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Statistical methods for estimating historical fire
frequency from multiple fire-scar data

William J. Reed and Edward A. Johnson

Abstract: This paper considers the statistical analysis of fire-interval charts based on fire-scar data. Estimation of the
fire interval (expected time between scar-registering fires at any location) by maximum likelihood is presented. Because
fires spread, causing a lack of independence in scar registration at distinct sites, an overdispersed binomial model is used,
leading to a two-variable quasi-likelihood function. From this, point estimates, standard errors, and approximate confidence
intervals for fire interval and related quantities can be derived. Methods of testing for the significance of spatial and
temporal differences are also discussed. A simple example using artificial data is given to illustrate the computational steps
involved, and an analysis of real fire-scar data is presented.

Résumé : Cet article porte sur l’analyse statistique des diagrammes d’intervalle entre les feux basés sur des données de
cicatrices laissées par le feu. La méthode du maximum de vraisemblance est utilisée pour estimer l’intervalle entre les
feux (période de temps attendue entre les feux qui laissent des cicatrices à n’importe quel endroit). Parce que les feux
se propagent, ce qui engendre un manque d’indépendance dans la présence de cicatrices dans différents sites, un modèle
binomial exagérément dispersé qui se traduit par une fonction quasi aléatoire à deux variables est utilisé. Les estimations
ponctuelles, les erreurs standard et les intervalles de confiance approximatifs pour l’intervalle entre les feux et les
quantités qui y sont reliées peuvent être dérivés de cette fonction. Les méthodes qui permettent de tester si les différences
spatiales et temporelles sont significatives sont également abordées dans la discussion. Un exemple simple basé sur des
données fictives illustre les étapes de calcul et une analyse basée sur de vraies données de cicatrices laissées par le feu est
présentée.

[Traduit par la Rédaction]

1. Introduction

Fire-frequency studies have traditionally collected data as
time-since-fire maps (Heinselman 1973) or as composite fire-
interval charts (Dieterich 1980).Time-since-fire maps have been
used in regions in which crown fires predominate, so trees often
have only one or rarely a few fire scars. These studies thus con-
sist of a map constructed from fire scars and other evidence of
the last fire. After partitioning the map into spatially homoge-
neous areas, survivorship distributions can be constructed, from
which a statistical reconstruction of the fire-frequency history
can be obtained, including the identification of change points
that separate epochs of assumed constant fire frequency (see
Reed (1998, 2000) and Reed et al. (1998) for a discussion of
the statistical issues).

In contrast, composite fire-interval charts have been used in
regions in which surface fires predominate, so trees usually
have multiple scars. These studies consist of a collection of
fire-event chronologies based on individual trees with multiple
scars or on plots with several trees from which a single fire
chronology is constructed. A histogram of fire intervals can be
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constructed using the data from each chronology. Traditionally,
a simple average or median is calculated from the histogram of
fire intervals and confidence intervals obtained using a Student
t procedure. Recently, Grissino-Mayer (1999; see also Johnson
1979) used a Weibull distribution to estimate the fire-frequency
parameters.

Several statistical issues are important in the composite fire-
interval approach. A proper sampling design must be used in
the collection of multiple scar chronologies for any statistical
estimate to be valid. In other words, every possible chronol-
ogy must have an equal chance of being chosen in a sample
of chronologies. One cannot just choose trees or plots with the
most scars or those that are easily accessible (Johnson and Gut-
sell 1994). Also not all trees are scarred in a particular fire.
Baker and Ehle (2001) have discussed this and other concerns
with field methods, data collection and processing.

The traditional method of simply calculating a Student t con-
fidence interval using the observed intervals between scars on
all trees in the sample, while easy to compute, is not really valid.
The assumptions behind the Student t procedure are that the
data are independent observations from a normal distribution.
Both of these assumptions are likely violated for fire-interval
data. First their distribution will typically not be normal. This
can be seen in Fig. 1, which presents a frequency plot of all in-
tervals between scars on individual trees for the Dugout region
of the Blue Mountains in eastern Oregon (see Sec. 4.2). The
data are clearly not normally distributed. Indeed their distribu-
tion looks closer to an exponential distribution, which is what
would be expected with a constant hazard of burning. A second
and probably more serious violation of assumptions concerns
that of independence, for example, two successive fires may
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Fig. 1. A frequency plot of intervals between scars on all sample
objects in the Dugout region of the Blue Mountains in eastern
Oregon. Note how the distribution is far from normal (as required
for the validity of the Student t procedure).

both be recorded on each of two (or more) separate sample ob-
jects, leading to two (or more) identical fire intervals. While the
lack of normality may not greatly affect point estimates, lack of
independence certainly can, and both violations of assumptions
will render confidence intervals invalid.

The objective of this paper is to remedy the shortcomings in
the traditional procedure by developing a statistical methodol-
ogy, based on the maximum likelihood paradigm for analyzing
composite fire-interval charts, in particular for estimating (with
point estimates and confidence intervals) the expected time be-
tween fires at any location or its inverse, the fire frequency. The
main novelty of the procedure involves incorporating into the
analysis the fact that the same fire may register scars on sev-
eral sample objects. This is achieved by developing a model in
which the occurrence of fires and the spread of fires are han-
dled separately. The null model of survival analysis (a constant
hazard rate) is used for the former, while the contagious effect
of fire spread is handled by using an overdispersed binomial
distribution. For such a model, the probability of any object
recording a scar is the same, but these events are assumed to
not be independent, with contagion present. Because the num-
ber of sample objects vulnerable to scarring changes over time,
in order to use the overdispersed binomial distribution, the pe-
riod over which observations are made must be divided into
nonoverlapping epochs, within which the number of vulnera-
ble sample objects remains constant. These ideas are developed
in greater detail in the following sections.

The paper starts by establishing a terminology and notation
(Sec. 2). In Sec. 3, a model is developed and estimation by max-
imum likelihood discussed. Methods for testing for differences
(both spatial and temporal) in fire frequency are also discussed.
In Sec. 4, a simple example using artificial data is given to illus-
trate the calculations involved, and this is followed by a more
complete example using real data kindly made available by E.
Heyendahl (Heyendahl et al. 2001).

For the reader’s convenience, a list of symbols and their
meanings is given at the end of the References.

2. Definitions and notation

Typically, fire-scar data will come from a number of sites
at which dendrochronological observations are made on sam-
pled trees as well as possibly on other objects, such as logs,
stumps, snags, etc. Because sampled trees likely will have orig-
inated at different times (and logs, stumps, etc. ceased growing
at different times), sampled objects in general will have been
vulnerable to scarring over different periods. For the purpose
of analysis, we shall consider the past as divided into distinct
epochs, during each of which a constant number of sampled
objects are assumed to have been vulnerable to scarring. Thus
the first (oldest) epoch will comprise the time from the date
of establishment of the oldest sampled object to the date of its
demise or to the establishment of the next oldest sampled ob-
ject, whichever is earlier. During this period only one object will
have been vulnerable. The next epoch, during which one or two
sampled objects will have been vulnerable, will comprise the
time between the establishment of the second oldest object and
either the establishment of the third oldest object or the death of
one of the previously established objects. In general, we shall
suppose that there are M epochs, which, if we set as the time
origin the date of establishment of the oldest sampled object,
comprise the time intervals 0 − T1, T1 − T2, . . . , TM−1 − TM .

Let the number of objects vulnerable to scarring during epoch
j be denoted by Nj , (j = 1, . . . , M). A special case is when
all sampled objects are live trees, originating at distinct dates.
In this case N1 = 1, N2 = 2, . . . , NM = M . More generally,
the sequence {Nj } will increase (or decrease) between epochs
separated by the establishment (or death) of an object. Let the
number of distinct dates at which fires were recorded during
epoch j be denoted by nj , and let the numbers of scars on
sampled objects recorded at each of these dates be denoted by
xj,1, xj,2, . . . , xj,nj

, respectively. Thus, during epoch j there

will be xj. = ∑nj

r=1 xj,r scars recorded, providing evidence of
at least nj fires during that epoch.

We note that if more than one scar is registered at any time,
it will be assumed that the scars were caused by the same fire.
Without more complete geographical information, there is no
way to distinguish separate fires that occur in the same year.

3. Model, assumptions, and maximum
likelihood estimation

To analyze data of the type described previously, it is neces-
sary to make some assumptions about the way in which the data
were generated. Thus we assume that the study area is homoge-
nous with respect to fire hazard, and that this has been unchang-
ing over time. (Later we relax these assumptions and allow for
different hazards in different subregions and also allow a tem-
porally varying hazard that is constant over intervals separated
by change points.) We model this by assuming that there is an
unchanging area-wide hazard of scarring, λ; that is, we assume
that the probability of a fire, which registers a scar somewhere
in the study area during an infinitesimal time interval (t, t +h),
is λh + o(h) for all t, 0 ≤ t ≤ TM . (Note that the term "hazard
of burning" was used to denote the per-annum probability of
fire at a location computed instantaneously, that is, over an in-
finitesimal interval; see Johnson and Gutsell (1994) and Reed
et al. (1998). Here, the term "area-wide hazard of scarring" is
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used to denote the per-annum probability of a fire leaving a scar
somewhere in the study area.)

If such a fire occurs, it may or may not leave a scar on any
particular sample object.Assume that the probability that a scar-
registering fire in the study area leaves a scar on a given sample
object is the same for all sample objects and denote this prob-
ability p, and let q = 1 − p. Thus the hazard of scarring for
a particular sample object is θ = λp (the same for all sample
objects). We shall refer to θ as the local hazard of scarring.
Its reciprocal is the expected time between scar-causing fires
(fire interval) at any location. Our primary objective will be to
estimate θ and the fire interval FI = 1/θ .

We now need to consider the distribution of the number of
scars registered for a particular fire. If a given fire did or did
not leave a scar on a vulnerable object, independently of what
happened on other vulnerable objects, then with N vulnerable
objects, the number of scars registered would follow a bino-
mial B(N, p) distribution truncated on x = 1, 2, . . . , N (i.e.,
excluding 0). However, the assumption of independence is un-
realistic; given the fact that fires spread spatially, there will be
contagion present in the distribution. The presence of a conta-
gious effect can be detected statistically by testing whether the
numbers of scars registered for each fire in an epoch conform
to a binomial distribution against the alternative of overdisper-
sion, using a binomial dispersion test (e.g., Kendall and Stuart
1967). The test statistic is

[1] D = (n − 1)s2

x̄(1 − x̄/N)

where x̄ and s2 are the sample mean and variance of the num-
bers of scars registered for each of the n fires in the epoch,
respectively, and N is the number of vulnerable objects . Under
the null hypothesis of no contagion D ∼ χ2

n−1 asymptotically.
To demonstrate the presence of contagion, we carried out this
test for all epochs with two or more fires for data on the Dugout
region of the Blue Mountains in eastern Oregon (see Sec. 4.2
and Table 1). It can be seen that, for all (seven) epochs with five
or more fires, the P value was extremely small (much less than
0.0001). The only epochs for which it is not highly significant
are those with very few fires. The test is of low power in such
cases, so this is not surprising. However, in spite of this, the test
was highly significant for three of the four epochs with only
two fires. One can easily see the overdispersion in these cases.
Consider, for example, Epoch 12 when 69 sample objects were
vulnerable and two fires occurred, registering 1 and 44 scars,
respectively. This is extremely unlikely if scars were indepen-
dently registered on distinct objects. Rather, there is overdisper-
sion resulting from the second fire spreading extensively and
the first not doing so. Thus we have strong evidence of conta-
gion or overdispersion and need a distribution that reflects this
fact.

An alternative formulation that allows for contagion effects
is to assume that the number of scars registered follows what
is known as an overdispersed form of the (zero-truncated) bi-
nomial distribution (see, e.g., Pawitan 2001, p. 76). Such a dis-
tribution involves an dispersion parameter φ, along with the
binomial parameters N and p. Its mean is the same as that of
the zero-truncated binomial, but its variance is inflated by a fac-
tor φ, which reflects the degree of contagion in the formation

Table 1. Data and binomial dispersion test for scars in Dugout
region.

Epoch
j

No. of
objects Nj

No. of
fires nj

No. of scars
xj,r , r = 1, . . . , nj P value

1 53 3 51, 1, 1 <0.0001

4 59 2 2, 1 0.56
10 67 3 1, 1, 2 0.48
11 68 4 1, 1, 1, 5 0.10
12 69 2 1, 44 <0.0001
13 70 7 5, 2, 1, 1, 2, 1, 57 <0.0001
14 71 5 8, 1, 29, 1, 64 <0.0001
15 72 10 1, 3, 23, 2, 66, 1, 9,

1, 1, 7
<0.0001

16 71 8 16, 8, 12, 7, 36, 2,
1, 60

<0.0001

17 70 6 2, 3, 22, 31, 12, 51 <0.0001
18 68 3 1, 3, 32 <0.0001
19 66 10 27, 2, 47, 1, 5, 3,

21, 23, 1, 35
<0.0001

20 65 5 11, 6, 54, 1, 47 <0.0001
24 56 3 5, 4, 7 0.62
25 53 2 2, 21 <0.0001
29 38 2 3, 16 0.0006
34 12 3 2, 1, 5 0.14

Note: All epochs with two or more fires are included. The null
hypothesis is that the number of scars is binomially distributed.

of scars on sample objects. The case φ = 1 corresponds to in-
dependence (no contagion), with φ increasing with the degree
of contagion.

An advantage of using such a distribution is that it is a member
of the exponential dispersion family (see, e.g., Pawitan 2001,
p. 97), whose properties are well understood and for which es-
timation procedures have been developed. To do this one con-
structs a quasi-likelihood function that, at least for inference for
parameters other than the dispersion parameter φ, can be treated
like an ordinary log-likelihood. To this end, we calculate first the
probability of observing the given data (which comprises times
and numbers of scars registered for each fire). Since events in
distinct epochs are independent, the probability of observing
the full data can be expressed as

[2] Pr(observed data) =
M∏

j=1

Pr(observed data in epoch j )

To evaluate this further, consider a generic epoch of duration
τ with N sample vulnerable objects. (Note that while discussing
a generic epoch we suppress the epoch-identifying subscript j ).
Suppose that scars were left atn distinct dates, t1, t2, . . . , tn time
units after the start of the epoch, with xi , (i = 1, 2, . . . , n) scars
left at time ti . We can write

Pr(observed data) = Pr(x1, x2, . . . , xnscars

registered|fires at t1, t2, . . . , tn)

Pr(fires occurred at t1, t2, . . . , tn) = Px|tPt
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Consider first the probability Pt . Under the assumed model,
the probability (density) of observing fire-registering scars at
times t1, t2, . . . , tn, in the study area, with no fires registered
at other times, can be obtained as the product of exponential
densities for times between fires multiplied by the probability
of no fire between tn and τ . Precisely

[3] Pt = [
λe−λt1

] [
λe−λ(t2−t1)

]
×

[
λe−λ(t3−t2)

]
. . .

[
λe−λ(tn−tn−1)

] [
e−λ(τ−tn)

]
= λne−λτ

At time t1, the probabilty of x1 scars being registered is given
by the probability mass function (pmf) f (x1; N, p, φ) of the
overdispersed zero-truncated binomial distribution. Thus the
probability of x1, x2, . . . , xn scars being observed, conditional
on fires occurring at times t1, t2, . . . , tn, is

[4] Px|t =
n∏

r=1

f (xr ; N, p, φ)

so that for the epoch

[5] Pr(observed data) = λne−λτ
n∏

r=1

f (xr ; N, p, φ)

and for the full data set

[6] Pr(observed data) = λn·e−λT
M∏

j=1

nj∏
r=1

f (xj,r ; Nj , p, φ)

where T = TM is the full time for which observations are
available and n. = ∑M

j=1 nj is the total number of fires over
that period. To construct a quasi-likelihood it is not necessary
to have an explicit expression for f (x; N, p, φ). Rather all we
need to know is that its logarithm is of the form (see, e.g.,
Pawitan 2001)

[7] log(f (x; N, p, φ))

= x log(p/q) + log qN − log(1 − qN)

φ
+ c(φ, data)

where q = 1−p and c(φ, data) does not depend on the parame-
ters λ and p. Note that the numerator of the first term is the loga-
rithm of the zero-truncated binomial pmf

(
N
x

)
pxqn−x/(1 − qN)

apart from the constant term not involving p, which is absorbed
into the c(φ, data) term in eq. 7. In particular, with φ = 1, eq.
8 is simply the log-likelihood for one observation from a zero-
truncated binomial distribution. The more general form (with
φ unspecified) allows for overdispersion in the zero-truncated
binomial distribution.

Taking the logarithm of eq. 7 (and ignoring terms involving
only φ and the data) one gets the quasi-likelihood

[8] Q = n· log λ − λT +
(

1

φ

) [
x·· log

(
1 − q

q

)

+
M∑

j=1

nj

(
log qNj − log(1 − qNj )

) ]

where x·· = ∑M
j=1

∑nj

r=1 xj,r is the total number of scars ob-

served for the study and n = ∑M
j=1 nj is the total number of

fires observed. Note that Q is not a full log-likelihood because
it does not include the contribution of the parameter φ via the
term c(φ, data); however, it correctly includes the contributions
to the log-likelihood estimate of the other parameters λ and p
(via q). To obtain maximum likelihood estimates (MLEs) of λ
and q one can set the derivatives of Q with respect to λ and q
equal to zero. This leads to the following estimating equations
for the MLEs of λ and q:

[9]

λ = n·/T

x·· = (1 − q)

M∑
j=1

njNj

1 − qNj

The second (polynomial) equation in q needs to be solved
numerically. The first yields the MLE of the area-wide hazard
of scarring λ as simply the number of fires producing scars
observed per unit time. The MLEs q̂ and λ̂ are independent.

To estimate the dispersion parameter φ, a moment estimator
can be used (see, e.g., Patiwan 2001, p. 165). This yields

[10] φ̂ = 1

n· − 1

M∑
j=1

1

V (q̂, Nj )

nj∑
r=1

[
xj,r − Nj(1 − q̂)

1 − q̂Nj

]2

where

[11] V (q, N) = N
q(1 − q)

1 − qN

[
1 − N(1 − q)qN−1

1 − qN

]

is the variance of the zero-truncated binomial distribution. (Note
that when Nj = 1 and nj = 1, both the numerator and denom-
inator of the summand (at j ) in eq. 11 are zero. In this case,
since there is clearly no overdispersion, the summand is one.
Also when nj = 0 the summand is zero.) To compute the sums
of squares in eq. 11 it may be more convenient to use the alter-
native form

[12]

nj∑
r=1

x2
j,r − 2

Nj(1 − q̂)

1 − q̂Nj

nj∑
r=1

xj,r + njN
2
j (1 − q̂)2

(1 − q̂Nj )2

The MLE of the local hazard of scarring is θ̂ = λ̂p̂ = λ̂(1−q̂)

and its reciprocal 1/θ̂ is the MLE of the fire interval FI (expected
time between fires at any given location).

The standard error of the MLE λ̂ can be computed (as the
square root of the inverse of the observed information) as

[13] s
λ̂

= √
n./T .

In a similar fashion the standard error of q̂ can be computed:

sq̂ =
√

φ̂

[
x··

(1 − q̂)2 +
∑M

j=1 njNj − x··
q̂2

+
M∑

j=1

njNj q̂
Nj −2

(
Nj − 1 + q̂Nj

)
(1 − q̂Nj )2

]−1/2

© 2004 NRC Canada



2310 Can. J. For. Res. Vol. 34, 2004

and then the standard error of θ̂ can be calculated using

[14] s
θ̂

=
[
s2
λ̂
s2
q̂

+ (1 − q̂)2s2
λ̂

+ λ̂2s2
q̂

]1/2

The standard error of the fire interval can be calculated (from
the observed information after reparameterization, or by the
delta-method) as

[15] sF̂I = 1

θ̂

[
s2
λ̂

λ̂2
+

s2
q̂

(1 − q̂)2

]1/2

and a 100(1−α)% confidence interval for the fire interval found
as F̂I ± zα/2sF̂I, where zα/2 is the 100(α/2) percentage point of
the standard normal distribution.

For computing a P value for testing the equality of the fire
interval in two distinct regions, one can compare the observed
value of the test statistic

[16]
ˆFI1 − ˆFI2√
s2

ˆFI1
+ s2

ˆFI2

with a standard normal distribution.

3.1. Testing for temporal changes
It is straightforward to test whether the fire interval changed

at any prespecified time (e.g., time of settlement by Europeans):
one can simply divide the data into two parts, before and after
the hypothesized change point, and compute a P value using the
test statistic given in eq. 16. However, if one wishes to use scar
data to identify change points, one faces the same selection-
bias problems that one does when using time-since-fire data
(Reed et al. 1998). To overcome that problem, two methods
were proposed by Reed (1998, 2000), the first based on an
iterative stepwise procedure and the second on the use of the
Bayes’ information criterion (BIC). While application of the
first method to scar data is not immediately obvious, that of the
second should be straightforward.

4. Examples

In this section two examples are given. The first uses a very
simple artificial data set and is presented to illustrate the calcula-
tions required. The second uses real data for the Blue Mountains
of eastern Oregon.

4.1. Artificial data
Figure 2 shows (fake) data for fire scars occurring over a

110-year period. Five sample objects (represented by horizontal
lines) exhibit scars (represented by ×’s). One commenced in
1890 and was still extant in 2000; another commenced in 1890
but was not present beyond 1934, etc.

To identify the epochs for these data, we start at 1890 and
observe that there were two objects vulnerable until the origin
of a new sample tree in 1910. Thus the first epoch is 1890–
1909 with N1 = 2 sample objects and n1 = 2 fires (in 1895
and 1904). The earlier fire left x1,1 = 1 scar, and the later one
left x1,2 = 2 scars. The second epoch is from 1910 to 1925,

Fig. 2. A composite fire-interval chart (artificial data) for the
example of Sec. 4.1. There are five sample objects: two originated
in 1890, one in 1909, one in 1924, and the last in 1937. Of these,
all but two were still in existence in 2000. Fire scars are marked
by crosses, and the distinct epochs shown at the top of the figure
are marked as E1, E2, etc.

when a new sample tree originated. In this epoch there were
N2 = 3 sample objects and n2 = 1 fires (in 1916), which left
x2,1 = 2 scars. Continuing in this way one finds six epochs in
the time period 1890–2000 (T = 110), shown at the top of Fig.
1 and labelled E1–E6. Details are given in Table 2.

The total number of distinct fires is n· = 7. All together they
registered x·· = 15 scars. The MLE of the area-wide hazard
of scarring for all sample objects is λ̂ = 7/110 = 0.064. The
MLE of q = 1 − p is found by solving eq. 10

15

1 − q
= 4

1 − q2 + 6

1 − q3 + 12

1 − q4

which yields the solution q̂ = 0.3475 with the corresponding
MLEs p̂ = 0.6525, θ̂ = 0.0415, and F̂I = 24.08 years. From
eq. 11, the dispersion parameter is estimated as φ̂ = 1.224. The
SE of the estimate of the fire interval is 9.91 years, yielding a
95% confidence interval of 4.7–43.5 years.

For comparison purposes we note that the mean (and SD) of
the nine observed interscar intervals is 25.22 (and 20.74) years.
A 95% confidence interval based on an assumed t8 distribution
is (−22.6, 73.0) or 0 to 73.0 years. It can be seen then that, in
this example, the “traditional" method of estimation yields an
estimate close to the new method, but a very different confidence
interval.

4.2. Blue Mountain data
For a second example we use real data collected in the Blue

Mountains of eastern Oregon, USA, by E.K. Heyerdahl (Heyer-
dahl 1997; Heyerdahl et al. 2001). We use four sites: Tucannon
and Imnaha (both of which have north- and south-facing hill-
slopes), Baker (northeast-facing hillslopes) and Dugout (west-
facing hillslope).

The south-facing slopes of Tucannon and Imnaha have dry
forests dominated by open forests of Douglas-fir (Pseudot-
suga menziesii (Mirb.) Franco) and pine grass (Calamagrostis

© 2004 NRC Canada
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Table 2. Fake data (shown graphically in Fig. 1) used for illustrating calculations in
Sec. 4.1.

Epoch j

1 2 3 4 5 6

1890–1909 1910–1925 1926–1934 1935–1937 1938–1970 1971–2000

Nj 2 3 4 3 4 3
nj 2 1 1 0 2 1
tj,r 5, 14 26 39 — 68, 75 95
xj,r 1, 2 2 3 — 3, 1 3

Table 3. Estimates of the fire interval for sites in the Blue Mountains.

Site (aspect)
MLE of FI
(years) SE

Estimated
dispersion, φ̂ 95% CI for FI

Mean
(years)

95% Student t

CI for FI

Tucannon (N) 183.5.0 102.3 6.92 0–384.0 102.6 47.2–158.0
Tucannon (S) 42.2 8.8 8.05 24.9–59.4 34.0 0–88.6
Imnaha (N) 118.2 79.8 21.16 0–274.6 50.3 12.9–87.6
Imnaha (S) 34.2 13.23 57.32 8.2–60.1 26.0 0–55.4
Baker (NE) 23.0 3.78 9.84 15.6–30.4 16.1 0–47.7
Dugout (W) 21.7 3.65 28.06 14.5–28.8 15.6 0–35.6

Note: The penultimate column is the mean of all observed interscar intervals, which has been suggested as an
estimator of FI. The the last column is a 95% Student t confidence interval (CI) based on observed interscar
intervals. (Note that for all confidence intervals if the lower limit is negative it is reported as zero.)

Table 4. Estimates of the fire interval for three epochs (late: 1890–1994; middle: 1730–1889;
early: pre-1730) in dry sites in the Blue Mountains.

Site (aspect) Epoch
MLE of FI
(years) SEa

Estimated
dispersion, φ̂

95% CIb

for FI

Baker (NE) Late 87.4 71.60 20.59 0–227.7
Middle 22.3 5.72 10.34 11.1–33.5
Early 15.7 3.46 8.00 8.9–22.5

Dugout (W) Late 35.9 17.29 41.66 2.0–69.8
Middle 13.8 3.08 29.85 7.8–19.9
Early 26.9 7.73 13.38 11.7–42.0

Tucannon (S) Late 68.4 43.96 21.53 0–154.5
Middle 22.4 5.21 5.33 12.2–32.6
Early 68.3 28.50 2.86 12.4–124.1

Imnaha (S) Late 30.9 36.23 197.42 0–101.9
Middle 48.4 23.10 21.93 3.1–93.7
Early 37.8 9.73 4.13 18.7–56.9

aSE, standard error.
bCI, confidence interval.

rubescens Buckl.) with some grand fir (Abies grandis (Dougl.)
Forbes. The north-facing slopes have mesic forest dominated by
grand fir and huckleberry (Vaccinium membranaceum Dougl.),
and at higher elevations in Tucannon there is some subalpine fir
(Abies lasiocarpa (Hook.) Nutt.) and huckleberry (Vaccinium
spp.). The Dugout and Baker sites are almost completely dry
forest of Douglas-fir and pine grass with some grand fir. Baker
has a mesic forest, with subalpine fir at higher elevations.)

Each site was divided into cells each approximately 25 ha.
A 1-ha plot was placed in the center of each cell. A fire-event
chronology was contracted from fire scars and tree ages for
each 1-ha plot. The south-facing and north-facing parts of the
Tucannon and Imnaha sites are treated separately for analysis,

making six study areas in all. Table 3 gives estimates of the
fire interval in the six areas. Also given in Table 3 (last two
columns) is a point estimate using the mean of all observed in-
terscar intervals and a 95% confidence interval using a Student
t procedure. Notice how this method produces estimates lower
than the MLEs obtained using the method established in this
paper. Indeed, in the two cases with low fire incidence (Tucan-
non (N) and Inmaha (N)) the MLEs of the fire interval are larger
than the mean estimates by a factor of about two and lie outside
(above) the Student t confidence intervals.

It appears the sites cluster into three sets of two (Baker and
Dugout; south-facing slopes of Imnaha (S) and Tucannon (S);
and north-facing slopes of Imnaha (N) and Tucannon (N)). The
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only significant differences using the statistic displayed in eq.
16 are between Tucannon (S) and (i) Dugout (P = 0.03) and (ii)
Baker (P = 0.04). (Note that because multiple comparisons are
being considered, these tests should be seen only as guides and
not be interpreted too literally.) Although the estimates of the
fire cycle for the north-facing slopes of Tucannon and Imnaha
are considerably larger than those of the other sites, they do not
show up as significantly different, because of the large standard
errors associated with the estimates, which are based on very
few fires.

Many other studies have shown temporal changes in the fire
cycle. These can be tested in the fashion described in Sec. 3.1, by
dividing the data into the epochs defined by the hypothesized
change points. Earlier studies (Heinselman 1973; Johnson et
al. 1990; Masters 1990; Bergeron and Archambault 1993;Yarie
1998; Weir et al. 2000) suggest that the 1890s and 1730s marked
changes in the fire regime. Thus the following three epochs were
considered: (i) pre-1730, (ii) 1730–1889, and (iii) 1890–1994.
Table 4 gives estimates of the fire cycle for these three epochs
in the four dry regions.

For Baker and Dugout, the estimates of the fire cycle for
the early and late periods are longer than those for the middle
period. However, in no case is the difference strongly significant
(the strongest evidence of a difference is between early and
middle periods for Tucannon and Dugout, both with (one-sided)
P = 0.06). The common pattern exhibited in the three regions
suggests that the lack of evidence of differences could be due
to the poor power of the test, because of the relatively small
numbers of fires recorded. This is especially true of the late
periods, for which the standard errors of estimates of the fire
cycle are very large. The Inmaha sites exhibit a temporal pattern
different from the other three, with the estimates of the fire cycle
in the middle period being longer than those in the early and
late periods.

5. Conclusions

This paper presents, for the first time, sound statistical meth-
ods for analyzing fire-history studies from ecosystems with
multiple-scarred trees. Using these methods along with a statis-
tically valid sampling design will help in evaluating the historic
range of variations of fire in a surface-fire system such as open-
canopied ponderosa pine and Douglas-fir forests.

One of the most important points revealed in the application
of the method is that, in many multiple-scarred tree fire-history
studies, the sample of chronologies is too small to draw unam-
biguous conclusions, a point made earlier by Baker and Ehle
(2001). This limitation can be seen in the Heyerdahl et al. (2001)
study, where, even though a large number of fires burned the
whole study area, confidence intervals are still quite wide in
some instances. If the sample area is further divided to study
spatial and (or) temporal changes, this problem is exacerbated.

It has been claimed that there is a significant problem in com-
posite fire-interval studies in that, as the sample size increases,
the estimate of the mean fire interval decreases towards one
(a fire once a year), simply because evidence of more fires is
found as more trees and objects are sampled (Arno and Petersen
1983; Baker and Ehle 2001). This difficulty emanates from the
lack of distinction between the area-wide hazard λ and the lo-
cal hazard θ = λp and their reciprocals (area-wide and local

fire intervals). The estimate of the area-wide fire interval would
indeed tend downwards as the number of sampled objects in-
creased, but it is not true that estimates of the local fire interval
would necessarily decrease (because the effect on the estimate
of the parameter p could be in either direction). However, in
concordance with the usual results of increasing sample size,
the standard error of the estimate of the local fire interval would
decrease.
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List of symbols

T1, T2, . . . , TM Time of the end of epochs 1, 2, . . . , j

M Number of epochs
T = TM Total length of period under study

Nj Number of sample objects vulnerable in
epoch j

nj Number of fires in epoch j

n· = ∑M

j=1 nj Total number of fires
xj,r Number of scars left by the rth fire in

epoch j

x·· = ∑M

j=1

∑nj

r=1 xj,r Total number of scars
λ Area-wide hazard of scarring
p Probability that a fire leaves a scar on a

given sample object

q 1 − p

θ = λp Local hazard of scarring
FI = 1/θ Fire interval: expected time between scars

on a given sample object
φ Overdispersion parameter
τ Length of a generic epoch

t1, t2, . . . , tn Times at which scars were left in generic
epoch

Q Quasi-likelihood
λ̂, q̂, etc. MLE of λ, q, etc.
V (q, N) Variance function (eq. 12)

sλ̂ Standard error of MLE λ̂

sq̂ Standard error of MLE q̂

sθ̂ Standard error of MLE θ̂

sF̂I Standard error of MLE F̂I
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