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Summary

1.

 

A major paradigm shift is occurring in the approach of ecologists to statistical analysis.
The use of the traditional approach of null-hypothesis testing has been questioned and
an alternative, model selection by information–theoretic methods, has been strongly
promoted and is now widely used. For certain types of analysis, information–theoretic
approaches offer powerful and compelling advantages over null-hypothesis testing.

 

2.

 

The benefits of  information–theoretic methods are often framed as criticisms of
null-hypothesis testing. We argue that many of these criticisms are neither irremediable
nor always fair. Many are criticisms of  the paradigm’s application, rather than of  its
formulation. Information–theoretic methods are equally vulnerable to many such mis-
uses. Care must be taken in the use of either approach but users of null-hypothesis tests,
in particular, must greatly improve standards of reporting and interpretation.

 

3.

 

Recent critiques have suggested that the distinction between experimental and
observational studies defines the limits of the utility of null-hypothesis testing (with the
paradigm being applicable to the former but not the latter). However, we believe that
there are many situations in which observational data are collected that lend themselves
to analysis under the null-hypothesis testing paradigm. We suggest that the applicability of
the two analytical paradigms is more accurately defined by studies that assess univariate
causality (when null-hypothesis testing is adequate) and those that assess multivariate
patterns of causality (when information–theoretic methods are more suitable).

 

4.

 

Synthesis and applications

 

. Many ecologists are confused about the circumstances
under which different inferential paradigms might apply. We address some of the major
criticisms of  the null-hypothesis testing paradigm, assess those criticisms in relation
to the information–theoretic paradigm, propose methods for improving the use of
null-hypothesis testing, and discuss situations in which the use of null-hypothesis testing
would be appropriate. We urge instructors and practitioners of statistical methods to
heighten awareness of the limitations of null-hypothesis testing and to use information–
theoretic methods whenever prior evidence suggests that multiple research hypotheses
are plausible. We contend, however, that by marginalizing the use of null-hypothesis testing,
ecologists risk rejecting a powerful, informative and well-established analytical tool.

 

Key-words

 

: AIC, likelihood, model selection, significance, statistical analysis

 

Journal of Applied Ecology

 

 (2005) 

 

42

 

, 4–12
doi: 10.1111/j.1365-2664.2005.01002.x

 

Introduction

 

For much of the past century, Fisherian or ‘frequentist’
statistical approaches based on null-hypothesis testing
(NHT) have been a central paradigm guiding experi-
mental design and analysis in ecological research
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and many other sciences. Criticisms of this paradigm
date back over six decades (see reviews in Carver 1978;
Anderson, Burnham & Thompson 2000) but have gath-
ered pace in the past decade. Recently, information–
theoretic model comparison (ITMC) has been suggested
as an alternative paradigm for statistical analysis
(Anderson, Burnham & Thompson 2000; Burnham
& Anderson 2002). Model-selection approaches are
powerful tools and ITMC offers many advantages over
NHT, especially where multiple hypotheses are plausible
or multiple predictors are considered in combination
(Johnson & Omland 2004). Quite rightly, ITMC is
currently being used effectively in many areas of ecology
and evolution and its use is increasing in others (Johnson
& Omland 2004; Rushton, Ormerod & Kerby 2004).

Although ITMC is a welcome addition to the ana-
lytical arsenal of ecologists and evolutionary biolo-
gists, its merits are often framed largely as criticisms of
NHT. For example, two of NHT’s most severe critics
have asserted that ‘it should not be surprising that null-
hypothesis testing is no longer very useful, considering
that it was developed 70–80 years ago’ and ‘the useful-
ness of 

 

P

 

-values is quite limited, and we continue to suggest
that these procedures should be euthanized’ (Anderson
& Burnham 2002). The almost missionary zeal with
which NHT has been vilified (Schmidt 1996) has led some
to suggest that we are observing a major paradigm shift
in our approach to statistical analyses (Guthery, Lusk
& Peterson 2001; Rushton, Ormerod & Kerby 2004).

Wildlife biologists, in particular, seem to have
embraced ITMC to the exclusion of NHT. As members
of a department in which ecologists, evolutionary bio-
logists and wildlife biologists coexist and interact intel-
lectually, we have witnessed a remarkable change in the
statistical tone of seminars given by wildlife biologists
and their students, and in the manuscripts they submit.
Among wildlife biologists, the use of NHT is now viewed
as naive and, in many quarters, heretical. Presentations
of  hypotheses and associated significance levels are
often accompanied by apologies for a practice viewed
by many as outdated and inappropriate. ITMC seems
to have become orthodoxy. Here, we call, not for the
rejection of ITMC, but for its integration into the bio-
logist’s statistical toolbox, along with existing analytical
tools. A key conclusion of Johnson & Omland’s (2004)
recent review of model selection approaches is that
‘biologists must decide when it is most appropriate to
use model selection and when it is most appropriate
to use … inferences based on significance tests’. We
wholeheartedly support this viewpoint but go further:
we argue that many criticisms of NHT apply equally to
ITMC; rigour in both approaches is essential. Moreover,
in some cases there may be room to use both approaches;
exploring the basis of different inferences gained from
the two methodologies may well increase our under-
standing of the system under study.

It is not our intention to provide an exhaustive review
of all criticisms of NHT and its application. Rather, we
hope to focus the attention of readers on some of the

major arguments regarding the use and abuse of NHT
and ITMC. At a time when many ecologists are becom-
ing increasingly aware of  ITMC, we hope to foster
debate on the issues, bringing balance to the calls for an
end to NHT. With that in mind, we consider six import-
ant criticisms of NHT (summarized in Table 1). We
recognize that those criticisms are often (although not
always) fair but we interpret them as a call to improve,
rather than discard, NHT. We conclude that NHT
still has considerable utility in both experimental and
observational studies and that for some questions NHT
is the more appropriate tool.

 

Null hypotheses are not always uninformative

 

A primary criticism of NHT is that the paradigm
reduces research to a comparison between a typically
meaningless, ‘trivial’ null hypothesis and a single alter-
native; these trivial hypotheses are known as ‘silly nulls’
(Anderson 

 

et al

 

. 2001). First, information criteria offer
no protection against trivial hypotheses, including silly
a priori model constructions (Guthery, Lusk & Peterson
2001). Indeed, the a priori construction of an appro-
priate list of multiparameter candidate models (required
for information–theoretic methods) demands far more
insight from the researcher than a carefully framed
series of dichotomous hypotheses (the essence of hypo-
thesis testing). Pioneering research programmes often
begin exploring ecological systems with insufficient
knowledge to construct sound multiparameter models.
Therefore constructing sound ITMC models may not
be reasonable when first exploring an ecological sys-
tem. Secondly, we contend that identifying classically
trivial hypotheses in opposition to more plausible
alternative ones often forces clarity in our questioning
and statistical design. Thirdly, null hypotheses are
often less trivial than they first appear. Substantiating
null hypotheses (i.e. demonstrating that a factor has no
apparent effect) may be very important and ‘nature must
be ripe with null effects that are [biologically] signi-
ficant’ (Guthery, Lusk & Peterson 2001) [Biological
significance refers to the importance (in biological terms)
of the measured effect size, in contrast to its statistical
significance, defined as 1 

 

−

 

 

 

α 

 

(where 

 

α

 

 is the probability
that the data would have been observed had there been
no treatment effect). For example, we may be able to
show that two populations have a statistically signi-
ficant, 2% difference in breeding frequency. Given the
numerous other mechanisms that might affect popu-
lation trajectories, however, we might well show that this
is of extremely limited biological significance in terms
of population dynamics.].

Null hypotheses may be especially interesting when:
(i) the null and its alternative represent the full range of
conceivable realities; (ii) we acknowledge that biolo-
gical significance is of greater importance than statistical
significance (Yoccoz 1991; Kirk 1996); and (iii) the null
is framed more imaginatively than the standard ‘there
is no difference between 

 

a

 

 and 

 

b

 

’.
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Two cited examples of trivial null hypotheses are ‘the
addition of nitrogen makes no difference to the growth
of crops’ (Anderson, Burnham & Thompson 2000) and
‘lead poisoning makes no difference to the survival rate
of ducks’ (Guthery, Lusk & Peterson 2001). These
examples raise several questions. First, if  they really
are trivial and implausible, how did we first discover the
effects of nitrogen on crops or lead on wildfowl? Do

humans possess innate knowledge of  such effects?
Silliness is context-specific: what is a silly hypothesis at
one time might have been highly plausible a few years
before. Secondly, are these null hypotheses always
implausible (Hagen 1997), even under circumstances
that cause them to appear obviously wrong? Under cer-
tain conditions, nitrogen may not be a limiting factor
for crop growth; equally, lead in the environment (or its

Table 1. Some common criticisms* of NHT and their relationship with ITMC† (see sections of main text for further details)
 

Criticism Relevance to NHT Relevance to ITMC

Encourages trivial research 
questions (Johnson 1995; 
Nester 1996) and focuses 
attention on statistical (not 
biological) significance 
(Yoccoz 1991)

We disagree with the ubiquity of the first of 
these phenomena (but see Peters 1991) and 
argue that null hypotheses are often more 
important than they appear. More 
commonly, the statistical significance of an 
effect (i.e. the probability that it is likely to be 
real rather than a sampling artefact) is 
mistaken for its importance (i.e. its size). 
Tackling this requires a combination of 
better education and stricter journal editing

ITMC poses no obstacle to the examination of 
trivial hypotheses. Further, it requires 
substantially greater insight by researchers to 
ensure that candidate hypotheses adequately 
represent biologically relevant models and 
include a good range of possible approximations 
to the truth. Some researchers may confuse the 
idea that a model is the ‘best’ out of a range of 
candidate models, with the notion that it is a 
good model

Leads to arbitrary 
inferences (Johnson 1999) 
that are often poorly 
interpreted and 
incompletely reported 
Johnson 1999; Anderson, 
Burnham & Thompson 
2000)

These criticisms are well supported. 
Reporting of NHT statistics must be 
improved, with a focus on effect sizes and 
full reporting of inferential statistics, 
regardless of their relationship to arbitrary 
cut-offs (e.g. α = 0·05). It is important to 
recognize that a failure to reject the null 
hypothesis is not evidence supporting the 
null hypothesis. Scientists must move away 
from the bias towards reporting only 
positive results, in order to avoid bias in 
subsequent meta-analyses

ITMC employs ‘some simple rules of thumb’ 
(Burnham & Anderson 2001) for assessing the 
relative merits of competing models. Whether 
these rules of thumb are any better supported 
than the α = 0·05 rule of thumb in NHT is 
unclear. Any use of confidence intervals 
implicitly invokes some arbitrary threshold of 
biological importance. Users of ITMC must 
also be careful to provide all necessary 
information

Inappropriate for analysis 
of observational data 
(Anderson, Burnham & 
Thompson 2000)

We disagree that this is always the case. NHT 
analysis of observational data may be 
helpful both when we have strong a priori 
grounds to suspect that one factor will 
explain an effect and when the question we 
are trying to answer is unaffected by other 
potential influences

ITMC offers no solution to the problem that 
unconsidered parameters may influence data 
collected in circumstances other than 
controlled experiments. However, ITMC is 
likely to be a more powerful tool for inference in 
systems where multiple factors may underlie an 
effect

Inappropriate for model 
selection (Burnham & 
Anderson 2002)

Where multiple hypotheses are plausible, we 
agree that a range of flaws exists in NHT 
approaches to comparing hypotheses. In 
such cases, ITMC represents a far more 
powerful inferential tool

Not applicable

May be subject to data 
dredging (Anderson, 
Burnham & Thompson 
2000)

 We accept this criticism of NHT but stress 
that data dredging may take different forms. 
A posteriori efforts to improve model fit by 
adding parameters are to be avoided but 
thorough and careful exploratory data 
analyses may well be important and 
revealing.

ITMC is equally prone to a related problem of 
‘model dredging’. Instances where researchers 
generate a few markedly different models based 
on substantially different parameters (and 
substantially different hypotheses) are relatively 
rare. More typical are nested combinations of a 
large number of parameters, representing 
subsets of a single overarching hypothesis

Cannot be used in concert 
with ITMC

We accept that the two inferential paradigms 
are very different but see no reason why both 
cannot be used to increase confidence in the 
findings of studies and to facilitate our 
understanding of cause and effect

Not applicable

*Note, here we cite a few papers in which these issues are discussed extensively. References to further discussion of the problems 
can be found in those papers.
†We do not suggest that the criticisms of NHT apply to ITMC as it is proposed (on the contrary, advocates of ITMC have been 
very careful in drawing attention to misuses of the approach; Anderson & Burnham 2002). However, despite the relative infancy 
of the approach, some errors of method, presentation and interpretation have already begun to establish within ecology.
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uptake) may be so low, or other toxins so concentrated,
that the effect of  lead on mortality in ducks may be
immaterial. Without demonstrating a measurable effect
of nitrogen or lead that, furthermore, is highly unlikely
to be the result of chance, should we indulge in fertiliz-
ing fields or removing lead pellets from duck habitat,
both of which are expensive? The history of ecological
management, and biological conservation in particu-
lar, is rich in examples of costly mistakes resulting from
presumptuous acceptance of  apparently ‘obvious’
hypotheses (Caughley 1994). We must not, by default,
denigrate approaches that ask simple questions rigor-
ously, using binary decision paths.

The criticism that null hypotheses are often trivial
arises, we suggest, from three common misconceptions.
The first of  these is that the null should be interesting
in its own right. Clearly, however, the NHT analysis
structure dictates that the ‘interesting’ possibilities are
framed as the alternative hypothesis. The null is, by
definition, the converse of this and therefore often
appears uninteresting. The important thing to notice is
that the null is not independent but is part of a coupled
statement (null and alternative) which defines the area
of interest. The two statements should be viewed as a
whole, not broken apart.

The second misconception concerns the purpose of
the null. When researchers define a null hypothesis as a
step towards designing a study, it is rarely their intent
that the study should merely support or reject that null.
The null and its alternative contain specificity about
the parameter(s) or characteristic(s) of the populations
to be compared. The null is defined to frame a question
about effect sizes (Eberhardt 2003) and, in that context,
serves as a yardstick against which to measure an effect.
This purpose does not require that the null is plausible,
merely that it is chosen to represent a suitable baseline
against which to measure the effect of interest.

The third misconception relates to what constitutes
a suitable baseline. An apparently widespread belief  is
that the only acceptable null is designated as ‘there is no
difference between 

 

a

 

 and 

 

b

 

’ or ‘there is no effect of 

 

a

 

 on

 

b

 

’ (Cohen 1994). Eberhardt (2003) stated that ‘if  the
alternative hypothesis is something other than “no
effect”, then things get very complicated’, but gave no
reasons for the cause of this undesired complexity. We
are not convinced of the accuracy of this statement. For
example, when we use a two-sample 

 

t

 

-test, we are test-
ing a null hypothesis of the form 

 

H

 

0

 

: 

 

µ

 

1

 

 = 

 

µ

 

2

 

, where 

 

µ

 

1

 

and 

 

µ

 

2

 

 represent the means of populations 1 and 2,
respectively. Typically, however, we are most interested
not in whether there is a difference but, rather, in the
magnitude of a potential difference. Thus, it would be
equally valid to frame the null in terms of predeter-
mined biological significance (Cohen 1994). For exam-
ple, consider a common issue in environmental law.
When an entity discharges effluent into a watercourse,
there is typically a threshold increase in the pollutant
above background (control), above which that entity
will be found guilty of polluting the watercourse. If  that

threshold increase were, for example, 5 p.p.m., examin-
ing the company’s guilt would be a perfect case for
NHT and, moreover, for a null constructed on the basis
of a consequential difference. Multiple samples could
be taken from upstream and downstream of the dis-
charge and we could test a null hypothesis of the form

 

H

 

0

 

: 

 

µ

 

1

 

 + 5 = 

 

µ

 

2

 

, where 

 

µ

 

1

 

 is the mean concentration (in
p.p.m) of that pollutant upstream of the discharge and

 

µ

 

2

 

 is the mean concentration downstream of the dis-
charge. Appropriate sample sizes to confer suitable
power on such a test (Goodman & Berlin 1994) could
be determined in advance and standardized for par-
ticular questions. The probability with which 

 

H

 

A

 

 could
be supported would be the probability of guilt, a value
that could be determined by statute or common law.
Given that comparators such as Akaike’s information
criterion (AIC) cannot be used to compare models of
different data sets, it is hard to see how an ITMC approach
could confront the same type of question with similar
rigidity and clarity.

The data collected for the above example would be
no different whether we were testing a null of the form

 

H

 

0

 

: 

 

µ

 

1

 

 = 

 

µ

 

2

 

 or of the form 

 

H

 

0

 

: 

 

µ

 

1

 

 + 5 = 

 

µ

 

2

 

. However,
nulls chosen with imaginative forethought may be far
more plausible, more interesting and, most importantly,
more closely focused on the biological significance of
our question. Such nulls would also be robust to the
criticism that a sufficient sample size will always permit
their rejection. Finally, careful prior consideration to what
effect size will be of practical importance will facilitate
the use of power analysis, enabling researchers to deter-
mine in advance whether 

 

β

 

 (the probability of type II
error) can be rendered acceptably low and, thus, whether
their data collection is likely to be worthwhile (Cohen 1992).

 

Use, reporting and interpretation of NHT analyses 
can be improved

 

Three well-established criticisms of NHT are that
thresholds for statistical significance are arbitrary, that
statistical reporting is often uninformative and that the
approach is open to abuse. Certainly, statistical reporting
by ecologists can be woefully inadequate (Anderson,
Burnham & Thompson 2000) and there is nothing
sacred about the 0·05 level of 

 

α

 

 that guarantees an
appropriate trade-off  between acceptable type I and
II error probabilities (a decision which, in many cases,
requires some form of cost–benefit analysis of the risks
posed to science or society by false positive or false
negative results). Increasingly, however, ecologists and
journal editors recognize that the reporting of effect
sizes, their precision and associated 

 

P

 

-values (whether
‘significant’ or ‘non-significant’) should be mandatory.
Thoughtful consideration of the balance between type
I and type II errors is also becoming more common.
These arguments are a focus of  the first edition of

 

Significance

 

 (the newly launched journal of 

 

The Royal
Statistical Society

 

) (Reese 2004). Information criteria
enthusiasts are leading the way by reporting criterion
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scores for all tested models (and not discarding some
that fall beyond an arbitrary threshold) but the need for
better reporting of summary and inferential statistics
applies to both NHT and ITMC approaches, a point
that the proponents of ITMC have made clear (Anderson

 

et al

 

. 2001). We should be as critical of an experimental
study that reports significance without reporting effect
sizes and their precision, as of an observational one
that merely ranks a series of alternative models and
their AIC scores.

An important point relating to the arbitrary nature
of  ‘significant’ 

 

α

 

-values is that whenever we give a
confidence interval, we are (consciously or otherwise)
employing an 

 

α

 

-value to do so. Most commonly we use
95% confidence intervals, utilizing an 

 

α

 

-level of 0·05.
Whether or not 

 

P

 

-values are given, any indication that
two means differ because their confidence intervals do
not overlap, or that a value is unlikely to be one or zero
because these fall outside its confidence interval, is
a frequentist approach, directly analogous to NHT
(Efron & Tibshirani 1993). In spite of warning against
mixing NHT with ITMC, Burnham & Anderson (2002)
themselves provide several examples of where this may
be useful. In particular, when assessing the merits of
various competing models during ITMC, it is often
necessary to use a variety of methods to make inferences
about which model is best. One method is to look at the
coefficients of parameters in the models and determine
whether these differ from zero. Despite an ironic use of
quotation marks around the word ‘significant’, this is
precisely the approach used by Burnham & Anderson
(2002). In spite of the emphasis on multiple methods for
inference, there remains a danger that such approaches
to ITMC could lead to equally arbitrary inferences to
those made in NHT.

Finally, three insidious practices of  frequentists,
widespread in ecology, are equating (i) a failure to reject
the null hypothesis ‘there is no difference between treat-
ments A and B’, with the assertion that ‘treatments A
and B are the same’ (Johnson 1999, 2002); (ii) the prob-
ability with which the data could have been obtained,
given the null hypothesis, with the probability that the
null hypothesis is true (Carver 1978; Cohen 1994); and
(iii) poor support for the null hypothesis, with strong
support for the alternative hypothesis (Carver 1978).
The first of  these is common where researchers wish
to show that data from two treatments can be grouped
for subsequent analysis. A simple, yet common, ploy for
doing this is to test for differences between A and B
with low power (high type II error probability). Clearly,
in this case, the null and its alternative should be
reversed and the onus should be on the researcher to
prove that the new, non-trivial null (that A and B differ)
can be rejected (i.e. the probability that A and B differ
is sufficiently small that it can be treated as very unlikely).
This approach of  reversing hypotheses is the basis
for equivalence tests (Robinson & Froese 2004), more
commonly employed in analyses of pharmaceutical tri-
als and studies of environmental toxicology.

The second problem relates to ecologists’ under-
standing of  the logical basis of  NHT and is far less
easily treated. In a commentary on the subject of
misapplication of NHT, Robinson & Wainer (2002)
recommended that overcoming such problems will
involve a mixture of enlightened journal editors and
improved education of users of statistical procedures.
Traditional NHT emphasizes type I error probabilities,
whereas a more rigorous Fisherian approach emphasizes
the importance of both error types and their associated
probabilities.

The third abuse of  NHT interpretation (that of
equating a low 

 

P

 

-value as strong evidence for the alter-
native hypothesis) is perhaps the most widespread of
the three. The advice of Carver (1978) should be the
focus of all scientists, students and practitioners alike:
‘Even if  the null hypothesis can be rejected, several
other alternative or rival hypotheses still must be ruled
out before the validity of the research hypothesis is con-
firmed. Only after rigorous theorizing, careful design
of experiments, and multiple replications of the find-
ings in varied situations should one contend that the
probability is high that the research hypothesis is true’.

In summary, the practice of examining ecological
data employing NHT includes far too many examples
of sloppy implementation, poor reporting, arbitrary
selection of  significance levels and incorrect inter-
pretation. However, these are not inherent problems
with NHT nor is ITMC immune to similar abuse. Most
commentaries on the subject (Carver 1978; Cohen
1994; Kirk 1996) have identified the highly informative
properties of confidence intervals and have urged their
increased use for all effects of interest. We note that
modern, computationally intensive techniques are now
available to derive confidence intervals for almost any
population parameter (Efron & Tibshirani 1991) and
we strongly recommend their use.

 

NHT analyses of observational data may be valuable

 

Burnham & Anderson (2002) concede that NHT has
utility for the analysis of experimental data but caution
that analyses of observational studies should be viewed
largely as a problem of model selection. The basis of
this argument is that in observational studies putative
causative factors cannot be isolated by our sampling
design. We suggest that: (i) unconsidered parameters
that covary with examined parameters can cause prob-
lems with inference whether data are analysed using
NHT or ITMC; and (ii) where there are strong a priori
grounds to expect a single causative factor to be impor-
tant and no indication that synergistic or confounding
factors may covary, and where we are interested less
in the underlying reasons for differences between two
populations and more in determining whether a biolo-
gically significant difference exists, then NHT analyses
of observational data may be valuable.

An example of where we have strong a priori grounds
to expect that a single factor will explain an effect, is in
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a study of the effect of the pollutant atrazine on demas-
culinization in a frog species. To examine this, we might
identify a range of sites in which the species occurs,
select a set of sites randomly, and measure both the
concentrations of atrazine in surface waters and the
proportion of males with developmental abnorma-
lities. We might then test the hypothesis that the dose–
response curve in the field would be non-linear and
similar to that found in the laboratory, with the highest
effect of atrazine found at intermediate levels (Hayes

 

et al

 

. 2003). Indeed, we might test the hypothesis that
the levels that elicit the highest incidence of develop-
mental abnormalities in male frogs are the same as
those that do so in the laboratory.

It would be possible to begin our study of atrazine
and frog development with multiple hypotheses that
translate into a variety of  candidate multiparameter
models for comparison. These models may include
linear and non-linear effects of a variety of factors,
including atrazine concentration and, perhaps, surface
water temperature, incident solar radiation, land use
and others. However, Burnham & Anderson (2002)
stressed that hypotheses should be generated a priori,
usually on the basis of personal knowledge concerning
the phenomenon. The case of atrazine and frog develop-
ment is an excellent example of where prior evidence
strongly links a single causative factor to a phenom-
enon. It seems reasonable to conduct a Fisherian study
of the consequences of that single factor. If  the results
indicate that a large amount of the variation between
sites in the incidence of  developmental abnormality
is explained by atrazine concentration, then the need
for more complex, multiparameter analyses may be
obviated. We may make recommendations on the use
of atrazine in relation to conservation without recourse
to ITMC methods.

The example given above is a specific case of a more
general point. Many observational studies are under-
taken because prior evidence indicates that a single
factor plays an important role in some natural phe-
nomenon. If  these studies (which are ideally suited to
analysis by NHT methods) indicate that the factor does
indeed explain much of the observed variance, there
may be no reason to indulge in more complex multi-
parameter analyses. Equally, if  an NHT study indicates
that the studied factor is a poor predictor of the phe-
nomenon of interest, then we may wish to follow the
study up with an ITMC approach.

A second situation where NHT is appropriate for
evaluating observational data is where we are inter-
ested in the differences between two populations with-
out necessarily needing to determine the causes of
putative differences. For example, if  a researcher had
developed a model to assess the status of a population
in one area, it may then be useful to apply it to a second
area. If  density regulation is a key component of that
model, it may be important to determine whether
territory size differs substantially between the two
areas. If  it does, elements of the model may need to be

adapted for application to the second area. This is true
regardless of the factors underlying differences in ter-
ritoriality between the two areas.

We conclude that NHT is most likely to be of use in
observational studies where we are interested in ana-
lysing univariate (or occasionally bivariate) causality,
either because we have good reason to believe that a
univariate model will explain much of the variation in
a system, or where insufficient knowledge renders for-
mulation of reasonable models a ‘fishing expedition’.
Importantly, there is no reason why the sampling dis-
tribution of  the test statistic cannot be inferred from
a post-hoc analysis of, for example, residuals from a
regression line (e.g. Motulsky & Ransnas 1987, p. 370)
or distribution of data collected. Furthermore, for
observational data that do not conform to the null dis-
tribution of the test statistic, a variety of non-parametric
methods is available to analyse these data using NHT.
In particular, non-parametric bootstrapping approaches
make no distributional assumptions beyond those
indicated by the observed data, but have been shown to
be very powerful (Efron & Tibshirani 1991, 1993).

 

NHT is inferior to ITMC for model selection

 

A variety of problems exists with using NHT to select
between multiple competing hypotheses. These are well
summarized by Burnham & Anderson (2002). In
particular, making multiple comparisons with a tool
designed explicitly for comparisons between a single
null and its alternative is inappropriate. This is espe-
cially problematic because in NHT procedures used to
select between models (using, for example, likelihood
ratio tests in stepwise regression procedures), the extent
of multiple comparisons is often implicit rather than
explicit, and is not always clear. ‘All subsets’ approaches
(where a statistical software package evaluates models,
often numbering in the thousands or millions, con-
structed from every possible combination of measured
variables) require little biologically motivated fore-
thought on the part of the researcher and may, as a
result, lead to the selection of  spurious models of
limited biological generality. In NHT model selection,

 

α

 

-levels influence which parameters are accepted or
rejected from multiparameter models. A low 

 

α

 

-level
will lead to the adoption of a highly parsimonious
model that, relative to poly-dimensional (or even
infinite dimensional) reality, will be highly biased. A less
stringent 

 

α

 

-level will favour the identification of spuri-
ous treatment effects and the inclusion of spurious
parameters. There is no satisfactory statistical basis for
determining which 

 

α

 

-level will lead to an appropriate
trade-off between bias and variance, a problem of NHT
to which ITMC is not vulnerable (Burnham & Anderson
2002). Finally, the statistical significance of  models
selected by NHT methods can be heavily influenced
both by sample size and number of parameters in can-
didate models, and selected models may vary according
to the precise process of  parameter addition and
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rejection (Derksen & Keselman 1992). Marginal para-
meters (with coefficient estimates and standard errors of
a similar magnitude) will only be selected when data sets
suggest a large absolute coefficient value; as such, the
importance of these parameters is very likely to be
biased (Burnham & Anderson 2002). Approaches
based on maximum likelihood more typically produce
unbiased estimators (Wackerly, Mendenhall & Schaeffer
1996). All of these problems with NHT are serious and
well documented. We agree that studies which aim to
identify the most informative from a variety of multi-
variate causal models are best analysed using ITMC’s
weight of evidence approach, and we strongly urge
researchers and editors alike to consider the advant-
ages of ITMC over NHT in model selection.

 

A priori hypotheses do not always reveal 
underlying phenomena

 

The proponents of ITMC are devoted champions of a
priori hypothesis formulation and severe critics of
data dredging (the practice of performing multiple a
posteriori interrogations of data in order to determine
whether unexpected hypotheses might explain patterns
in the data). We absolutely agree that the practice
of ‘chasing’ observed phenomena by iteratively fitting
additional parameters to explanatory models is mis-
directed and very likely to lead to overfitted models with
low generality (Ginzburg & Jensen 2004). However,
biologists cannot even begin to explain every biological
phenomenon in advance and some phenomena can,
and probably should, surprise us. Lacking NHT, a
list of  plausible, multiparameter candidate models
for evaluation (complete with interactions and non-
linearities where appropriate) is left entirely to the
intuition and qualitative imagination of  the model
builder. This would be a poor substitute for candidate
models informed by exploratory data analysis (EDA)
and there is no reason why the results of those analyses
should not be published (Eberhardt 2003). Frair 

 

et al

 

.
(2004) give an example of how NHT-based exploratory
analyses can be used to inform candidate models for
subsequent ITMC analysis. Often the most interesting
and fertile results of even the most carefully planned
research are unexpected. Detailed exploration of the data
using a range of graphical and statistical approaches may
reveal unexpected patterns that lead to new hypotheses.

If  only models that are defined a priori are deemed
worthy of consideration, researchers may be restricted
in their outlook or willingness to consider previously
unthought of hypotheses, and might be prevented from
detecting surprises in their data. Data dredging may be
a ‘poor approach for making reliable inferences about
sampled populations’ (Anderson, Burnham & Thompson
2000) but it can be a fertile source of novel hypotheses
and plausible candidate models (Anderson & Burnham
2002). The proponents of ITMC seem to throw a blanket
of condemnation on EDA and its emphasis on open-
minded exploration (Hoaglin, Mosteller & Tukey 2000).

Of course we must be wary of the statistical meaning of
the ‘inferences’ that can be gleaned from data dredging,
but we should not, as a matter of principle, disregard
the insights that a creative and thorough data analysis
can bring. There is a danger that a stifling adherence
to rigid methodologies may arise from the emphasis
placed on a priori hypotheses by proponents of ITMC.

 

Analyses that employ both frequentist and 
information–theoretical approaches may be 
revealing

 

Anderson and colleagues warned that researchers
should not mix ITMC and NHT, as this involves
mixing differing inferential paradigms (Anderson 

 

et al

 

.
2001; Anderson & Burnham 2002; Burnham & Anderson
2002). We agree that, given the broadly different cir-
cumstances under which the two methods are most
appropriate, this will often be good advice. However,
we suggest that there are three reasons why this pro-
hibition should not be taken as absolute. First, as we have
already discussed, NHT can be used to both bolster
confidence in the coefficients of models (see the section
on statistical reporting, above) and inform candidate
models for ITMC analysis (see the comments on a pri-
ori hypotheses above).

Secondly, users of ITMC often judge competing
hypotheses in terms of differences in their information
criteria scores, e.g. 

 

∆

 

i

 

. In contrast to the absolute meas-
ures given by NHT statistical analysis, 

 

∆

 

i

 

 is obviously
a relative parameter, meaningful only in terms of its
relation to the best model examined. Some authors
have suggested that concentrating on the information
criteria of models may be less important than more
pragmatic concerns of accuracy (Chatfield 1995) and it
appears that accepting a ‘best’ model or set of models on
the basis of AIC may not always result in the selection
of the most useful model (C. Meyer & M. Ben-David,
pers. comm.) or even of  an adequate model. More
traditional approaches, such as judging models on the
basis of goodness of fit or classification success, along
with testing of  residuals, may be of  more use to those
for whom classification success of a model is more
important than knowing it is the best model of those
evaluated. For resource selection models, in particular, a
range of methods is available to judge the quality of the
best model. These include the use of  kappa statistics
(Boyce 

 

et al

 

. 2002) and relative operating characteristic
curves (Pearce & Ferrier 2000).

Finally, if  our objective is to maximize our under-
standing of a system and develop a model that best
approximates reality (within the boundaries of sup-
portable parameters), there is an argument that we
should use whatever means are available to do so. If
conventional NHT approaches and ITMC analyses,
respectively, imply that different models best describe a
phenomenon, understanding why the results of these
two approaches differ will help to isolate the assump-
tions inherent in our analyses, and may lead to a more
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comprehensive understanding of the system. If, by
contrast, both methodologies suggest one model to
be pre-eminent, this will boost our confidence in the
robustness of the model we select. Such a comparison
(between ITMC methods and hierarchical partition-
ing) underlies the confidence of Gibson 

 

et al

 

. (2004) in
identifying the relative importance of variables under-
lying habitat selection in the rufous bristlebird 

 

Dasy-
ornis broadbenti

 

. A combination of information theory
and likelihood ratio tests was also used to develop pow-
erful methods to analyse factors underlying observed
time-series of population dynamics (Dennis & Taper
1994; Dennis & Otten 2000).

 

Conclusions

 

Ecological research strives for an ideal: the develop-
ment of predictive mechanistic models that can be
applied outside the spatial or temporal context within
which they are parameterized, i.e. models of general
predictive utility. However, much research will only help
to identify one small piece in that puzzle. For example,
we might wish to build a comprehensive model to pre-
dict habitat use in a certain species, X. This does not
mean that research that aims to determine whether X
preferentially preys on prey species A or prey species B
is worthless. That finding may, ultimately, allow the
development of a mechanistic understanding of where
X is likely to be found. Furthermore, that finding
(assuming effect sizes, their precision and 

 

P

 

-values are
reported adequately) may well be based on a hypo-
thesis test of the null ‘Species X does not preferentially
select prey of species A or B’. There is a danger that an
emphasis on full, explanatory models may lead us to
overlook the fact that simple questions can be both
interesting and informative.

Many criticisms of NHT stem from sloppy applica-
tion and reporting by scientists employing the approach;
these criticisms, although fair, are not irremediable.
Effective application of  ITMC requires similar vigil-
ance executing the critical steps in the process: model
formulation, analysis, model selection and interpretation.
We contend that many biologists currently employing
ITMC have limited training in the subtle art of trans-
lating biological hypotheses into suitable statistical
models, despite the fact that successful application of
ITMC depends critically on this step. Therefore, the
pressure to adopt ITMC and dispense with NHT in
wildlife biology may result in a new era dominated by
investigations searching for the ‘best’ model among an
array of biologically meaningless candidates. We will
have substituted model dredging for data dredging.

Anderson, Burnham & Thompson (2000) stated that
‘the fundamental problem with null-hypothesis testing
is not that it is wrong (it is not), but that it is uninforma-
tive in most cases, and of relatively little use in model
and variable selection’. We contend that selecting
hypotheses with care and improving our reporting
of NHT statistics will help to ensure that NHT is not

uninformative. Furthermore, advocating ITMC need
not automatically involve denigrating NHT. When
multiple causal factors are considered, ITMC is clearly
more useful than NHT, avoiding many of the pitfalls
implicit in the supposed comparison of  two (and
only two) complementary hypotheses. However, NHT
remains a valuable tool for investigating univariate
causality. Both approaches deserve a place in the
statistical toolbox available to researchers in ecology and
evolution. As Johnson & Omland (2004) observed, the
two approaches are appropriate in different circum-
stances. It is up to us, as biologists, to recognize those
circumstances and to make the most of both tools.
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