It should
be removed from the data before proceeding, for in-
stance by trend surface analysis.

In a “false” gradient, on the other hand, the gradient-
like structure is caused by autocorrelation. There is no
change in expected value (given by b,) throughout the
surface, although the value observed at each locality is
partly determined by neighboring values:

z,=by + Zf(z; ;) + ¢, 2)

In this model, 2 f(z, ;) represents the sum of the effects
of the points located within some distance d from the
value z,; that we are trying to describe. The summation
is over the various distance classes, so that the value
of interest is modeled as partly determined by some
function fof all the other points on the surface. Assume
for simplicity that the points sit on the nodes of a
regular spatial grid. If a point is determined by its first
neighbors only, then d concerns distance class 1 only,
and the process is called ““autoregressive of order 1.”
In the case of positive autocorrelation, the surface looks
like a gently wobbling landscape. Isolation-by-distance
models that have been extensively studied by popu-
lation geneticists pertain to this class of low-order au-
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toregressive models. If the influence of data points on
others carries a long way through geographic space
(through several distance classes d), and in a more or
less linear fashion (function f being, for instance, the
inverse of the geographic distance times the value at
this neighboring point), then the surface will look more
like a mountainous landscape. An ecologist who stud-
ies only one slope of such a landscape is well justified
in retaining the gradient in the analysis, instead of re-
moving it as in the case of a true gradient, because it
is the structure to be analyzed and explained.

The problem, of course, is to tell true gradients from
false ones. The ecological hypotheses of the investi-
gator are of prime importance in making this decision;
these in turn may depend upon the scale of the study.
If the environmental variables are spatially structured
and are assumed to be driving the species response
(environmental control model, often used in large-scale
studies: Whittaker 1956, Bray and Curtis 1957), then
a gradient, if present in both the controlling and the
dependent variables, is seen as a “‘true” gradient (trend)
and should be removed from the community response
data. If, however, the investigator considers that the
spatial structure is the result of the dynamics of the
population or community itself (biotic control model,
often used in smaller scale studies: Southwood 1987),
then the situation is often best considered as a ““false”
gradient (autocorrelation), which should not be re-
moved before modeling. The difference is important
when tests of statistical hypotheses are involved, or for
modeling purposes, and not when simply interested in
describing spatial structures.

TESTS OF STATISTICAL SIGNIFICANCE
VALID IN THE PRESENCE OF
AUTOCORRELATION

When spatial autocorrelation has been demonstrated
to be present in data, several solutions are open to
ecologists. First, one can attempt to remove the spatial
dependency among observations so that the usual sta-
tistical tests can be used, either by removing samples
until spatial independence has been attained (a solution
that is not recommended because it entails a net loss
of expensive information) or by filtering out the spatial
structure using trend surface analysis or the method of
spatial variate differencing (see Cliff and Ord 1981,
section 7.4).

The alternative is to modify the statistical method
in order to take spatial autocorrelation into account;
this approach is to be preferred when such a method
1s available, especially in cases where spatial structur-
ing is seen not as a nuisance but as a part of the eco-
logical process under study (previous section). Cliffand
Ord (1973) have proposed a method for correcting the
standard error of the parameter estimates of the simple

linear regression in the presence of autocorrelation.
This method is extended to linear correlations, mul-
tiple regressions, and ¢ tests by Cliff and Ord (1981:
Chapter 7) and to the one-way analysis of variance by
Griffith (1978, 1987). Bartlett (1978) has perfected a
previously proposed method of correcting for the effect
of spatial autocorrelation due to an autoregressive pro-
cess in randomized field experiments, adjusting plot
values by covariance on neighboring plots before the
analysis of variance; see also the discussion by Wil-
kinson et al. (1983), as well as the papers of Cullis and
Gleeson (1991) and Grondona and Cressie (1991). Cook
and Pocock (1983) have suggested another method of
correcting multiple regression parameter estimations
by maximum likelihood, in the presence of spatial au-
tocorrelation. Using a different line of approach, Le-
gendre et al. (1990) have proposed a permutational
method of analysis of variance for spatially autocor-
related data, in the common case where the classifi-
cation criterion is a division of a territory into non-
overlapping regions and one wants to test for differences
among these regions.

A step forward is proposed by Clifford et al. (1989),
who test the significance of the correlation coefficient
between two spatial processes by estimating a modified
number of degrees of freedom, using an approximation
of the variance of the sample correlation coefficient.
Empirical results show that their method works fine
for positive autocorrelation in large samples. Dutilleul
(1993b) generalized the procedure and proposed an
exact method to compute the variance of the sample
covariance; the new method is valid for all sample
sizes.

When methods specifically designed to handle spa-
tial autocorrelation are not available, it is sometimes
possible to rely on permutational tests, where the sig-
nificance is determined by random reassignments of
the observations; see also Potvin and Roff (1993). Spe-
cial permutational schemes have been developed that
leave autocorrelation invariant; examples are Besag and
Clifford (1989), Legendre et al. (1990) and ter Braak
(1990:Section 8). In complex problems, such as the
preservation of spatial or temporal autocorrelation, the
difficulty of the permutational method lies in the de-
signing of an appropriate randomization procedure.
The Mantel test, as well as the test of significance used
in the canonical ordination CANOCO program (ter
Braak 1988, 1990), both used in later sections of this
paper to model the effect of the data’s spatial structure,
are permutational testing procedures.

INCORPORATION OF SPATIAL STRUCTURE INTO
MODELING: THE RAW DATA APPROACH

If spatial heterogeneity is so important for the func-
tioning of ecosystems, then models of ecosystem pro-
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Classical approaches to data analysis. (a) Multiple regression. (b) Single-classification analysis of variance (one-

way ANOVA); there are replicate observations within each group.

cesses may fall short of being optimal unless they in-
clude the spatial organization of the players,
populations, and communities, among their predictor
variables. Although this type of modeling is still in its
infancy, two approaches have been proposed. The first
one, described in this section, consists of expressing
the spatial structure of the variables of interest as a
linear combination of the geographic coordinates of
the sampling stations. In the second approach (next
section), the spatial structure is conveniently repre-
sented by a matrix of geographic distances among sam-
ples.

To understand how a spatial structure can be intro-
duced into statistical models and combined with the
environmental variables, we will look at various ex-
tensions of two classical approaches to data analysis:
multiple regression and the analysis of variance. Let
us first set the stage, however. In regression analysis
(Fig. 2a), a set of independent, potentially predictive
variables x are used to “explain’ the variability of a
dependent (or target) variable y. It is often postulated

that the relationships can be described by a linear mod-
el of the form

y=8,+t8x +...+8,x, Te 3)

where the (3, are the regression coefficients and ¢ rep-
resents the error term, which leads to the usual esti-
mates y of the values of y.

In single-classification analysis of variance (one-way
ANOVA), on the other hand, we wonder how much
of the target variable’s variation can be explained by
a classification criterion, through the decomposition
model

SSiotal of y = SSamong groups T SSwithin groupss “4)

where the ss are the sums of squares designated by the
subscripts; let us assume that there are replicate mea-
surements within each class (group) of the classification
criterion. It is interesting to notice that the ANOVA
variation partitioning can be computed using the mul-
tiple-regression technology, provided that the classi-
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Fi1G. 3. Extensions of the linear modeling approach. (a)

Partition of the variance of y between the site factor and the

environmental variables. (b) Explanation of a target data table instead of a single target variable, using canonical analysis.

(c) The “site factor” viewed as a “‘geographical-location” factor;

fication criterion (k classes) has first been coded into
(k — 1) binary variables, as in Fig. 2b; ter Braak (1987a)
discusses this equivalence in more detail in an ecolog-
ical framework. Ecologists can easily convince them-
selves of this equivalence by working out small ex-
amples on their favorite statistical package, using both
methods; they will realize that the two ANOVA tables
are identical.

The first extension that we will examine is called
partial regression analysis. It applies to a single target
variable y. In such an analysis (Fig. 3, arrows a), the
explanatory potential specific to the matrix of envi-
ronmental variables (r,2) can be studied after the site
component is “partialled out.” This preliminary op-

geographic coordinates are used instead of binary “site” variables.

eration is easily done; the binary site variables are re-
gressed onto each environmental variable in turn, and
only the regression residuals are retained. The residuals
are then used to model the target variable y. In the
same way, the specific effect of the site factor on y can
be studied after the environmental variables’ effect (r,2)
is partialled out. The combined effect of both the en-
vironmental and the site variables on y (r;2) can also
be computed, by multiple regression of y on both sets
of predictive variables combined. Following these re-
gressions on the independent variables, the variation
of y now contains four identifiable parts:

1) The environmental-variables fraction of the total
variation of y is measured by the r,? of the regression
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(a) (b) (c) (d)
l Environmental variance —l I Unexplained
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FiG. 4. Variance partitioning of the target data table; fraction (b) is the intersection of the environmental and spatial

components.

on the environmental variables after the binary site
variables are partialled out.

2) The among-sites fraction is measured by the r,?
of the regression on the binary site variables after the
environmental variables are partialled out.

3) The interaction fraction is measured indirectly,
by calculating r;2 — (r,2 + r,2).

4) The unexplained variation (1 — r,?).

The second extension consists of using a whole table
of target variables instead of a single one (Fig. 3, arrow
b). If Yis to be considered as a whole (when Y describes
species assemblages, for example), the statistical meth-
ods to use in place of multiple regression form a family
called constrained ordination analyses by ter Braak
(1987b). Two forms are of interest here, depending on
the nature of the data in the target data table: redun-
dancy analysis and canonical correspondence analysis,
both of which pertain to the canonical-correlation fam-
ily of methods. Redundancy analysis (RDA: van den
Wollenberg 1977) is to be used in the linear context,
when the Euclidean distance appropriately represents
the among-point relationships; it is equivalent to com-
puting a multiple regression for each of the target vari-
ables (or, which is the same, a multivariate least-squares
estimation using equation B = [X'X] 'X'Y: Finn 1974),
followed by a principal components analysis of the
fitted vectors. Canonical correspondence analysis (CCA:
ter Braak 1986) is used in the unimodal context, when
the chi-square distance appropriately describes the re-
lationships among samples, as is the case for species
presence/absence or abundance data. Partial forms of
RDA and CCA are available, for instance in the CAN-
OCO computer program (ter Braak 1988, 1990), which
also allows us to perform a permutational test of sig-
nificance of the sum of the canonical eigenvalues ex-
tracted during each run; this corresponds to the amount
of variation of the dependent variables accounted for
by the independent variables.

The third extension consists of replacing the table
of binary site variables by a table of variables describ-
ing their spatial relationships (Fig. 3, arrow c), when
the problems call for that. Following Legendre (1990),
Borcard et al. (1992) have suggested use of some high-
order polynomial function of the geographic coordi-
nates of the sampling locations, built from their x and
y coordinates on a map, as is customary in trend-sur-

face analysis. Regression analysis (partial or not) is then
used to analyze single variables, and constrained or-
dination analysis (RDA or CCA, partial or not) in the
case of multivariate dependent data sets. In the three-
matrix case, four fractions of the variation can be iden-
tified, as above (Fig. 4); they can also be mapped and
modeled separately if needed:

a) Nonspatial environmental variation.

b) Spatially structured environmental variation.

c) Spatial variation of the target variable(s) that is
not shared by the environmental variables.

d) Unexplained, nonspatial variation.

Just as in partial regression analysis, the various frac-
tions of variation (a), (c), (a + b), (b + ¢), and (a + b
+ ¢) can be tested for significance in partial constrained
ordination. The third fraction, (c), is of special interest,
because it points to a fraction of the variability that
can be associated with a precise spatial structure —it is
described by a function of the spatial coordinates x and
y and may be mapped if necessary (Borcard and Le-
gendre 1993)—but is not explained by the environ-
mental variables at hand. In some cases, other envi-
ronmental variables might be discovered that explain
this fraction of variation. In other cases, this spatial
fraction of variation may refer to biotic processes with-
in the population or community that forms the target
variable or data table, or to interactions of this pop-
ulation or community with other parts of the biotic
community (disturbance dynamics, competition, pre-
dation, etc.).

When fraction (a) is very small, a false significant
coefficient of determination can result if the common
part (b) is not partialled out, as is the case in the many
analyses where a target variable or data table is mod-
eled by a set of environmental variables. Causality could
falsely be attributed to the environmental variables,
when in fact the correlation results from a common
spatial structure present in both the dependent and
independent data sets. This problem is discussed at
some length by Legendre and Troussellier (1988).

Several examples of this partitioning procedure have
been provided by Borcard et al. (1992). One of them
concerns a community of oribatid mites in a peat blan-
ket in Québec, in a rectangular area located between a
bog lake and the surrounding forest. The variance of
the 35 taxa submitted to analysis was partitioned among
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Fraction (c)

spatial variation

g
7

five environmental variables on the one hand and the
following trend surface equation obtained by a forward
selection procedure applied to the third-degree poly-
nomial of spatial terms on the other (there is no in-
tercept b, because all spatial terms had first been stan-
dardized):

S, ») =bix + by + bxy + bsy? + beys.  (5)

Results of the partition obtained by partial canonical
correspondence analysis are summarized in Table 1;

non-environmentally explained

Fraction (a)
non-spatial environmental variation

FiG. 5. Maps of the first canonical axes of frac-
tions (a + b) [environmental component], (a) [non-
spatial environmental variation], and (c) [nonen-
vironmentally explained spatial variation] of the
oribatid mite species data table. The lakeshore is
at the back of the maps, the forest border at the
front. The sampling area is 2.5 x 10 m. Vertical
scales are not comparable among maps.

notice that the interaction, (b), between the two sets of
independent variables is properly quantified. Fig. 5
presents three maps of the first canonical axes of var-
ious fractions of variation of the species data table. The
first map, fraction (a + b), contains two components:
a smooth slope (fraction (), not represented here), and
a rough residual surface, fraction (@), containing a low-
variance and a high-variance section, which is the real-
case equivalent of the situation described in Fig. 2¢ of
the Dutilleul paper (1993a). The third map, fraction
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TABLE 1. Partition of the variation of the oribatid mite
assemblage.

Fraction of
variation of
the species data

Source of variation table (%)

a) Nonspatial environmental 13.7
b) Spatially structured environmental 31.0
¢) Nonenvironmental spatial 12.2
d) Unexplained 43.0

(¢), that describes the nonenvironmentally explained
spatial variation of the mite community, is quite dif-
ferent from the other two; its significance is discussed
in more detail in Borcard and Legendre (1993).

Legendre (1990) presents another example that sim-
ply involves canonical correspondence analysis instead
of the partial form. The method is used to obtain an
ordination of a species-abundance data table that is
constrained to be consistent with the geographic rela-
tions expressed by the trend-surface polynomial equa-
tion. The purpose is to obtain maps of the spatial-
structure component of the data set, called (b + ¢)
above, drawn from the canonical axes.

INCORPORATION OF SPATIAL STRUCTURE INTO
MODELING: THE MATRIX APPROACH

Another approach will now be presented to include
“space” as a predictor in statistical models, on an equal
footing with the usual set of environmental variables.
The spatial structure can naturally be represented by
a geographic distance matrix among sampling sta-
tions—or some modification of such a matrix, for in-
stance some sort of a connection matrix (see the last
paragraph of this section). In the typical case, the geo-
graphic (Euclidean) distance is computed for all pairs
of sampling stations, on the basis of their geographic
coordinates, and assembled into a ‘“‘spatial” distance
matrix. If the biological and the environmental vari-
ables could also be represented in the form of distance
matrices, then all three matrices could be compared
by some form of correlation. Fortunately, a whole array
of resemblance functions is available for computation
of these matrices (Sneath and Sokal 1973, Orléci 1978,
Legendre and Legendre 1983, 1984, Gower 1985,
Gower and Legendre 1986); they are adapted to the
different mathematical types of data (binary, qualita-
tive, quantitative, mixed types), to the inclusion or
exclusion of double zeros, to the Q (comparison of
objects) or R (comparison of variables) modes of anal-
ysis, and so on, so that one can model the correct
concept of “‘resemblance” for the problem at hand.

Before going into the details of this modeling meth-
od, I must introduce the Mantel (1967) test, also called
the Quadratic Assignment Procedure in psychometrics

(Hubert and Schultz 1976); this is the basic statistical
instrument presently used for comparing distance ma-
trices. In its basic form, the Mantel statistic is the sum
of the cross-products of the corresponding distances in
two matrices. The Mantel statistic can easily be nor-
malized to take values between —1 and +1: each of
the distance matrices must be standardized separately
before the sum of cross-products is computed. The
Mantel statistic then becomes equivalent to a Pearson
product-moment correlation coefficient. Because of the
dependencies among values in a distance matrix, this
correlation coefficient cannot be tested in the usual
way. It is tested instead against a distribution of values
obtained by repeated random permutations of the rows
and columns of one of the distance matrices and re-
computation of the coefficient, each case corresponding
to one of the possible realizations of the null hypothesis
(Mantel 1967). It should be noticed that a correlation
between two distance matrices is not equivalent to the
correlation between the two variables behind these ma-
trices or to the canonical correlation between two data
tables; whereas canonical correlation analysis measures
the correlation between two data tables, a matrix cor-
relation r, 5 measures the extent to which the variations
in the distances of matrix A correspond to the varia-
tions in B. Statistics other than Mantel’s have been
suggested to measure the correspondence between dis-
tance matrices: Dietz (1983) and Hubert (1985) have
suggested nonparametric correlation coefficients,
whereas Jackson (D. A. Jackson, unpublished manu-
script) has worked from Procrustes statistics. For future
work, a power analysis of these statistics should be
performed to help decide among them, under various
conditions.

The next step needed for causal modeling was the
development of the partial Mantel test procedure by
Smouse et al. (1986). The partial Mantel statistic, noted
rap.c, allows testing for the correlation between ma-
trices A and B, controlling for the effect of a matrix C.
With the same caveat as above, a partial Mantel sta-
tistic is to be interpreted in much the same way as a
partial correlation, since the algebra is the same. The
first role of a partial test is to check for possible false
correlations, before data are interpreted in a causal
framework. Legendre and Troussellier (1988) have
proposed to transfer to distance matrix modeling the
bulk of knowledge acquired in causal analysis, and in
particular the predictions made about the values of the
simple correlations (De Neufville and Stafford 1971)
and the partial correlations (Legendre and Legendre
1983, 1984) for different causal models. Fig. 6 provides
the expectations for all possible causal models involv-
ing three matrices, in terms of the three simple and the
three partial Mantel test values that can be computed.

Ecological applications of this technique to models
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Model Expectations of

the model

AC=#0
BC=0
AB=0

C ABC %0
BC-A #0
ACBz0
ACB>2AC
BC-A >2BC

A AB#0
AC=#0

AB.C %0
AC-B=0
BC-A =0
AC-B<AC
AB<C <AB
AB x AC = BC

FiG. 6.

Model Expectations

of the model

AB#0
BC+0

AB >AC
AC'B=0
ABC %0
BC-A=0
AB-C <AB
BC-A <BC
AB x BC=AC

O€E— =T <>

A AB =0
AC%0
BC=+0
ABC #0
ACB#0
BC.A 0

Predictions of the four possible models of causal relationships involving three matrices, in terms of the expected

results of the simple and partial Mantel tests. For simplicity, r,5 is noted AB, and so on. Stating that a relation is equal to
zero means that the computed value should not be significantly different from zero, and conversely.

thatinclude geographic distances are found in Burgman
(1987), Legendre and Troussellier (1988), Legendre and
Fortin (1989), and Leduc et al. (1992); this last paper
uses partial Mantel tests in conjunction with path anal-
ysis computed from the Mantel statistics. Other inter-
esting applications of the partial Mantel test to an-
thropology and population genetics are found in Sokal
et al. (1986, 1987). Let us consider two of these ap-
plications. In the paper by Legendre and Troussellier
(1988), the question is whether the well-established
relationship between environmental heterotrophic
bacteria and phytoplankton biomass (measured by
chlorophyll a, CHL A) holds for two identifiable com-
ponents of the bacterial heterotrophic community of a
marine lagoon: the BNA bacteria, which are presum-
ably of continental origin, and the MA, expected to be

TABLE 2. Above the diagonal: simple Mantel statistics and
associated probapbilities. Below the diagonal: partial Mantel
statistics, controlling for the effect of the third matrix, and
associated probabilities. Tests of significance are one-tailed.

a) Analysis of the BNA-CHL A-SPACE relations

BNA CHL A SPACE
BNA B 0.258* 0.521*
CHL A —-0.006 . 0.505*
SPACE 0.468* 0.449* e
b) Analysis of the MA-CHL A-SPACE relations

MA CHL A SPACE
MA 0.325* 0.223*
CHL A 0.252* 0.505*
SPACE 0.073 0.469* s

* Mantel test significant (P < .001).

mostly of marine origin (abbreviations as in the orig-
inal publication). Both bacterial variables are well cor-
related to CHL A, but this pattern could be the result
of a common spatial structure created by currents. The
spatial structure is represented by a matrix, called
SPACE, of Euclidean (or geographic) distances among
the 63 sampling stations. The Mantel and partial Man-
tel statistics computed to make a choice between the
two models are reported in Table 2. The nonsignificant
partial Mantel relationship between BNA and CHL A,
when the effect of SPACE is held constant, points to
the model in Fig. 7a, which contradicts the hypothesis
of control of the continental heterotrophs by phyto-
plankton; on the other hand, the nonsignificant partial
Mantel relation between MA and SPACE, when CHL
A is held constant, points to the model in Fig. 7b, which
supports the hypothesis of phytoplankton control for
the marine heterotrophs. Leduc et al. (1992) analyzed
the relationship between the spatial distribution of adult
trees, saplings, and environmental conditions (drain-
age, soil, and geomorphology), for 12 species in a 0.5-
km? study area. They found that the spatial patterns

(a) (b)

SPACE —> CHL A SPACE—> CHL A

! '

BNA MA

FiG. 7. Representation of the models supported by the
data, (a) for the BNA and (b) for the MA heterotrophic bac-
teria.
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TABLE 3.

The following programs are available to compute the various methods of spatial analysis mentioned in the text.

Only those methods are listed that are not available in general-purpose statistical packages.

CANOCO

CLADAREA

COCOPAN

COMPONENT

CORR2D

GEO-EAS

GEOLIN

GEOSTAT

GS*

Kellogg’s

Canonical (i.e., constrained) ordination
methods: CCA, RDA.

Available for MS-DOS and Macin-
tosh microcomputers and for main-
frames from Microcomputer Pow-
er, 111 Clover Lane, Department
C9, Ithaca, New York 14850 USA.

Area cladistic analysis. Wagner tree re-
construction (parsimony).
Available from Willem N. Ellis, In-
stituut voor Taxonomische Zoolo-
gie, afd. Entomologie, Plantage
Middenlaan 64, NL-1018 DH Am-
sterdam, The Netherlands.

ANOVA for spatially autocorrelated re-
gional data.

Written by Alain Vaudor and Jun-
hyong Kim. Available from P. Le-
gendre’s laboratory (see title page)
for Macintosh microcomputers and
IBM and VAX mainframes.

Construction and comparison of area
cladograms.

Available from Roderic D. M. Page,
Department of Zoology, University
of Auckland, Private Bag, Auck-
land, New Zealand.

Two-dimensional correlogram.
Written by Geoffrey M. Jacquez.
Available from Applied Biostatis-
tics Incorporated, 100 North Coun-
try Road, Building B, Setauket, New
York 11733 USA.

Variogram, kriging. Contour mapping.

Developed by EPA. Available for MS-

DOS machines from ACOGS, P.O.

Box 44247, Tucson, Arizona 85733-
4247 USA.

Variogram, kriging. Contour mapping.
Also GEOSREC for nonlinear and
BLUEPACK for nonstationary
kriging.

Available from Geovariances Inter-
national, 1 rue Charles-Meunier,
F-77210 Avon-Fontainebleau,
France.

Variogram, kriging. Contour mapping.
Available from Geostat Systems In-
ternational Incorporated, 4385 rue
Saint-Hubert, Suite 1, Montréal,
Québec, Canada H2J 2X1.

Spatial autocorrelogram (Moran’s [),
variogram, kriging. Contour map-
ping.

Available from Gamma Design Soft-
ware, P.O. Box 201, Plainwell,
Michigan 49080-0201 USA.

Variogram, kriging. Contour mapping.
Available from the Computer Labo-
ratory, W. K. Kellogg Biological

Station, Michigan State University,
Hickory Corners, Michigan 49060
USA.

MacGRIDZO Inverse distance and weighted least
squares interpolation. Contour
mapping.

Available for Macintosh machines
from RockWare Incorporated, 4251
Kipling St., Suite 595, Wheat Ridge,
Colorado 80033 USA.

Simple Mantel test; correspondence
analysis.

Developed by F. James Rohlf. Avail-
able in MS-DOS version from Exter
Software Inc., 100 North Country
Road, Building B, Setauket, New
York 11733 USA.

NTSYS-PC

The R package Spatial autocorrelograms (Moran’s / and
Geary’s ¢), simple and partial Man-
tel tests, Mantel correlogram, clus-
tering with space and time conti-
guity constraint. ANOVA for
regional data. Connection net-
works.

Developed by Alain Vaudor (de-
ceased; P. Legendre’s laboratory).
Available for Macintosh micro-
computers, VAX, and IBM main-
frames.

SAAP Spatial autocorrelograms (Moran’s I and
Geary’s ¢).

Available from Daniel Wartenberg,
Department of Environmental and
Community Medicine, Robert
Wood Johnson Medical School, 675
Hoes Lane, Piscataway, New Jersey
08854 USA.

SASP Two-dimensional spectral analysis.
Available from E. Renshaw, Depart-
ment of Statistics, University of Ed-
inburgh, King’s Buildings, Mayfield
Road, Edinburgh EH9 3JZ United
Kingdom.

SURFER Kriging from linear variogram only; oth-
er interpolation methods. Contour
mapping.

Available from Golden Software In-
corporated, P.O. Box 281, Golden,

Colorado 80402 USA.

Trend surface analysis; other interpo-
lation methods. Contour mapping.
No longer distributed by Laboratory
for Computer Graphics and Spatial
Analysis, Harvard University, USA,
but still available at many comput-

ing centers.

SYMAP

UNIMAP Variogram, kriging; other interpolation
methods. Contour mapping.

Available from European Software

Contractors A/S, Nerregade, DK-

2800 Lyngby, Denmark.
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of tree species associated with hydric conditions are
largely explained by the spatial distribution of the en-
vironmental conditions, while on the other hand, me-
sic-site species still displayed spatial structuring after
controlling for the effect of the environmental condi-
tions. Historical events (disturbances), as well as forest
cover dynamics, are suggested as explanations for the
latter.

Progress is still to be made in this elementary form
of modeling. Spatial relationships can be construed in
other ways than as a Euclidean distance matrix. Au-
thors have used transformations such as the inverse,
or the inverse of the square of the Euclidean distance,
that give more importance to the small distance values
(Jumars et al. 1977); other authors prefer to use con-
nection schemes such as rook’s or king’s connections
(Cliff and Ord 1981) for regular grids of samples, and
Gabriel graphs of Delaunay triangulations (Upton and
Fingleton 1985) for irregularly spaced points. An im-
portant step will be to learn how to analyze the n-in-
dependent-matrix case and to extend this type of anal-
ysis into path analysis; a proposal in this respect has
already been made by Krackhardt (1988) for the special
case of autocorrelated network data.

CONCLUSION

Studying spatial structures is both a requirement for
ecologists who deal with spatially distributed data, and
a challenge. It is the new paradigm for field ecologists
interested in exploratory data analysis or in the mod-
eling of ecological phenomena. Fortunately, statistical
methodology is rapidly developing to assist us in doing
so. As we have seen, most of the theories and models
that we rely on to understand ecosystems assume, ex-
plicitly or not, some spatial structuring of the environ-
ment and of the biological communities. Until re-
cently, we have been bound to ignore this structure by
lack of appropriate methods for analyzing and mod-
eling our data. We were led to stretch our statistics
beyond their basic assumptions and, worse, to over-
look one of the most important determinants of the
functioning of ecosystems. This problem is easily re-
alized when spatial structure is incorporated into mod-
els of ecological systems; the amount of explained vari-
ation often jumps to unexpected heights. One
consequence is that it may be of no use to try to increase
the fraction of explained variation by looking at more
environmental variables, since the explanation of frac-
tion (c) in Fig. 4, which may represent an important
proportion of the previously unexplained variation,
may perhaps be found in population or community-
based spatial processes. Another is that much better
predictions can be obtained when the spatial structure
is included as such among the predictive variables.
This inclusion will be even more efficient when non-

linear methods of modeling are introduced into spatial
analysis.

The matrix approach is certainly to be preferred when
the dependent variable naturally presents itself in the
form of a resemblance or proximity matrix (genetic
distances obtained by DNA or RNA pairing; prefer-
ence or dominance data in behavior studies, in serol-
ogy, etc.). However, all ecological applications reported
above dealt with data that could have been handled
through the raw-data approach just as well. In some
of these papers, it was felt that resemblance coefficients
gave greater flexibility in handling mixed-type data, as
with the environmental data matrix of Leduc et al.
(1992), that was computed from a mixture of ordered
and nonordered variables. One could counter, how-
ever, that distance-based ordination methods (metric
or nonmetric scaling) would always permit to trans-
form a distance matrix back into an array of quanti-
tative axes, thus allowing us to use the raw-data ap-
proach. The matrix approach, as presently developed,
focuses on mere statistical testing and largely disregards
estimation; future developments should focus on in-
terpretative aspects. The raw-data approach, on the
other hand, which also allows statistical testing, pro-
vides an estimation of the contribution of each inde-
pendent and dependent variable with respect to the
canonical axes, but is limited to the use of Euclidean
or chi-square distances. The matrix approach allows
both the small-scale (i.e., autocorrelation) and large-
scale (i.e., trend) spatial dependencies to be modeled,
while the raw-data approach, as developed so far, only
allows us to model trends. While both methods seem
to have been successful in enriching our understanding
of spatial processes occurring in ecosystems, compar-
ative studies are needed using cases where they both
seem equally suitable.

FURTHER READING AND APPLICATIONS

Important references to the topics discussed above
include, for point-pattern analysis, Pielou (1977), Ci-
cérietal. (1977), Getis and Boots (1978), Ripley (1981,
1987), and Upton and Fingleton (1985); for surface-
pattern analysis, Cliff and Ord (1981), Ripley (1981),
Upton and Fingleton (1985, 1989), Griffith (1987), and
the review paper by Legendre and Fortin (1989); and
for kriging and other mapping methods, the books of
David (1977), Journel and Huijbregts (1978), and Isaaks
and Srivastava (1989), as well as the review paper by
Lam (1983). On canonical ordination, required reading
is the chapter by ter Braak (19875b). Table 3 lists com-
puter programs available from researchers that carry
out the computations of the methods described in this
paper; most of these methods are not available in major
statistical packages. This list of programs is not ex-
haustive.
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