
Abstract The average amount of variance explained by
the main factor of interest in ecological and evolutionary
studies is an important quantity because it allows evalua-
tion of the general strength of research findings. It also
has important implications for the planning of studies.
Theoretically we should be able to explain 100% of the
variance in data, but randomness and noise may reduce
this amount considerably in biological studies. We per-
formed a meta-analysis using data from 43 published
meta-analyses in ecology and evolution with 93 esti-
mates of mean effect size using Pearson’s r and 136 esti-
mates using Hedges’ d or g. This revealed that (depend-
ing on the exact analysis) the mean amount of variance
(r2) explained was 2.51–5.42%. The various 95% confi-
dence intervals fell between 1.99 and 7.05%. There was
a strongly positive relationship between the fail-safe
number (the number of null results needed to nullify an
effect) and the coefficient of determination (r2) or effect
size. Analysis at the level of individual tests of null hy-
potheses showed that the amount of variance key factors
explained differed among fields with the largest amount
in physiological ecology, lower amounts in ecology and
the lowest in evolutionary studies. In all fields though,
the hypothesized relationship (e.g. main effect of a fixed
treatment) explained little of the variation in the trait of
interest. Our finding has important implications for the
interpretation of scientific studies. Across studies, the
average effect size reported is between Pearson r=0.180

and 0.193 and Hedges’ d=0.631 and 0.721. Thus the av-
erage sample sizes needed to conclude that a particular
relationship is absent with a power of 80% and α=0.05
(two-tailed) are considerably larger than usually record-
ed in studies of evolution and ecology. For example, to
detect r=0.193, the required sample size is 207.
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Introduction

Effect size is a standardized measure of the magnitude of
a relationship. Standard measures of effect size include
Pearson’s product-moment correlation coefficient r and
change measured in units of standard deviations (e.g.
Hedges’ d or g) (Hedges and Olkin 1985; Rosenthal
1991, 1994; Cooper and Hedges 1994). Here we use
Pearson’s r and Hedges’ d as measures of effect size.
Pearson’s r has the appealing, intuitive feature that its
squared value represents the amount of variance ex-
plained by the predictor variable (Rosenthal 1991, 1994).
As a simple rule of thumb, Cohen (1988) suggested that
a ‘small’ effect has a mean correlation coefficient of 0.10
(i.e. explains 1% of the variance since r2=1%), a ‘medi-
um’ effect has a coefficient of 0.30 (i. e. explains 9% of
the variance), and a ‘large’ effect has a coefficient of
0.50 (i.e. explains 25% of the variance). Similarly, a
Hedges’ d of 0.2 is considered a small effect, d=0.5 an
intermediate effect and d=0.8 a large effect (Cohen
1988). Biologists performing power analyses tend to
present results assuming unknown effects are of ‘medi-
um’ strength. This is an arbitrary categorization, but still
useful because it allows assessment of the magnitude of
research findings. When comparing research, we are al-
most always talking about magnitudes rather than abso-
lute estimates.

When first conducting research many graduate stu-
dents are disappointed when they encounter the fact that
biologists explain so little of the variance in their data.
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That is particularly true if we investigate the generality
of a research finding across a large number of studies.
Thus, the naive question is as follows: Can we ever ex-
plain 100% of the variance? The obvious answer is no,
and there are several reasons why that is the case. In par-
ticular, biology differs from many other subjects in the
natural sciences by being considerably more complex,
with consequences for the amount of variation that can
be explained by observational or experimental studies.
First, biological systems are not “perfect” because adap-
tation is not “perfect”. There is always a certain lag be-
cause of phylogenetic constraint or selection pressures
preceding responses to selection. Second, “randomness”
caused by unpredictable physical properties of the envi-
ronment may considerably reduce the amount of vari-
ance explained. Third, organisms usually balance their
responses in relation to many different factors (e.g. size,
temperature, condition, predation risk, age), and biolo-
gists are rarely able to measure more than a few of these.
So “noise” caused by the effects of “confounding” vari-
ables will tend to render relationships “blurry” when we
only examine the relationship between two traits and fail
to control adequately for these other factors. Fourth,
measurement accuracy affects the amount of variance
explained because a coarser yardstick provides a rougher
measure of “reality”. Accurate measurements of many
biological traits are extremely difficult (e.g. size-based
mortality, behavioral propensities) not least because they
usually vary geographically and temporally. Fifth, all or-
ganisms by definition have an evolutionary past that af-
fects their ability to adapt to current conditions. Hence,
current levels of adaptation will be affected by evolu-
tionary history. Sixth, the activities of one individual
may affect those of others, so neither may obtain a solu-
tion that can be considered optimal; there are limits to
optimality (Maynard Smith 1978).

But is it really important to know how much variance
can generally be explained by key factors of interest to
ecologists and evolutionary biologists? We think so.
Knowing the amount of variance usually explained by
the fixed factors, on which we focus, puts studies into
sharper perspective. For example, a study showing that a
treatment or covariate only explains 5% of the variance
in a character of interest may superficially indicate a
weak relationship if we use 100% as our yardstick. How-
ever, if the main factors biologists examine rarely ex-
plain more than 10% of the variance in ecological and
evolutionary studies, these seemingly inconsequential
factors suddenly become far more important. Likewise,
if effects generally are only a small amount of variance
explained, this raises the importance of using powerful
research synthesis methods such as meta-analysis.

Of course, in an evolutionary context, a difference in
phenotype of 0.1 standard deviations or less per genera-
tion can be extremely important. These small differences
readily “change a mouse into an elephant”. Studies of the
fossil record typically measure a change in phenotype
per generation of far smaller magnitude (Simpson 1944,
1949; Haldane 1949; Ridley 1993). Higher rates are

more common on micro-evolutionary time scales al-
though rates of evolutionary change are still generally
very small (Hendry and Kinnison 1999). For this reason,
we should not immediately dismiss small effects as in-
consequential. A distinction should be drawn between
short term predictability and long-term effects.

Some factors that reduce the amount of variance ex-
plained can be controlled for experimentally. Experi-
ments identify causal relationships by directly manipulat-
ing one or more factors, while holding others constant.
Furthermore, experiments usually include relatively more
extreme phenotypes or situations than found naturally.
This allows for a clearer assessment of potential relation-
ships. The effectiveness of an experimental approach,
measured as the increase in the amount of variance ex-
plained, has, however, not been generally examined.

For studies based on small sample sizes individual es-
timates of effect sizes show a larger range of values than
they do when sample sizes are large. This results in a so-
called “funnel” graph that converges towards the ‘true’
effect size as sample size increases and variance in effect
size estimates decreases (Light and Pillemer 1984; 
Palmer 1999; Møller and Jennions 2001). This is the
main reason for weighting estimates of effect size by the
sample size on which they are based (or, more technically-
speaking, by the inverse of the variance in the estimate)
when calculating mean effect size in a meta-analysis.

Publication bias has traditionally been assessed by ex-
amining the robustness of general research findings. If a
large number of additional studies with an average effect
of zero are needed to nullify the mean effect size of a
meta-analysis, it is safe to conclude that the generaliza-
tion is robust (Rosenthal 1991, p 104). The so-called
“fail-safe number” is the number of such null results. Al-
ternatively, it can be considered to represent the number
of unpublished results resting in the file drawers of sci-
entists. If large, we can conclude that it is unlikely that
publication bias will alter our main findings (unless re-
sults opposite in direction to the reported mean effect are
less likely to be published). Rosenthal (1991) suggested
that a fail-safe number 5 times larger than the sample
size plus 10 indicates a robust result. Most recently 
Gurevitch and Hedges (1999) have suggested that reliance
on the fail-safe number is an appropriate step to resolve
potential problems of publication bias.

The natural sciences are often described as the exact
sciences. This is certainly the case for mathematics,
physics and chemistry, but much less so for most fields
in biology. Biologists deals with living organisms under
the influence of numerous biotic and abiotic interactions
that alone, and in combination, influence whichever fac-
tor is under investigation. Thus the predictive power of
most fields of biology is considerably weaker than that
in the more exact natural sciences. Although this is a
common notion prevalent in general books about science
and the philosophy of science, there is, to the best of our
knowledge, no study investigating the general level of
predictability in biology as determined from a review of
meta-analyses in different fields.



In this study we present a meta-analysis of meta-ana-
lyses in ecology and evolution to assess the amount of
variance explained by the main factors that researchers
have focused on. Although meta-analyses have limita-
tions, at least they generally explicitly state the criteria
used to include studies, while this is rarely the case for
narrative reviews. First, we quantify the general strength
of relationships studied by biologists. Second, we con-
trast the amount of variance explained in experiments as
opposed to observational studies by using estimates of
the mean effect size from the two categories of studies
taken from the same original meta-analysis. This allows
quantification of the effectiveness of experiments, and an
estimate of the amount of variance explained by the re-
moval of confounding variables and increased phenotyp-
ic variation. Third, we quantify the relationship between
the amount of variance explained by a factor and the as-
sociated fail-safe number to test the prediction that a
larger mean amount of variance explained gives rise to a
larger fail-safe number. Finally, we quantify differences
in effect size between different areas of biology, namely
physiology, ecology and evolution. We expect such
fields to differ in the amount of variance explained be-
cause the complexity of external factors affecting a given
relationship increases from studies of internal physiolog-
ical processes over ecological studies to evolutionary
studies investigating many different species. To conclude
we use our estimates of mean effect sizes to determine
the sample sizes needed to reach the conclusion that a
particular study does not show an average effect with a
power of 80%. Interestingly, these sample sizes turn out
to be considerably larger than those generally recorded
in studies of ecology and evolution.

Materials and methods

We made an extensive survey of the ecological and evolutionary
literature for meta-analyses that could be used to estimate mean
effect sizes up until the end of 2000. We examined the journals
American Naturalist, Animal Behaviour, Behavioral Ecology, Be-
havioral Ecology and Sociobiology, Ecological Monographs,
Ecology, Evolution, Evolutionary Biology, Journal of Evolution-
ary Biology, and Quarterly Review of Biology. We also entered the
phrase ‘meta-analy*’ into the electronic database WebSpiris to
search for papers where this term occurred in the title or abstract.
We then examined the titles of all the papers listed and directly in-
spected any that seemed to fall into the field of evolutionary and
ecological biology (most ‘hits’ were from the medical or social
sciences). Furthermore, we contacted a number of colleagues who
had used meta-analyses in their research to locate ‘in press’ stud-
ies. We identified a total of 43 meta-analyses that form the basis of
the present analysis. The two effect sizes we used are Pearson’s
correlation coefficient r and Hedges’ d. A few studies reported
statistics that could not readily be transformed into either effect
size (e.g. response ratios); or did not present sufficient raw data
for us to recalculate Pearson’s r or Hedges’ d (usually because
variances were not given); or they used meta-analysis as a tool in
more complex studies (Warwick and Clarke 1993; Davis 1993;
Osenberg et al. 1997). We explicitly excluded meta-analysis stud-
ies looking at genetic heritabilities because there is a clear publi-
cation bias; negative heritabilities are almost never reported
(Palmer 2000). It is also unclear whether h2 itself or an effect size
based on the strength (rather than slope) of the relationship be-

tween relatives is a more appropriate effect size. The meta-analys-
es used here are listed in the Appendix. An electronic version of
the entire data set is available from the first author upon request.

The choice of null hypothesis is important in any scientific in-
quiry (Anderson et al. 2000), and this has important implications
for the subsequent statistical tests. In the meta-analyses used in the
present study, the explicit null hypothesis was always that the
mean effect size equaled zero. We calculated mean effect sizes in
several ways:

1. The meta-analysis directly provided weighted mean r or 
Hedges’ d (e.g. Arnqvist et al. 1996).

2. The meta-analysis provided r or Hedges’ d for individual cases.
We then calculated the weighted mean effect for these cases
(e.g. Harper 1999).

3. Data was presented for each case in the form of means and stan-
dard deviations for two groups. We then calculated Hedges’ d
(e.g. Arnqvist and Nilsson 2000).

4. The meta-analysis provided weighted mean effects as Hedges’ d
in graphs (e.g. Curtis 1996).

Whenever we undertook further analyses, we first transformed r
by means of Fisher’s transformation to z-values. All mean effect
sizes were given positive values for further analyses because the
direction of the effect is often arbitrary (e.g. male vs female).

Each published meta-analysis usually provided several mean
effect sizes because the data was divided into sub-groups. To min-
imize pseudo-replication we only used data from mutually exclu-
sive groupings for each response variable of interest (e.g. birds vs
insects). If the initial authors divided the data in several ways (e.g.
birds vs insects and temperate vs tropical), we used the dividing
factor for which the heterogeneity in effect size (Qb) between
groups was greatest. We only included mean effect sizes based on
four or more studies because the asymptotic variance in the effect
size z-transformed r is 1/(n–3). Another possible source of lack of
independence between estimates of mean effect sizes is that some
meta-analyses examined several response variables. Biologists are
obviously interested in each of these response variables. It is
therefore reasonable to present separate data for more than one re-
sponse variable per meta-analysis. We refer to these analyses as
being at the ‘response variable level’. To be conservative, howev-
er, we also calculate the weighted mean effect size per published
meta-analysis (i.e. one data point each). In subsequent analyses at
the ‘meta-analysis level’ we calculated the mean effect size across
the 43 meta-analyses.

For the effect size Pearson’s r, we weighted each meta-analysis
by either the average number of studies per estimate of effect size,
or the total number of studies. Meta-analyses were run in Metawin
2.0 (Rosenberg et al. 2000) using mixed-models. To be conserva-
tive we present bias-corrected 95% confidence intervals calculated
using bootstrapping from 999 replications. These do not require
that effect sizes are parametrically distributed. For r we also calcu-
lated mean effect sizes and 95% confidence intervals using stan-
dard statistics. This approach treats each case or meta-analysis as
being equally accurate. It tests the robustness of our results by
dealing with the criticism that a few cases with very large sample
sizes can generate an atypical mean estimate when performing a
weighted meta-analysis. For Hedges’ d we could not perform
weighted meta-analyses because asymptotic variance in the esti-
mate was generally unavailable. We therefore simply calculated
the mean effect size at the response variable or meta-analysis lev-
el.

We classified the 43 meta-analyses as physiological, evolution-
ary or ecological. Studies with a mainly physiological content
were put in the first category. Those that dealt with species inter-
actions and communities were considered ecological. Evolution-
ary studies included studies of selection and functional aspects of
behavior or behavioral ecology. We also noted whether or not the
meta-analysis dealt with fluctuating asymmetry because it has
been stated that the effect size in studies of asymmetry is much
smaller than in other studies in evolution (Houle 1998). The clas-
sification of all meta-analyses is given in the Appendix.
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Meta–analyses are problematic if null results stay unpublished
(Hunter and Schmidt 1990). There are a number of methods avail-
able for testing for such bias (Light and Pillemer 1984; Van-
denbroucke 1988; Berlin et al. 1989; Hedges 1992; Dear and Begg
1992; Thompson 1993; Mengersen et al. 1995; Møller and 
Jennions 2001). Most require relatively large data sets. One simple
prediction is that, in the absence of bias, a plot of effect size
against log-transformed sample size will have a funnel-shape cen-
tered around the “true” effect size. The reason for this is that vari-
ance in effect size due to sampling error decreases with increased
sampling effort. Thus the reported effect sizes should be normally
distributed around the mean effect with no trend in relation to
sample size (Light and Pillemer 1984; Vandenbroucke 1988). In
our analyses, however, we examine the absolute values for mean
effect sizes because the sign of such mean effects does not make
sense. Thus, in the absence of publication bias, the graph in ques-
tion should resemble a half-funnel. Therefore mean effect size
should increase as sample size decreases. We tested for this rela-
tionship using Spearman’s correlation, after we standardized the
effect size to fulfill the criteria for a rank correlation test (see
Begg and Mazumdar 1994). Variance in effect size should de-
crease with increasing sample size. We tested this in a ratio of
variance test comparing variance from studies with a sample size
greater than the median than those less than the median.

Obviously, we can never know how many unpublished studies
exist, but this problem can be addressed by calculating the fail-
safe number of publications (Rosenthal 1991). We recorded the
Rosenthal number when this was provided in the original meta-an-
alyses. In cases where it was not provided and we could enter the
original data, we calculated the fail-safe number in Metawin 2.0
using Fisher’s z as the effect size. This only led to slight differ-
ences compared to the number obtained using the original effect
size type (personal observation).

Power to detect an effect when α=0.05 (two-tailed) was calcu-
lated following Cohen (1988).

Results

Meta-analyses using Pearson’s r as the effect size

Response variable level of analysis

Mean r2 ranged from 0 to 48.7% across the 93 estimates
of effect size r (Fig. 1a). More than 80% of values were
smaller than 10% (n=76/93). While the mean value of r2

was 5.42% (95% CI: 3.79–7.05%), the median was far
lower at 2.22%. The mean value of |r| was 0.184 (95%
CI: 0.154–0.213), thus explaining 3.39% of the variance
(95% CI: 2.37–4.54%). Using meta-analysis to weight
estimates of |r| by their variance yielded very similar re-
sults. The mean value of |r| was 0.180 (95% CI:
0.150–0.208) corresponding to explaining 3.24% of the
variance (95% CI: 2.25–4.33%).

The median number of studies per estimate of effect
size was 17. There was greater variance in mean effect
sizes based on 17 or fewer studies than those based on
more than 17 studies, but the difference was not signifi-
cant (Variance Ratio test, F=1.33, df=45,46, P=0.169).
There was no significant negative relationship between
standardized effect size and the number of studies used
to generate the effect size estimate (Fig. 2a; Spearman’s
r=–0.077, P=0.462, n =93; Power:<83%).

The fail-safe number increased with r2, as expected if
a larger effect leads to a more robust general finding. This
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relationship was statistically highly significant (Fig. 3;
linear regression based on a log-log transformation:
F=39.09, df=1,80, P<0.0001). The slope of this regres-
sion was 1.610 (SE 0.258), which is significantly greater
than unity (t=2.36, df=80, P=0.021), which implies a
greater than expected increase with effect size. Fail-safe
number also increased with sample size (r=0.651,
P<0.0001, n=82). The relationship between r2 and fail-
safe number remained even when sample size was includ-
ed in a multiple regression (t=8.795, df=78, P<0.0001). It
is also important to note from Fig. 3 the considerable
variance in fail-safe number for a given effect size, and
that small fail-safe numbers (below 100) occur even for
effect sizes explaining more than 10% of the variance.

The absolute value of mean effect size did not differ
among the eight meta-analyses with reported estimates
for both observational and experimental studies (paired
t-test, t=0.903, df=7, P=0.397; Power:25%). The same
was true when mean effect sizes were first weighted by
sampling effort (mean Cohen’s q=0.050: 95% CI:
–0.054–0.222). There was, however, a positive correla-

Fig. 1 Frequency distribution of a r2 from meta-analyses in biolo-
gy for studies with the effect size Pearson’s r (n=93) and b Hedg-
es’ d (n=136)



than 90% of meta-analyses had a mean r2 of less then
10% (n=21/22). The mean value of mean r2 was 5.24%
(SE=1.26); the median was lower at 4.07%. The mean
value of |r| was 0.205 (95% CI: 0.158–0.251), thereby
explaining 4.20% of the variance (95% CI: 2.50–6.30%).
Using meta-analysis to weight estimates of |r| by their
variance yielded very similar results. Weighting using
mean study size per meta-analysis, the mean value of |r|
was 0.193 (95% CI: 0.149–0.224) corresponding to ex-
plaining 2.51% of the variance (95% CI: 2.22–5.02%).
Weighting using total sample size per meta-analysis, the
mean absolute value of |r| was 0.182 (95% CI:
0.141–0.216) corresponding to explaining 3.31% of the
variance (95% CI: 1.99–4.67%).

The median mean number of samples per study per
meta-analyses was 22.3. There was greater variance in
mean effect sizes based on 22.3 or fewer sam-
ples/study/meta-analysis than those based on more than
22.3, but not significantly so (Variance Ratio test, F=2.5,
df=8,12, P=0.074). There was also no significant rela-
tionship between standardized effect size and the number
of studies used to generate the effect size estimate
(Spearman’s r=-0.091, P=0.687, n=22; Power:<17%).

The mean effect size for studies of fluctuating asym-
metry did not differ from that of other evolutionary stud-
ies (F=0.001, df=1, 19, P=0.98; Power:19%). The same
is true when the data is analyzed using meta-analysis and
weighting for sampling effort using the mean sample
size per study per meta-analysis (Qb=0.001, P=0.996).
For asymmetry studies, |r| was 0.203 (95% CI:
0.178–0.252, n=7) and for other evolutionary studies it
was also 0.203 (95% CI: 0.134–0.258, n=14).

Meta-analyses using Hedges’ g or d as the effect size

A total of 124 of 136 samples and 17 of the 21 original
meta-analyses used Hedges’ d rather than g as the effect
size. Hedges’ d is simply Hedges’ g multiplied by J,
where J=1–3/[4(nc+nE–2)–1]. This corrects for small
sample bias so Hedges’ d is always slightly smaller than
Hedges’ g. Here we combine the two effect sizes (hence-
forth referred to simply as d). The mean sample size was
greater than 20, so the difference between the two effect
sizes is insignificant for the general purposes of our
overview (i.e. at n=20, J=0.98). The actual means would
therefore be marginally smaller if effect size had always
been calculated as Hedges’ d.

Response variable level of analysis

The value of |d| ranged from 0.005 to 3.416 (Fig. 1b).
The mean was 0.721 (95% CI: 0.622–0.820) and the me-
dian 0.595 (n=136). The median number of studies per
estimate of |d| was 13.5. There was greater variance in
mean effect sizes based on 13.5 or fewer studies than
those based on more than 13.5 studies (Variance Ratio
test, F=1.47, df=67, 67, P=0.059). There was no signifi-
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tion between observational and experimental effect size
(r=0.746, P=0.034).

The mean effect size |r| for studies of fluctuating asym-
metry did not differ from that of other evolutionary studies
(ANOVA: F=3.018, df=1, 88, P=0.09; Power:66%). The
same is true when the data is analyzed using meta-analysis
with weighting for sampling effort (Qb=0.145, P=0.618).
For asymmetry studies |r|=0.198 (95% CI: 0.155–0.248)
(n=20) for other studies |r|=0.183 (95% CI: 0.142–0.219)
(n=70). Most samples (90/93) were from evolutionary
studies. It was therefore impossible to compare effect size
between the three main research fields.

Meta-analysis level of analysis

Mean r2 ranged from 0.3% to 28.8% across the 22 meta-
analyses with Pearson r as a measure of effect size. More

Fig. 2 The relationship between the number of studies used to cal-
culate an effect and the absolute effect size calculated as either a
Pearson’s r (n=93) or b Hedges’ d (n=136)

Fig. 3 The relationship between Rosenthal’s Fail-safe Number
and (a) r2 in studies using the effect size Pearson’s r (n=93) or (b)
the effect size Hedges’ d (n=136). Both relationships are positive
and statistically significant (see text)



Discussion

What is the mean amount of variance explained by caus-
al factors of interest to biologists? In our analyses, the
weighted mean Pearson |r| across all estimates at the me-
ta-analysis level was 0.19, equaling a mean coefficient of
determination of 2.5%. The 95% confidence interval
around this estimate fell between 2.3 and 4.3%. Looking
at all the different possible analyses, the 95% confidence
intervals for mean |r| always fell between 0.14 and 0.22
across a range of fields in biology. While other factors
considered in specific studies may have explained addi-
tional variation in response variables (e.g. covariates,
random effects or other fixed factors), the key factor un-
der examination in each published meta-analysis (e.g.
the effect of, say, size, symmetry or treatment) explained
a relatively minor amount of the remaining variation in
the response variables measured. In analyses based on
Hedges’ d we found that the mean |d| across 21 meta-an-
alyses was 0.63. This is slightly larger than an intermedi-
ate effect size of d=0.5 (Cohen 1988). Although it may
be misleading to convert from d to r2 and then calculate
r_ (Gurevitch, personal communication), Cohen (1988, 
p 26) notes that his definition of an intermediate value 
of d=0.5 is such that "6% of the variance is ‘accounted
for’ by populational membership”.

Biology differs from other natural sciences by dealing
with living organisms that are affected by innumerable
biotic and abiotic factors. It is therefore no surprise that
the amount of variance accounted for by any single factor
in ecology and evolution is relatively small. This con-
trasts strongly with studies in physics and chemistry,
where the amount of variance explained is typically very
large. Of course, even a minute effect size may be biolog-
ically important, in particular when discussing evolution-
ary issues. Small effects may become greatly magnified
when a persistent pattern occurs across many generations.

A paired comparison showed no clear increase in ef-
fect size when using an experimental approach over sim-
ple observations. The power to detect a medium-sized
difference was, however, only 25%. Interestingly though,
the two kinds of estimates of effect size were strongly
positively correlated. Similarly, Gontard-Danek and
Møller (1999) found only a slightly larger effect size in
experimental compared to observational studies of sexual
selection, even when they were paired for the same spe-
cies. This seems unlikely to reflect the situation at large.
It is likely that some systems are more tractable experi-
mentally, simply for logistic or other practical reasons,
and such systems will contribute disproportionately to the
body of knowledge in a field (see also Thornhill et al.
1999). Given our small sample size, further studies of the
increase in variation that can be explained when using an
experimental approach would be of general interest.

The fail-safe number was strongly positively correlat-
ed with the amount of variance explained or the magni-
tude of the effect size in different meta-analyses (Fig. 3).
This is intuitively expected, since a larger number of null
results are needed to nullify a larger mean effect. This
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cant negative relationship between |d| and the number of
studies used to generate the effect size estimate (Fig. 2b;
Spearman’s r=0.014, P=0.874, n=136; Power:<94%).

The fail-safe number increased with |d|, as expected if
a larger effect leads to a more robust general finding.
This relationship was statistically highly significant
(Fig. 3b; linear regression based on a log-log transforma-
tion: F=49.65, df=1, 52, P<0.0001). The slope of this re-
gression was 5.97 (SE 0.848), which is significantly
greater than unity (t=5.86, df=52, P<0.0001). Fail-safe
number also increases with sample size (r=0.808,
P<0.0001, n=54). The relationship between |d| and fail-
safe number remains even when sample size is included
in a multiple regression (t=7.36, df=50, P<0.0001).

The mean effect size for ecological, evolutionary and
physiological studies differed (Fig. 4; ANOVA: F=3.338,
df=2, 133, P=0.038). For evolutionary samples |d| was
0.572 (95% CI: 0.409–0.735, n=34), for ecological |d|
was 0.603 (95% CI: 0.442–0.763, n=30) and for physio-
logical |d| was 0.840 (95% CI: 0.684–0.996, n=72).

Meta-analysis level of analysis

The value of mean |d| ranged from 0.22 to 1.70. The
mean was 0.631 (95% CI: 0.483–0.779) and the median
was 0.577 (n=21). The median number of studies per es-
timate of |d| was 15.2. There was greater variance in
mean effect sizes based on 15.2 or fewer studies than
those based on more than 15.2 studies (Variance Ratio
test: F=4.045, df=9,10, P=0.02). There was no signifi-
cant negative relationship between |d| and the number of
studies used to generate the effect size estimate (Spear-
man’s r=-0.057, P=0.807, n=21; Power:27%).

The mean effect size for ecological, evolutionary and
physiological studies did not differ (ANOVA: F=1.897,
df=2, 18, P=0.179). Statistical power to detect a medium
effect was, however, only 14%.

Fig. 4 Mean values of |d| for meta-analyses in evolution, ecolo-
gy, and physiology. Values are means (SE). Sample sizes are 34,
30 and 72, respectively



relationship is particularly strong though, given that
sample sizes varied considerably among studies. The
considerable amount of variance in fail-safe number for
a given effect size (Fig. 3) clearly supports the observa-
tion that a large fail-safe number does not automatically
follow from a large effect size. Only when a consistent
effect size has been found in a large number of studies
will the fail-safe number be large.

We found weak evidence for significant differences in
mean effect size among fields of biology, although the
95% confidence intervals overlapped (Fig. 4). Studies
with a physiological content tended to have larger 
Hedges’ d than ecological ones, which in turn had larger
values than evolutionary studies. Meta-analyses examin-
ing the role of fluctuating asymmetry (or other measures
of developmental instability) in ecological and evolu-
tionary questions yielded mean effect sizes very similar
to those obtained in other evolutionary studies. Thus, the
relatively small effect sizes reported in meta-analyses of
asymmetry do not differ significantly from those report-
ed in other fields. For example, analyzed at the meta-
analysis level, the weighted mean effect size for asym-
metry studies was identical to that for other evolutionary
studies at |r|=0.203. Although it has been suggested that
studies of asymmetry generally have small effect sizes
and therefore are of little biological significance (Houle
1998), and that publication bias has inflated estimates of
effect size in studies of asymmetry because of a negative
relationship between sample size and effect size (Palmer
1999) and a temporal decline in effect size with date of
publication (Simmons et al 1999), these appear to be
general trends in biological studies (e.g. Alatalo et al
1997; Møller and Alatalo 1999; Poulin 2000; review in
Jennions and Møller 2002). Clearly the mean effect size
in studies of asymmetry is not different from the mean
effect size in all meta-analyses. The approach that we
have adopted here allows scientists to judge the mean ef-
fect size in a given field without biasing their statements
with personal opinion.

The amount of variance explained by a given factor of
interest depends on the extent to which confounding
variables are controlled for, either experimentally or sta-
tistically. For example, the estimated effect of a treat-
ment will be far stronger when an experiment is de-
signed to control for a significant covariate or analyzed
using ANCOVA than would be the case if this covariate
went unmeasured and analysis was based on a two-sam-
ple t-test. Even so, in the absence of more detailed infor-
mation or pilot studies, the mean effect sizes we have re-
ported here can be used by researchers to estimate the
sample sizes they will need to detect average effects with
a given statistical power. To date, most researchers have
assumed a medium affect of r=0.3 as defined by Cohen
(1988). The 95% confidence intervals for mean effects
calculated as r all fell between |r|=0.14 and 0.25. These
should therefore be used to indicate a reasonable range
of sample sizes. With 80% statistical power these corre-
spond to sample sizes of 122 and 396. It is worth noting
that very few statistical tests in evolutionary biology

(and especially behavioral ecology) are based on sample
sizes this large, especially when calculating correlations.
That was clearly also the case in most of the studies in-
cluded in the meta-analyses investigated here. Thus,
overall significant effects in many meta-analyses arose
as a consequence of many studies showing an effect in a
particular direction, rather than scientists using a large
sample size to have a high level of power and thereby
finding statistically significant results. Failure to reject
the null hypothesis should therefore be interpreted with
far greater caution, and a heightened appreciation of
what an ‘average’ strength relationship in evolutionary
biology really is. The 95% confidence intervals for mean
Hedges’ d fell between 0.48 and 0.82. Although non-
identical, Hedges’ d and Cohen’s d are closely related
estimates of effect size. To detect a Cohen’s d of 0.48 or
0.82 requires a sample size of 24 and 69 per group re-
spectively (Cohen 1988). Again, many studies in biology
that compare two sample populations tend to be based on
smaller sample sizes.

In conclusion, a meta-analysis of meta-analyses in
ecology and evolution revealed small to intermediate ef-
fect sizes (sensu Cohen 1988). The amount of variance
explained decreased from physiology over ecology to
evolution. These findings suggest that biological studies,
even experimental ones, will often only explain a very
small amount of variance. The merits of different ave-
nues of research should be evaluated in the light of these
findings, including improved designs of observational
and experimental studies, sufficient sample sizes to ob-
tain a reasonable power, and more widespread use of
meta-analysis.
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Appendix

The 43 meta-analyses included in the present study. Coding is pre-
sented in parenthesis as ecological (EC), evolutionary (EV) and
phsyiological (P); and dealing with asymmetry (FA) or not (N).

Arnqvist G, Nilsson T (2000) The evolution of polyandry: multiple
mating and female fitness in insects. Anim Behav 60:145–164
(EV, N)

Arnqvist G, Rowe L, Krupa JJ, Sih A (1996) Assortative mating by
size: a meta-analysis of mating patterns in water striders. Evol
Ecol 10:265–284 (EV, N)

Boissier J, Morand S, Mone H (1999) A review of performance
and pathogenicity of male and female Schistosoma mansoni
during the life cycle. Parasitology 119:447–454 (EV, N)

Brett MT, Goldman G (1996) A meta-analysis of the freshwater tro-
phic cascade. Proc Natl Acad Sci USA 93: 7723–7726 (EC, N)

Cadée N, Møller AP (2000) On the relative sensitivity of trait size
and asymmetry to environmental stress. In: Cadée N Ecologi-
cal aspects of stress resistance in the barn swallow Hirundo
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rustica. PhD thesis, Laboratoire d’Ecologie, Université Pierre
et Marie Curie, Paris, France, pp 52–89 (EV, FA)

Côté IM, Poulin R (1995) Parasitism and group size in social ani-
mals: a meta-analysis. Behav Ecol 6:159–165 (EV, N)

Côté IM, Sutherland WJ (1997) The effectiveness of removing pre-
dators to protect bird populations. Conserv Biol 11:395–405
(EC, N)

Curtis PS (1996) A meta-analysis of leaf gas exchange and nitro-
gen in trees grown under elevated carbon dioxide. Plant Cell
Environ 19:127–137 (P, N)

Curtis PS, Wang X (1998) A meta-analysis of elevated CO2 effects
on woody plant mass, form, and physiology. Oecologia 113:
299–313 (P, N)

Fernandez-Duque E, Valeggia C (1994) Meta-analysis: a valuable
tool in conservation research. Conserv Biol 8: 555–561 (EC, N)

Fiske P, Rintamäki P, Karvonen E (1998) Mating success in lek-
king males: a meta-analysis. Behav Ecol 9: 328–338 (EV, N)

Gontard-Danek M-C, Møller AP (1999) The strength of sexual 
selection: a meta-analysis of bird studies. Behav Ecol 10:476–486
(EV, N)

Gurevitch J, Morrow LL, Wallace A, Walsh JS (1992) A meta-
analysis of competition in field experiments. Am Nat 140:
539–572 (EC, N)

Hamilton WJ, Poulin R (1997) The Hamilton and Zuk hypothesis:
a meta analytic approach. Behaviour 134: 299–320 (EV, N)

Harper DGC (1999) Feather mites, pectoral muscle condition,
wing length and plumage coloration of passerines. Anim Be-
hav 58:553–562 (EV, N)

Järvinen A (1991) A meta-analytic study of the effects of female
age on laying-date and clutch-size in the Great Tit Parus major
and the Pied Flycatcher Ficedula hypoleuca. Ibis 133:62–67
(EC, N)

Jennions MJ, Møller AP, Petrie M (2001) Sexually selected traits
and adult survival: a meta-analysis of the phenotypic relation-
ship. Q Rev Biol 76:3–36 (EV, N)

Koricheva J (2001) Meta-analysis of sources of variation in fitness
costs of plant antiherbivore defenses. Ecology (in press) (P, N)

Koricheva J, Larsson S, Haukioja E (1998a) Insect performance
on experimentally stressed woody plants: a meta-analysis.
Annu Rev Entomol 43:195–216 (EC, N)

Koricheva J, Larsson S, Haukioja E, Keinänen M (1998b) Regula-
tion of woody plant secondary metabolism by resource avail-
ability: hypothesis testing by means of meta-analysis. Oikos
83: 212–226 (P, N)

Leung B, Forbes MR (1996) Fluctuating asymmetry in relation to
stress and fitness: effects of trait type as revealed by meta-
analysis. Ecoscience 3:400–413 (EV, FA)

Møller AP (1999) Asymmetry as a predictor of growth, fecundity
and survival. Ecol Lett 2:149–156 (EV, FA)

Møller AP (2000) Developmental stability and pollination. Oecolo-
gia 123:149–157 (EV, FA)

Møller AP, Alatalo RV (1999) Good genes effects in sexual selection.
Proc R Soc Lond Ser B 266:85–91 (EV, N)

Møller AP, Ninni P (1998) Sperm competition and sexual selection:
a meta-analysis of paternity studies of birds. Behav Ecol Socio-
biol 43:345–358 (EV, N)

Møller, AP, Shykoff JA (1999) Developmental stability in plants:
Patterns and causes. Int J Plant Sci 160:S135-S146 (EV, FA)

Møller AP, Christe P, Erritzøe J, Mavarez J (1998) Condition, dis-
ease and immune defence. Oikos 83:301–306 (EV, N)

Møller AP, Christe P, Lux E (1999) Parasite-mediated sexual selec-
tion: Effects of parasites and host immune function. Q Rev Biol
74:3–20 (EV, N)

Poulin R (1994) Meta-analysis of parasite-induced behavioural
changes. Anim Behav 48:137–146 (EV, N)

Poulin R (1996) Sexual inequalities in helminth infections: a cost
of being a male? Am Nat 147:287–295 (EV, N)

Poulin R (2000) Variation in the intraspecific relationship between
fish length and intensity of parasitic infection: biological and
statistical causes. J Fish Biol 56:123–137 (EV, N)

Riessen HP (1999) Predator-induced life history shifts in Daphnia: a
synthesis of studies using meta-analysis. Can J Fish Aquat Sci
56:123–137 (EV, N)

Schalk G, Forbes MR (1997) Male biases in parasitism of mam-
mals: effects of study type, host age, and parasite taxon. Oikos
78:67–74 (EV, N)

Sokolovska N, Rowe L, Johansson F (2000) Fitness and body size
in mature odonates. Ecol Entomol 25:239–248 (EV, N)

Thornhill R, Møller AP (1998) The relative importance of size and
asymmetry in sexual selection. Behav Ecol 9:546–551 (EV, N)

Thornhill R, Møller AP, Gangestad SW (1999) The biological sig-
nificance of fluctuating asymmetry and sexual selection: a re-
ply to Palmer. Am Nat 154:234–241 (EV, FA)

Tonhasca AJ, Byrne DN (1994) The effects of crop diversification
on herbivorous insects: a meta-analytic approach. Ecol Ento-
mol 19:239–244 (EC, N)

Van Zandt PA, Mopper S (1998) A meta-analysis of adaptive
deme formation in phytophagous insect populations. Am Nat
152:595–604 (EV, N)

VanderWerf E (1992) Lack’s clutch size hypothesis: an examination
of the evidence using meta-analysis. Ecology 73:1699–1705
(EV, N)

Vøllestad LA, Hindar K, Møller AP (1999) A meta-analysis of
fluctuating asymmetry in relation to heterozygosity. Heredity
83:206–218 (EV, FA)

Wang X, Curtis PS (2001) A meta-analytical test of elevated CO2
effects on plant respiration. Plant Ecol (in press) (P, N)

Wooster D (1994) Predator impacts on stream benthic prey. Oeco-
logia 99:7–15 (EC, N)

Xiong S, Nilsson C (1999) The effect of plant litter on vegetation: a
meta-analysis. J Ecol 87:984–994 (EC, N)
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