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FITTING POPULATION MODELS INCORPORATING PROCESS NOISE
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Abstract. We evaluate a method for fitting models to time series of population abun-
dances that incorporates both process noise and observation error in a likelihood framework.
The method follows the probability logic of the Kalman filter, but whereas the Kalman
filter applies to linear, Gaussian systems, we implement the full probability calculations
numerically so that any nonlinear, non-Gaussian model can be used. We refer to the method
as the ‘‘numerically integrated state-space (NISS) method’’ and compare it to two common
methods used to analyze nonlinear time series in ecology: least squares with only process
noise (LSPN) and least squares with only observation error (LSOE). We compare all three
methods by fitting Beverton-Holt and Ricker models to many replicate model-generated
time series of length 20 with several parameter choices. For the Ricker model we chose
parameters for which the deterministic part of the model produces a stable equilibrium, a
two-cycle, or a four-cycle. For each set of parameters we used three process-noise and
observation-error scenarios: large standard deviation (0.2) for both, and large for one but
small (0.05) for the other. The NISS method had lower estimator bias and variance than
the other methods in nearly all cases. The only exceptions were for the Ricker model with
stable-equilibrium parameters, in which case the LSPN and LSOE methods has lower bias
when noise variances most closely met their assumptions. For the Beverton-Holt model,
the NISS method was much less biased and more precise than the other methods.

We also evaluated the utility of each method for model selection by fitting simulated
data to both models and using information criteria for selection. The NISS and LSOE
methods showed a strong bias toward selecting the Ricker over the Beverton-Holt, even
when data were generated with the Beverton-Holt. It remains unclear whether the LSPN
method is generally superior for model selection or has fortuitously better biases in this
particular case. These results suggest that information criteria are best used with caution
for nonlinear population models with short time series.

Finally we evaluated the convergence of likelihood ratios to theoretical asymptotic
distributions. Agreement with asymptotic distributions was very good for stable-point Rick-
er parameters, less accurate for two-cycle and four-cycle Ricker parameters, and least
accurate for the Beverton-Holt model. The numerically integrated state-space method has
a number of advantages over least squares methods and offers a useful tool for connecting
models and data and ecology.

Key words: Beverton-Holt model; Kalman filter; least-squares cf. state-space models; model-
fitting; observation error; parameter estimation; population models; process noise; Ricker model; time
series.

INTRODUCTION

Relating population models statistically to data is
central to answering many important questions in ecol-
ogy. Does a population exhibit direct, delayed, and/or
joint density dependence (Pollard et al. 1987, Turchin
1990, Turchin and Taylor 1992, Hanski et al. 1993,
Kemp and Dennis 1993, Dennis and Taper 1994, Wolda
et al. 1994, Dennis et al. 1998, Zeng et al. 1998, Saitoh
et al. 1999)? What are the relative influences of ex-
ogenous and endogenous forces in generating observed
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dynamics of populations (Hastings et al. 1993, Dennis
et al. 1995, Ellner and Turchin 1995, Costantino et al.
1997, Higgins et al. 1997, Ellner et al. 1998, Stenseth
et al. 1998, Bjornstad et al. 1999a, Kendall et al. 1999)?
Are population dynamics spatially synchronous (Gren-
fell et al. 1998, Bjornstad et al. 1999b)? Do two or
more species interact (Ives et al. 1999)? These are the
types of questions that can be addressed by fitting pop-
ulation models to data—either experimental or obser-
vational—and testing statistical hypotheses.

Using population models to analyze data is concep-
tually similar to using analysis-of-variance models to
analyze data: start with a model structure that includes
deterministic and stochastic components, estimate pa-
rameters under different hypotheses, make probabilis-
tic statements about the relationship between model



58 PERRY DE VALPINE AND ALAN HASTINGS Ecological Monographs
Vol. 72, No. 1

and data that compare hypotheses—such as P values
or Type I and Type II error rates—and consider the
biological implications of the parameterized models.
However, for population models and data the problem
is more complicated because the data are related
through time, many relevant models are nonlinear, and
there is a wide range of possible model structures. Most
importantly, there is noise in both the underlying de-
mographic process as well as our observations of pop-
ulation sizes.

The problem of simultaneously including two types
of noise has been vexing. The most common approach-
es have been to assume either that the observations are
perfect or that the process is purely deterministic, but
these assumptions can lead to biases in parameter es-
timation and hypothesis testing (Hilborn 1979, Uhler
1980, Walters and Ludwig 1981, Ludwig et al. 1988,
Ludwig and Walters 1989, Polacheck et al. 1993,
Schnute and Richards 1995, Hilborn and Mangel 1997,
Quinn and Deriso 1999). Other approaches have been
explored (Ludwig and Walters 1981, Collie and Sis-
senwine 1983, Ludwig et al. 1988, Ludwig and Walters
1989, Carpenter et al. 1994, Schnute and Richards
1995) but have the same basic shortcoming that they
do not fully handle the probability structure created by
the joint presence of process noise and observation
error.

In this paper we test a method to fit population mod-
els to data simultaneously incorporating both process
noise and observation error. The method uses state-
space models and an extension of the Kalman filter that
were developed over the past 40 yr in the engineering
and statistics literature (e.g., Kalman 1960, Meinhold
and Singpurwalla 1983, Kitagawa 1987, Harvey 1989,
1993, Tong 1990, Shumway and Stoffer 2000). A state-
space model includes two models, one for the true dy-
namics of the system with process noise, the other for
our observations of the true states of the system with
observation error. The Kalman filter is most commonly
used in engineering for estimating the state of a system
when the governing model is known, but it can also
be used to calculate the likelihood that a set of param-
eters produced a time series of data, making it useful
for maximum-likelihood parameter estimation. In its
standard uses, the Kalman filter applies to linear sys-
tems with Gaussian noises, and ‘‘extended’’ Kalman
filters use Taylor series to approximate the same cal-
culations for nonlinear systems. We extend the prob-
ability logic of the linear Kalman filter to nonlinear,
non-Gaussian systems by numerically estimating all of
the relevant probability distributions and calculations.
We refer to this as the ‘‘numerically integrated state-
space’’ method. This approach was used by Kitigawa
(1987) for the problem of non-Gaussian noise in a non-
stationary time series, and the potential for this ap-
proach was recognized before advances in computer
technology made it practical (Kitigawa 1987, Kohn and
Ansley 1987).

Approaches related to ours have recently begun to
appear in ecology, mostly in the fisheries literature
(Mendelssohn 1988, Sullivan 1992, Pella 1993, Gud-
mundsson 1994, Schnute 1994, Freeman and Kirkwood
1995, Kimura et al. 1996, Reed and Simmons 1996,
Newman 1998, Bjornstad et al. 1999a, Meyer and Mil-
lar 1999). Most of these papers used Kalman filters for
linear models or linear approximations of nonlinear
models. Meyer and Millar (1999) and Bjornstad et al.
(1999a) used the Bayesian Markov chain Monte Carlo
method (Gilks et al. 1996). Like our method, this pro-
duces likelihood calculations that can incorporate non-
linear, non-Gaussian structure. However, it differs from
our approach by taking a Bayesian view of parameters
and using different—stochastically approximated—nu-
merical methods. Schnute (1994) provides a good over-
view of different methods, contrasting especially the
‘‘errors in variables’’ approach (Ludwig and Walters
1981, 1989, Ludwig et al. 1988) with the linear and
extended Kalman-filter approach. None of these studies
systematically evaluated and compared the properties
of Kalman-filter-related methods and other methods.
Zeng et al. (1998) applied a linear Kalman filter to
insect population data, but they used it to incorporate
autocorrelated model parameters rather than observa-
tion noise.

We test the numerically integrated state-space
(NISS) method by generating noisy data with Ricker
and Beverton-Holt models and then fitting the gener-
ated data with these models. Ricker and related models
are popular for detecting density dependence and have
thus been a focus for model-fitting and inference meth-
ods in ecology (e.g., Turchin 1990, Turchin and Taylor
1992, Dennis and Taper 1994). We compare the bias
and precision of the NISS method to two least-squares
methods: least squares with only process noise and least
squares with only observation error. The words
‘‘noise’’ and ‘‘error’’ are interchangeable in this con-
text, but we tend toward using the former for process
randomness and the latter for observation randomness.
Since the NISS method produces likelihood calcula-
tions, we also evaluate convergence to asymptotic like-
lihood-ratio distributions, which would be useful for
constructing confidence intervals, and power of infor-
mation criteria to identify correct model structure.

We first introduce the mathematics and statistics of
the method. This section can be skipped by readers
interested only in how the method performs. We then
describe a test of the method, including details of our
implementation of the calculations, which can also be
skipped. The Results section on the performance of the
method is self-contained and can be read by itself.

NUMERICALLY INTEGRATED STATE-SPACE METHOD

General framework

This introduction to state-space models follows Ki-
tigawa (1987), Harvey (1989, 1993), and Schnute
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(1994), but only Kitigawa (1987) gives the general non-
linear non-Gaussian equations, which we give here in
more explicit detail. Suppose that a population is gov-
erned by the stochastic process

n 5 F(n , n )t t21 t21 (1)

where nt is the population state at time t, nt is a random
variable for the process noise at time t, and F deter-
mines the new population state as a function of the old
population state and the process noise. In the simplest
case, the population state nt would be population size,
but in more complicated cases it could be a vector of
population sizes of different age or stage classes, or
any other vector of population information. Similarly,
nt may be a single number or a vector of more than
one noise input to the system.

Suppose that our observation, yt, at time t of nt is
governed by the stochastic observation model

y 5 G(n , « )t t t (2)

where «t is a random variable for the observation noise
at time t, and G determines the process of observing
nt with error «t. An observation yt may be a single
estimate of population size or a vector of estimates of
age or stage classes or other population information.
An observation error «t may be a single number or a
vector. There are parameters to estimate contained in
the functions F and G as well as in the distributions
of values of nt and «t, and we call the vector of these
parameters Q. In the examples in this paper, Q is con-
stant over time.

In our exposition, we assume that values of nt and
«t are each serially independent, independent from each
other, and have constant distributions. In time-series
terminology, the population model (Eq. 1) is a nonlin-
ear, first-order, autoregressive process (Tong 1990).
However, the state-space model structure (Eqs. 1 and
2) can be extended to more complicated cases, includ-
ing models of multiple species, multiple stage classes,
and/or time lags, and to models where some dimensions
of the state variable are not estimated by the obser-
vations. The use of separate equations for the true un-
derlying state of the system and observations of that
state is what makes this a ‘‘state-space’’ model.

In any particular application, the observation model
(Eq. 2) would reflect the method used to obtain the data
yt. In a simple case data may be obtained from direct
but inaccurate estimation of all of the stage classes of
nt. However, in many cases data may be estimates of
only one of several components of nt, as when only
adults can be surveyed but juveniles are built into the
population model F (e.g., Higgins et al. 1997), or es-
timates of a combination of components of nt, as when
stage classes must be lumped for estimation but mod-
eled separately in F. Another example of a stochastic
observation model would be a model for mark–recap-
ture data. In each of these cases, given a true unknown
population state, there can be an observation error that

is independent of the process noise that led to that state.
Coarse observations are obviously less desirable than
detailed observations, but it is useful that the state-
space framework naturally accommodates either situ-
ation.

Likelihoods

We begin by defining likelihoods, which are a com-
mon foundation for statistical inference (e.g., Stuart
and Ord 1991, Edwards 1992, Dennis et al. 1995, Hil-
born and Mangel 1997). Suppose we have a series of
T observations y1, . . . , yT. We label the first t obser-
vations as yt, so subscript t denotes the particular ob-
servation of y at time t, and superscript t denotes the
series of observations up to and including time t, (y1,
. . . , yt) (following Schnute 1994). The entire series is
yT. We first explain how to calculate the likelihood that
a fixed set of parameters, Q, produced the data yT. Then
we can maximize the likelihood over the parameter
space and compare it to the likelihood under a null
hypothesis.

The likelihood of a possible choice of parameters Q
is defined as the probability that if those were the real
parameters, they would have produced the observed
data. This is written as L(Q z yT) 5 P(yT z Q). Here ‘‘L’’
stands for likelihood and ‘‘P’’ for probability. The dif-
ference between them is that L is viewed as a function
of the parameters given the data and P is viewed as a
function of the data given the parameters. For a time
series, the likelihood can be conveniently expressed
recursively as

T
T t21L(Q z y ) 5 P(y z Q) P(y z y , Q). (3)P1 t

t52

This equation says that the probability of the entire
sequence of observations is the probability of the first
observation times the probability of the second given
the first times the probability of the third given the first
two, and so on. The form of this equation suggests an
iterative calculation procedure.

The discrete case

We now consider calculation of the likelihood, Eq.
3, using the model’s components (F, G, and the dis-
tributions of nt and «t) for some choice of parameters,
Q. We introduce the calculations as if the states and
observations take only discrete values, such as integers,
before giving the full equations for states and obser-
vations that can take a continuous range of values. This
allows simplification of the equations and emphasis on
the concepts.

The likelihood can be calculated iteratively forward
in time: compute P(y1 z Q) first, then use this to compute
P(y2 z y1, Q) (note y1 5 y1), and in general use the results
of step t 2 1 to compute P(yt z yt21, Q). We violate this
pattern in one respect: P(y1 z Q) depends on P(n1 z Q),
but for explanation purposes we assume we know
P(n1 z Q) for all values of n1. Later we use the stationary
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distribution of the population model (Eq. 1) for this
initial state distribution and describe how this is ob-
tained. The calculations are for a specific set of param-
eter values, so the dependence on Q will be omitted
from here on.

Step 1.—For the probability of the first observation,
we get

P(y ) 5 P(n )P(y z n ) (4)O1 1 1 1
n1

where the sum is over all possible values of n1. The
interpretation of this equation is that one way to obtain
observation y1 is to have state n1 and then observation
y1 given n1, and we must sum the probabilities of all
such combinations to get the total probability of y1.
The probability of an observation given a state,
P(y1 z n1) is defined by Eq. 2. For example if the ob-
servation error is additive (y1 5 G(n1, «1) 5 n1 1 «1),
then P(y1 z n1) 5 P(«1 5 y1 2 n1).

Our final use of the first observation is to adjust the
distribution of states to reflect the information con-
tained in the first observation. Mathematically, the state
n1 and the observation y1 are jointly distributed random
variables, and we want the conditional distribution of
n1 given y1. This is given by

P(n )P(y z n )1 1 11P(n z y ) 5 . (5)1 P(y )1

This equation will be used in Step 2.
Step 2.—For the probability of the second obser-

vation, we get

1 1P(y z y ) 5 P(n z y )P(y z n ) (6)O2 2 2 2
n2

where the sum is over all possible values of n2. This
is similar to Eq. 4, but now we must deal with P(n2 z y1),
the probability of state n2 given the information up to
the previous observation. This is given by

1 1P(n z y ) 5 P(n z y )P(n z n ) (7)O2 1 2 1
n1

where the sum is over all possible values of n1. The
interpretation of this equation is that one way to have
state n2 given observation y1 is to have state n1 given
y1 and state n2 given n1, and we must sum the proba-
bilities of all such combinations. Note that P(n2 z n1) is
defined by the stochastic population model (Eq. 1). We
write P(n2 z n1) rather than P(n2 z n1, y1) because y1 is
uninformative about n2 if n1 is known. Combining Eqs.
6 and 7, we get

1 1P(y z y ) 5 P(n z y )P(n z n )P(y z n ) (8)O O2 1 2 1 2 2
n n1 2

where the sums are over all possible values of n1 and
n2 that could have led to observation y2.

Parallel to step 1, our final use of the second obser-
vation is to adjust the distribution of states at time 2
to reflect the information contained in the second ob-

servation. Here n2 (given y1) and y2 are jointly distrib-
uted, and the conditional distribution of n2 given y2 and
y1 is

1P(n z y )P(y z n )2 2 22 1P(n z y ) 5 P(n z y , y ) 5 . (9)2 2 2 1P(y z y )2

Note that whereas in Eq. 6 we are interested in only a
particular value of y2—our observation—in Eq. 9 we
are interested in all values of n2, and the numerator of
Eq. 9 for each value of n2 corresponds to one term in
the sum of Eq. 6.

Later steps.—All subsequent steps are similar to step
2. For step t, we begin with P(nt21 z yt21) from the pre-
vious step, calculate P(yt z yt21), and update the state
distribution to be P(nt z yt). The formulae for P(yt z yt21),
P(nt z yt21), and P(nt z yt) are the same as Eqs. 6, 7, and
9, respectively, but with ‘‘t 2 1’’ in place of ‘‘1’’ and
‘‘t’’ in place of ‘‘2.’’

It is worth commenting on the meaning of the prob-
ability of state nt given the observations up to time
t 2 1. One can imagine an infinite set of repetitions of
the process up to time t (i.e., each repetition gives a
series of length t, and there are infinitely many such
repetitions). If we take the subset of those repetitions
that have exactly the same observations as ours up to
time t 2 1, then P(nt z yt21) is the proportion of those
that have state nt at time t.

A comment is also due about the conditional prob-
ability equations (Eqs. 5 and 9). Each of these equations
is Bayes’ law, but this is not a philosophically Bayesian
analysis. In Eqs. 5 and 9 the conditional probability
involves probability distributions for true random var-
iables – the states and observations of the system, and
parameters are viewed as fixed. Philosophically Bayes-
ian analyses view parameters as random variables and
reinterpret their probability distribution in terms of
‘‘degree of belief’’ or some similar concept, but this
is different from our mathematical use of Bayes’ law
(Edwards 1992, Dennis 1996, Hilborn and Mangel
1997).

The continuous case

We now introduce the calculations for continuous
probability distributions, and this requires more careful
notation. The procedure involves four related proba-
bility density functions. A probability density function
(pdf) describes the probability with which any range
of values of a continuous random variable occurs. The
first pdf is for the distribution of states nt given ob-
servations up to and including that time, yt, which is
written as (nt). In this notation for pdf’s, the sub-f tN zyt

script denotes the random variable in question, which
is written as a capitalized version of the notation for a
particular realization of that variable. The argument of
the pdf is a particular possible value of the random
variable. For example, (nt)is the probability densityf tN zyt

for the particular value nt from the distribution of all
possible values of nt given yt. This notation is a bit
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cumbersome, and in other situations one could suppress
the subscripts when they are obvious from the function
arguments. However, in what follows we sometimes
have function arguments that do not reveal what dis-
tribution is being considered, so the subscripts on f are
necessary. The other important pdf’s are (nt), thef t21N zyt

probability density of nt given the observations up to
time t 2 1; , the probability density of yt givenf t21(y )Y zy tt

observations up to time t 2 1; and (yt), the proba-fY znt t

bility density of yt given that the current state is nt.
This last pdf is defined entirely by the function G and
the pdf of «.

The likelihood equation, equivalent to Eq. 3, is now

T
TL(Q z y ) 5 f (y z Q) f t21(y z Q). (10)PY 1 Y zy t1 t

t52

Step 1.—As in the discrete case, we begin with y1

and n1 and omit Q from the notation. We again start
with the stationary distribution of the stochastic pro-
cess model (Eq. 1) as the distribution of n1 and put off
discussion of obtaining the stationary distribution.

The continuous equivalents of Eqs. 4 and 5 are

f (y ) 5 f (n ) f (y ) dn (11)Y 1 E N 1 Y zn 1 11 1 1 1

f (n ) f (y )N 1 Y zn 11 1 1f 1(n ) 5 (12)N zy 11 f (y )Y 11

respectively. Integrals in the continuous case corre-
spond to sums in the discrete case.

Step 2.—Continuing to parallel the discrete case, we
have the equivalent of Eq. 6 for the pdf of the second
observation:

f 1(y ) 5 f 1(n ) f (y ) dn . (13)Y zy 2 E N zy 2 Y zn 2 22 2 2 2

As before, this requires that we calculate the pdf of
states at time 2 given the first observation. This cor-
responds to Eq. 7 and is given for the continuous
case by

f 1(n ) 5 f 1(n ) f (n ) dn . (14)N zy 2 E N zy 1 N zn 2 12 1 2 1

Finally, the conditional distribution of n2 given y2, the
equivalent of Eq. 9, is

f 1(n ) f (y )N zy 2 Y zn 22 2 2f 2(n ) 5 . (15)N zy 22 f 1(y )Y zy 22

Later steps.—Again we can generalize that for step
t, we start with and calculate the pdf off t21(n )N z y t21t21

observation yt:

f t21(y ) 5 f t21(n ) f (y ) dn . (16)Y zy t E N zy t Y zn t tt t t t

This requires the pdf of state nt:

f t21(n ) 5 f t21(n ) f (n ) dn . (17)N zy t E N zy t21 N zn t t21t t21 t t21

To calculate the conditional distribution of states given
the latest observation, the general equation is

f t21(n ) f (y )N zy t Y zn tt t tf t(n ) 5 . (18)N zy tt f t21(y )Y zy tt

The stationary distribution for P(n1).—We now re-
turn to an issue deferred earlier: what to use for the
distribution of (n1), which is the distribution of statesfN1

before we have conditioned on any observations. It
turns out that under a wide range of circumstances, a
Markov chain model such as Eq. 1 produces a station-
ary distribution of population states. A stationary dis-
tribution can be thought of as a stochastic equilibrium
(e.g., Turchin 1995). If the system has been in operation
for a long time and we start observing it at a random
time, the distribution of population states will be the
stationary distribution. Most stochastic population
models with some type of regulation and vanishingly
small chance of extinction will have a stationary dis-
tribution. In contrast, models that allow arbitrarily large
excursions of population size, such as random walks,
do not have stationary distributions.

Tong (1990:122–126) more formally discusses con-
ditions in which stationary distributions exist and con-
nects them to the idea of ‘‘stochastic stability.’’ Rough-
ly speaking, a stationary distribution will exist for mod-
els that lack fixed periodicity, allow all states to even-
tually be reached from all other states (i.e., lack subsets
of states that trap the system), and tend to return from
large excursions away from common states. Stationary
distributions for stochastic models often exist if the
underlying deterministic model has a basin of attrac-
tion, even if the deterministic dynamics converge to
limit cycles or chaotic attractors. For the examples we
use in this paper, stationary distributions exist for all
model-parameter combinations we study. There are pa-
rameters for these models that lack density-depen-
dence, and hence allow arbitrarily large excursions and
lack a stationary distribution (e.g., the Ricker with no
density-dependence, Dennis and Taper 1994), but none
of our parameter estimates approach these parameter
values.

A stationary distribution for (1) can be calculated by
iterating the projection equation for the pdf of popu-
lation states,

f (n ) 5 f (n ) f (n ) dn (19)N t E N t21 N zn t t21t t21 t t21

until (n) is the same distribution as (n) (cf. Tongf fN Nt t21

1990, eq. 4.11). For example, one can start with any
distribution for (n), set (n) 5 (n), calculatef f fN N Nt t21 t

(n), and repeat until the distributions are virtuallyfNt

identical. By analogy with a deterministic system, nt

5 h(nt21), one could estimate a stable equilibrium of h
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by starting with any value nt, setting nt21 5 nt, calcu-
lating nt, and repeating until nt ø nt21. Note that Eq.
19 is the same as (17) without any conditioning on
observations. As with all of our probability calcula-
tions, we iterate (19) numerically.

Calculating pdf’s from functions of random vari-
ables.—We are still one step shy of giving usable for-
mulae for the likelihood (10); we need to relate Eq.
11–19 to the components of the process and observa-
tions models (1) and (2), namely F, G, and the distri-
butions of values of nt and «t. We consider the equations
in the form (16–18). The pdf’s of nt and «t will be
written fn(nt) and f«(«t), respectively.

A brief digression into probability theory will sim-
plify the rest of this section. Suppose X is a random
variable with pdf fX(x), and y 5 h(x) is a (differentiable)
function of x. How can we calculate the pdf of Y, fY(y),
from fX(x) and the function h? To answer this, we must
remember that probability densities provide the prob-
ability of any range of random outcomes, not of spe-
cific, exact outcomes. By saying X has pdf fX(x), we
mean that the probability that X falls in the range
[x, x 1 dx] is fX(x)dx, for infinitesimal dx. Similarly,
the probability that Y falls in the range [y, y 1 dy] is
fY(y)dy. In particular, we are interested in the range of
values [y, y 1 dy] that corresponds to the range [x, x
1 dx], i.e. either (i) y 5 h(x) and y 1 dy 5 h(x 1 dx)
or (ii) y 5 h(x 1 dx) and y 1 dy 5 h(x). The probability
that X is in the range [x, x 1 dx] must equal the prob-
ability that Y is in the corresponding range [y, y 1 dy].
Thus fY(y)zdy/dxz 5 fX(x). The absolute value is used to
cover both cases (i) and (ii) just mentioned, i.e. to avoid
negative probability. In the infinitesimal limits, dy/dx
is the derivative dy/dx 5 dh(x)/dx, which will be written
h9(x). The derivative is evaluated at the value of x that
gives y 5 h(x), which is the inverse of h, x 5 h21(y).
So, we have the general rule that

21f [h (y)]Xf (y) 5 . (20)Y 21zh9[h (y)]z

As a simple example, suppose X is uniformly dis-
tributed between 0 and 1, and y 5 h(x) 5 10x. By
intuition one can imagine that Y must be uniformly
distributed between 0 and 10. The pdf of X is equal to
1 for x between 0 and 1, which integrates to 1, as it
should to be a proper pdf. Then the pdf of Y should be
constant between 0 and 10, and must also integrate to
1, so it must be equal to 0.1. Thus the pdf of Y at the
value y is equal to the pdf of X at x 5 h21(y) divided
by the slope h9(x) 5 10. The informal reasoning behind
this justification is the same as the reasoning for a
change of variables for integration in calculus. Readers
interested in more detail are referred to introductory
texts in probability theory or mathematical statistics,
such as Rice (1988: 54–58).

Calculating pdf’s from the population and obser-
vation models.— Pdf’s for the observation probabil-

ity.—We now return to Eq. 16, and we consider first
(yt). This is the pdf of an observation given a state,fY znt t

and so will be derived from yt 5 G(nt, «t). Here we
view nt as fixed, «t as a random variable with a known
pdf (for a given Q), and yt as a function of «t. Then,
by the Eq. 20 rule, the pdf of Y is

21f [G (n , y )]« t tf (y ) 5 (21)Y zn tt t 21zG9[n , G (n , y )]zt t t

where G9 is the derivative of G with respect to «, and
G21(nt, yt) is the inverse of G for fixed state nt: the
value « that would have produced the observation
yt 5 G(nt, «). For the simple case that the expected
value of the observation is the true value of the state
and the errors due to « are linear, we have

y 5 n 1 « f (y ) 5 f (y 2 n ). (22)t t t Y zn t « t tt t

Pdf’s for the state probability.—We now move to
Eq. 17. We could derive (nt) from nt 5 F(nt21, nt21)fN znt t21

by viewing nt21 as fixed, so that nt is a function of nt21,
for which we know the pdf. However, there is an al-
ternative approach for the examples in this paper that
turns out to be helpful for implementing these calcu-
lations numerically. In this paper we will use process
models with additive noise:

n 5 F(n , n ) 5 F (n ) 1 nt t21 t21 0 t21 t21 (23)

where the subscript 0 on F indicates that this is the
function of nt21 obtained by F(nt21, 0).

This form allows us to simplify Eq. 17. The inter-
pretation of Eq. 17 is that the pdf of nt requires con-
sideration of all possible values of nt21 and nt21 that
give nt 5 F(nt21, nt21). An equivalent view using
Eq. 23 is to handle the ‘‘deterministic’’ function
nd 5 F0(nt21) first and then the additive combination of
two random variables, nt 5 nd 1 nt21, second to obtain
the pdf of nt.

The pdf of the ‘‘deterministic’’ part comes from ap-
plying the Eq. 20 rule to nd 5 F0(nt21):

21f t21[F (n )]N zy 0 dt21f t21(n ) 5 (24)N zy dd 21zF9[F (n )]z0 0 d

where and are the derivative and inverse, re-21F9 F0 0

spectively, of F0.
The pdf of nt is then

f t21(n ) 5 f t21(n 2 n) f (n) dn. (25)N zy t E N zy t nt d

This equation is known as a convolution integral, and
we use the trick of Fourier transforms to calculate it
numerically.

Relation to the Kalman filter

When F and G are linear functions in both n and n
or «, respectively, and n and « are Gaussian, the above
equations simplify enormously. Linear functions of
Gaussian distributions as well as conditional distri-
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butions of multivariate Gaussian distributions are
themselves Gaussian and require only simple calcu-
lations for the mean and variance of each distribution;
these are the Kalman-filter equations (Harvey 1989,
1993). For nonlinear functions and/or non-Gaussian
noises, the above equations can be closely approxi-
mated by numerically discretizing the distributions (Ki-
tigawa 1987), which is the approach we use here. An
intermediate approach to handle nonlinearity is to ap-
proximate functions of distributions by a Taylor series,
using derivatives of F and G and forcing the distri-
butions to remain Gaussian by tracking only their mean
and variance. We used the more precise full numerical
calculations because ecological models can be sub-
stantially nonlinear and hence produce non-Gaussian
distributions and because with few data points in most
ecological time series and advances in computer speed,
it is feasible to do the full, accurate statistical calcu-
lations with them.

TESTING THE METHOD

The models

A crucial step in evaluating a model-fitting method
is to generate data from a known model and see how
well the method estimates parameter values. This
makes it possible to apply methods to real data guided
by knowledge of their estimation properties. We stud-
ied the properties of the new method by comparing it
to least-squares methods and testing agreement of its
likelihood ratios with theoretical asymptotic distribu-
tions. We used two models, the stochastic Beverton-
Holt model,

l
nt21M 5 M e (26)t t21 1 1 gMt21

and the stochastic Ricker model,

r2bM nt21 t21M 5 M e e .t t21 (27)

For both models, Mt is the population size at time t,
measured on an arbitrary but fixed scale such as 100s
of individuals, and nt is the process noise variable,
which is normally distributed with mean 0 and variance

.2sn

For the deterministic part of the Beverton-Holt mod-
el, l is the population growth rate when the population
is small, (l 2 1)/g is the equilibrium population size,
l/g is the limit of the maximum of Mt and occurs as
Mt21 → `, and when g . 0 there is density dependence.
For the deterministic part of the Ricker model, er is
population growth rate when the population is small,
r/b is the equilibrium population size, er21/b is the max-
imum of Mt and occurs for Mt21 5 1/b, and when b .
0 there is density dependence. A fundamental differ-
ence between the two models involves the strength of
density dependence. For the Ricker model, large Mt21

produces small Mt as a result of strong density depen-
dence. For the Beverton-Holt model, large Mt21 pro-

duces Mt close to l/g, so large populations at one time
do not produce population crashes at the next time.

The natural-logarithm form of these models is con-
venient for parameter estimation (e.g., Turchin and
Taylor 1992, Dennis and Taper 1994). Define nt 5
log(Mt), so

n 5 F (n , n )t BH t21 t21

nt215 n 1 log(l) 2 log(1 1 ge ) 1 n (28)t21 t21

for the Beverton-Holt model, and

nt21n 5 F (n , n ) 5 n 1 r 2 be 1 nt R t21 t21 t21 t21 (29)

for the Ricker model. For both models we consider
observations of nt that are unbiased but inaccurate
counts:

y 5 G(n , « ) 5 n 1 «t t t t t (30)

where «t is the observation error and is normally dis-
tributed with mean 0 and variance .2s«

Our choice of additive Gaussian process noises and
observation errors simplifies comparison of the NISS
(numerically integrated state-space) method with least-
squares methods. The NISS method could accommo-
date a wide variety of non-additive and non-Gaussian
noise and error models. However, least-squares meth-
ods assume additive Gaussian noise or error. The prob-
ability density functions (pdf’s) involved in the NISS
calculations are still highly non-Gaussian because of
the nonlinear structure of the Ricker and Beverton-Holt
models.

For the Ricker model, we considered three parameter
choices with different deterministic dynamics: r 5 1.5,
2.4, and 2.6. These parameters give a stable equilib-
rium, a stable two-cycle, and a stable four-cycle, re-
spectively, when the model is purely deterministic (Fig.
1). The Ricker parameter b does not determine stability
or cyclic behavior of the model, so we chose it to create
a constant equilibrium value across different choices
of r. Since the equilibrium value is M̂ 5 r/b, we used
b 5 r/100. This is arbitrary since the units of M remain
unspecified. The deterministic Beverton-Holt model
produces only stable equilibrium dynamics, so we con-
sidered only one choice of parameters for it. We chose
l 5 4.48 and g 5 (l 2 1)/100 in order to have the
same equilibrium and growth rate for small populations
as the r 5 1.5, b 5 0.015 Ricker model.

Process-noise and observation-error combinations

For each choice of parameters, we used three com-
binations of process noise and observation errors: large
standard deviation for both and large for one but small
for the other. The large standard deviations were 0.2,
and the small standard deviations were 0.05. In terms
of the models before log transformation, about 67% of
the time Mt11 will be within about 100sn% of its de-
terministic value given Mt and about 95% of the time
it will be within twice that range. These values are
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FIG. 1. Bifurcation diagram for the Ricker
model. Parameter r varies along the x-axis, and
parameter b is chosen by fixing equilibrium
population size, r/b, at 100. For each r, the mod-
el is iterated for 1000 time steps, and the next
1000 time steps are plotted as population size
(y-axis) values for that value of r. As r increases
past 2.0, model dynamics bifurcate from a sin-
gle stable equilibrium to a cycle alternating be-
tween two values (a two-cycle) and then four
values (a four-cycle).

approximate because ex ø 1 1 x for small x, but they
give a feel for the noises involved. These choices for
‘‘large’’ and ‘‘small’’ standard deviations are ad hoc;
in some systems 0.20 might be small, and in others
0.05 might be large.

For each choice of parameters, process noise, and
observation error, we generated 300 time series of
length 20. The first observation of each time series was
drawn essentially from a stationary distribution by it-
erating the model 1000–2000 times before taking ob-
servations. We fit these time series using the numeri-
cally integrated state-space method (NISS), least
squares with only process noise (LSPN), and least
squares with only observation error (LSOE). For the
Ricker case of r 5 1.5 and the corresponding Beverton-
Holt case of l 5 4.48, we fit the time series using the
correct model as well as the wrong model to examine
the ability of the different fitting methods to distinguish
correct model structure using information criteria.

For our examples, the NISS method generalizes the
LSPN and LSOE methods in the sense that if one as-
sumes 5 0 or 5 0, then NISS is almost equivalent2 2s s« n

to LSPN or LSOE, respectively. In each case the dif-
ference has to do with treatment of the first observation.
LSPN does not calculate a probability for the first ob-
servation, and LSOE attempts to estimate the first ob-
servation, while NISS calculates its probability from a
stationary distribution. However, after the first obser-
vation, the comparisons are exact. Under NISS with no
observation error, the conditional state distribution (Eq.
18) will describe the observation value as the only
possible state of the system (i.e., the distribution will
be like a Dirac delta function, which places all prob-
ability on a single value), which is the way LSPN treats
observations. Under NISS with no process noise, the
conditional state distribution (Eq. 18) will describe a
deterministic state as the only possible value and will
be unaffected by the observations. Thus the trajectory
of conditional state distributions will be a deterministic

trajectory, as in LSOE. This equivalence occurs be-
cause in the logarithmic form of the example models
here (Eqs. 28, 29, and 30), the observation errors and
process noises are normal and additive, which match
the assumptions of LSPN and LSOE, respectively.

Implementation of NISS

Discretization of n and f(n).—We implemented the
numerically integrated state-space method by discre-
tizing the range of possible values of n and y. We chose
minimum and maximum values, nmin and nmax, so that
all the data (for a particular time series), as well as the
extreme tails of the range of possible state and obser-
vation values under the model (estimated from a sta-
tionary distribution as calculated below) with param-
eters Q, fell between nmin and nmax. We used 4096 values
of n, which will be indexed with brackets, ‘‘[]’’:

n[1] 5 nmin

n[i ] 5 n 1 (i 2 1)Dn 1 # i # 4096min

n[4096] 5 nmax

n 2 nmax minDn 5 .
4095

Note that the n[i] serve as a range of possible values
for both n and y in the model.

A pdf for a random variable that takes values in the
range [nmin, nmax] is approximated by a set of values
f[i] 5 f(n[i]). To approximate the value of f(n) for an
arbitrary value of n, we can find the index i so that
n[i] # n , n[i 1 1] and approximate f(n) by linear
interpolation as

f [i 1 1] 2 f [i ]
f (n) ø f [i ] 1 (n 2 n[i ]) . (31)1 2Dn

Using these discretizations for n and any pdf’s of n or
y, we approximated the calculations of Eqs. 11–19.
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Projection of state distributions.—The trickiest cal-
culations to approximate are the state projections, given
for general t by Eq. 17. We discuss the simplified ver-
sion (Eqs. 24 and 25) for the case of additive process
noise. We treated this as follows. For clarity, we will
now index the discrete n values as n[ j] for nt and as
n[i] for nt21. Consider the approximations [ j] forfNt

(nt) and [i] for (nt21). The value n[ j] may bef f fN N Nt t21 t21

viewed as the center of a probability bin for nt that
ranges from n[ j] 2 1/2Dn to n[ j] 1 1/2Dn. Then the
probability that nt is in this bin is approximately

[ j]Dn. This must be the same as the probability thatfNt

nt21 is between nlow 5 (n[ j] 2 1/2Dn) and nhigh 521F0

(n[ j] 1 1/2Dn). For simplicity in this explanation,21F0

we assume nlow , nhigh and F0(n) increases between
them; the reverse situation follows similarly. To obtain
the probability that nlow , nt21 , nhigh, we need to ap-
proximate

nhigh

f (n ) dn .E N t21 t21t21

n low

To approximate this, we need to consider how nlow

and nhigh are located among the n[i]. One possibility is
that there is an index is such that n[is] , nlow , nhigh

, n[is11], which means that nlow and nhigh are between
the same pair of neighboring n[i]’s. In this case,

nhigh

f (n ) dnE N t21 t21t21

n low

n 1 nhigh lowø (n 2 n ) f [i ] 1 2 n[i ]high low Nt21 1 2[ 2

f [i 1 1] 2 f [i ]N Nt21 t213 . (32)1 2]Dn

Other possibilities are that nlow and nhigh are located
between different pairs of neighboring n[i] values. Fol-
lowing similar lines as (31) and (32), one can obtain
linear approximations of the integral of the pdf between
any values of nlow and nhigh. Note also that for the Ricker
model, there are usually two values of the inverse, so
that for each n[j], there are two pairs of values of nlow

and nhigh, and the probability that n[i] is between either
pair must be calculated.

There is a special circumstance that arises when
(n[j] 1 1/2Dn) does not exist. This occurs for the21F0

maximum n[j] such that n[j] 2 1/2Dn is less than the
maximum value of the Ricker or Beverton-Holt func-
tions, i.e., near the ‘‘turning point’’ of the Ricker at
which the Ricker switches from increasing to decreas-
ing. In this case we used the smaller and larger of the
two inverses (n[j] 2 1/2Dn) for nlow and nhigh, re-21F0

spectively. Integrating between these points gives the
probability that n[i] is in the region that produces the
highest possible values of F0(n[i]).

One reason for this numerical approach is that the
Ricker map of a pdf produces a singularity at the point

where the Ricker has zero derivative, and the Beverton-
Holt map behaves similarly for large nt21. Our approach
allows numerical near conservation of probability at
the cost of small inaccuracy in handling the singularity.
An alternative approach might be to calculate each val-
ue of ‘‘directly’’ from Eq. 24, that is, fromfNt

21f [F (n[ j ])]N 0t21f [ j ] 5Nt 21zF9[F (n[ j ])]z0 0

where ( (n[j])) is approximated by (31). However,21f FN 0t21

this approach would have the difficulty that values near
the singularity are unstable to small differences in the
grid arrangement: small grid changes can lead to large
changes in [j] when ( (n[j])) is near zero. Our21f F9 FN 0 0t

approach was stable to changes in grid arrangement
and, moreover, produced only negligible losses in total
probability: Si fN[i]Dn stayed very close to 1. Never-
theless, to limit accumulation of numerical inaccuracies
in total probability, which would affect likelihood val-
ues, we multiplied all fN[i] values by a correction factor
(very close to 1) after each time step to achieve
S fN[i]Dn 5 1. A second useful feature of our numerical
approach is that, for a particular choice of Q, the in-
verses (n[j] 6 1/2Dn) can be calculated once and21F0

then reused for each time step.
Adding process noise.—The final part of a state pro-

jection is to add process noise (Eq. 25). We accom-
plished this using a fast Fourier transform (FFT) as
implemented by Frigo and Johnson (1997). The FFT
may be thought of as a fast computational tool for
calculating integrals like Eq. 25, known as convolution
integrals. Without this trick Eq. 25 would be compu-
tationally intense because for each value nt, one must
sum over many values of nt21 and nt21. The algorithm
taking advantage of the FFT is to calculate the Fourier
transform of (nd) and fn(n) (implemented as the dis-fNd

crete Fourier transform, or FFT, of [i] and fn[i]), mul-fNd

tiply them at each frequency value, and calculate the
inverse Fourier transform of the product, which gives
the desired answer, (nt) (implemented as [i]). Thisf fN Nt t

method is especially efficient for discrete Fourier trans-
forms using a number of points that is a power of 2,
hence our choice of 4096 discretization points. Further
explanation of the theory behind Fourier transforms is
beyond the scope of this paper and is introduced by
Press et al. (1992) and many applied mathematics texts,
such as Strang (1986). In addition to the other consid-
erations for choosing nmax, we ensured that nmax was
large enough that the FFT method of adding process
noise did not incorrectly move probability from one
end of fN to the other, which can happen since Fourier
transforms treat functions as being periodic (Press et
al. 1992).

Likelihood of an observation and conditional state
distribution.—To approximate the likelihood of a sin-
gle observation, Eq. 16, with the additive error model
(Eq. 22), using our numerical discretization, we used
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f (y ) ø f [k 2 i] f (i(Dn))DnOY t N «t
i

where the index k is chosen so that n[k] 2 1/2Dn , yt

, n[k] 1 1/2Dn. This sum considers all values of nt

and «t that could produce yt. This approach treats the
yt’s as having resolution only as good as Dn, but since
we used very small Dn, this was very accurate. It was
also efficient because, for any value of s«, we needed
to calculate f«(i(Dn)) only once for each i.

Conditional distribution of states.—Following sim-
ilar lines, we approximated the conditional distribution
of states given an observation, (Eq. 18), by

f [k 2 i] f (i(Dn))N «f t[k 2 i] ø Dn.N zyt f (y )Y tt

Stationary distribution.—The stationary distribution
of n used to initiate the fitting process was obtained by
iterating Eq. 24, implemented numerically as described
in Projection of state distributions, above, until the
distribution converged to a repeating distribution, the
stationary distribution. Convergence was assessed by
requiring the sum of squared differences between fn

and over all points in the discretization to be smallerfnt21

than a convergence criterion of 0.01.

Likelihood maximization

To maximize the likelihood, we minimized the neg-
ative log likelihood using a Nelder-Mead simplex al-
gorithm adapted from Press et al. (1992). We also con-
sidered a conjugate gradient algorithm (Press et al.
1992), which can be more efficient when it works, but
for the present problem we found it to be less reliable
than the simplex algorithm. We initialized the simplex
algorithm with a random set of parameters drawn from
a large distribution around the true parameters. For
some parameter ranges there were multiple optima. We
handled this by restarting the algorithm with random
parameters up to 20 times (the exact number varied
based on results for different parameters) and used the
best local optimum. We used diagnostic runs to confirm
that this was a highly repeatable procedure that does
not depend on the distribution of random starting point.

The least-squares fits

To calculate the sum of squares with only process
noise, we used the standard approach of treating each
observation as perfect and using one-step-ahead pre-
dictions from each observation to calculate each pro-
cess noise for a given set of parameters (e.g., Polacheck
et al. 1993, Dennis et al. 1995, Higgins et al. 1997,
Hilborn and Mangel 1997). The sum of the squares of
these process noises is then the measure of model fit
to be minimized. To minimize the sum of squares, we
again used the Nelder-Mead simplex algorithm. The
least-squares surfaces were generally simple, so a sin-
gle run of the simplex algorithm was usually sufficient;
we used two runs to be safe. We could have calculated

the LSPN (least squares with only process noise) max-
imum-likelihood parameters with standard regression
formulae, but we used the numerical optimization
methods to test them and treat the different estimation
schemes as similarly as possible.

To calculate the sum of squares with observation
error, we calculated an entire sequence of predictions
from a single initial value and used the discrepancy
between each prediction and observation as an obser-
vation error. Observation errors were then squared and
summed to produce a sum of squares. With this method
the true initial value was treated as an extra model
parameter to be estimated (e.g., Polacheck et al. 1993,
Hilborn and Mangel 1997). The least-squares surfaces
in parameter space using this method were complicat-
ed. For the Beverton-Holt model, we solved this prob-
lem by using up to 100 random restarts. For the Ricker
model, the surface was extremely complicated and we
found that a simulated annealing extension of the Neld-
er-Mead simplex algorithm (Press et al. 1992) with 20
restarts worked well, i.e., was fairly repeatable. The
complexity of these least-squares surfaces may be in-
terpreted as reason for caution about this method.

To facilitate comparison among the methods, we ex-
press the sums of squares (SS) from the least-squares
methods as likelihood values. Using standard statistical
theory, the likelihood is

2n/2e
L(SS) 5 (33)

n/2 n/2(2p) (SS/n)

where n is the number of observations and SS is the
sum of squared deviations between predictions and ob-
servations (e.g., Johnson and Wichern 1992). For least
squares with process noise only, n 5 19 because the
first data point is not compared to a prediction. Al-
though one might think of using the stationary distri-
bution to estimate the probability of the first data
point—based on ideas from the state-space method—
we stick to the standard practice of using the first data
point only as a starting point for predicting the second
data point. For LSOE (least squares with observation
error only), n 5 20 because this method includes es-
timation of the initial population state.

Likelihood-ratio distributions

Since the numerically integrated state-space method
maximizes likelihoods, its estimators should follow
certain properties of maximum-likelihood estimators as
the number of observations gets large (e.g., see Rice
[1988], Tong [1990], Edwards [1992], and Hilborn and
Mangel [1997] for general introductions). The most
common asymptotic likelihood-ratio results apply for
statistical models of repeated, independent sampling,
which is different than time-series situations. However,
similar results often extend to time series, and recently
have been extended to a large class of state-space model
settings by Bickel et al. (1998) for discrete models and
Jensen and Petersen (1999) for continuous models.
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TABLE 1. Summary of distributions of parameters estimated by three methods for fitting
models to time series of population abundances: NISS (numerically integrated state-space),
LSPN (least squares with only process noise), and LSOE (least squares with only observation
error).

Fitting
method

Parameter estimation properties of each fitting method

Large PN, large OE

Bias
Vari-
ance MSE

Large PN, small OE

Bias
Vari-
ance MSE

Small PN, large OE

Bias
Vari-
ance MSE

Beverton-Holt, log(l) 5 1.5
NISS
LSPN
LSOE

0.37
3.97
1.65

0.69
21.52
14.65

0.82
37.27
17.36

0.16
2.48
1.09

0.62
15.27
11.25

0.64
21.43
12.45

0.65
5.51
2.18

0.62
19.07
14.50

1.05
49.40
19.26

Richer, r 5 1.5
NISS
LSPN
LSOE

20.01
20.24

0.23

0.15
0.06
0.51

0.15
0.12
0.56

0.07
20.04

0.37

0.07
0.05
0.32

0.08
0.05
0.46

20.25
20.44
20.15

0.20
0.05
0.72

0.27
0.24
0.74

Ricker r 5 2.4
NISS
LSPN
LSOE

20.019
20.214
20.026

0.021
0.044
0.101

0.021
0.090
0.102

20.009
20.027

0.171

0.012
0.013
0.106

0.012
0.014
0.135

0.004
20.178

0.005

0.002
0.013
0.004

0.002
0.044
0.004

Ricker r 5 2.6
NISS
LSPN
LSOE

20.011
20.186

0.241

0.018
0.035
0.033

0.018
0.069
0.090

20.010
20.023

0.239

0.008
0.009
0.032

0.009
0.009
0.089

20.003
20.178

0.066

0.003
0.013
0.007

0.003
0.045
0.012

Notes: Each model was fit to each of 300 time series simulated with different growth-rate
parameters (l for Beverton-Holt model and r for Ricker model) and different amounts of process
noise (PN; large or small) and observation error (OE; large or small). Parameter estimation
properties: Bias 5 the difference between the average estimate and the true value; Variance 5
the variance of estimates around their mean; and MSE 5 mean square error 5 variance plus
the square of bias.

Strictly speaking, we have not shown whether our ex-
amples fit the setting of Jensen and Petersen (1999),
so our evaluation of whether standard asymptotic re-
sults apply is mildly cavalier. However, since we con-
sider relatively simple settings, and since the asymp-
totic theory is only just being developed for nonlinear,
non-Gaussian state-space models, it is reasonable to
compare our results to standard asymptotic results,
which seem likely to apply.

Near convergence to asymptotic likelihood-ratio dis-
tributions would be extremely useful because it would
facilitate hypothesis testing. In particular we expect
that, for large T,

222(log[L(Q )] 2 log[L(Q ]) ; xtrue alt p (34)

where Qtrue are the true parameters (playing the role of
a null or constrained hypothesis), Qalt are the maxi-
mum-likelihood parameters (estimated under an ‘‘al-
ternative’’ or unconstrained hypothesis), and p is the
difference in the number of parameters estimated under
the two hypotheses, which serves as the degrees of the
freedom for the chi-squared distribution. We examined
these distributions for our simulations and compared
them to chi-squared distributions with four degrees of
freedom using quantile–quantile plots. In this case p is
4 because four parameters are estimated under the un-
constrained hypothesis (l and g under the Beverton-
Holt, r and b under the Ricker, and and under2 2s sn «

either), and no parameters are estimated under the con-
strained hypothesis.

It may seem odd to use the true parameters to look
at the likelihood-ratio distribution, when they will be
unknown for data from natural systems. However, the
basis of likelihood-ratio tests is to consider the distri-
bution of likelihood ratios as if the parameters under a
null hypothesis with no free parameters are the true pa-
rameters. In this study we are interested in how well the
asymptotic approximate distribution really works, and
for that purpose using the true parameters in the role of
the null hypothesis is appropriate. For data from a nat-
ural system we could consider parameters other than the
maximum-likelihood parameters as possible null hy-
potheses, and calculate approximate likelihood-ratio P
values for them. This is the basis of constructing con-
fidence intervals: include all parameters that, as a null
hypothesis, would give P . 0.05. Thus, the idea of null
and alternative hypotheses for statistical testing is im-
plicit in our focus on maximum-likelihood parameter
estimation and asymptotic likelihood-ratio distributions.

Information criteria

Finally, we evaluated the ability of the Akaike in-
formation criterion (see Burnham and Anderson [1998]
for a general introduction) and other related informa-
tion criteria to distinguish between the Ricker and Bev-
erton-Holt models using each of the fitting methods.
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FIG. 3. Maximum-likelihood estimates of growth rate when data are fitted to the wrong model. ‘‘BH → R’’ (top row):
Data were generated with a Beverton-Holt model with l 5 4.48 and fit to a Ricker model. ‘‘R → BH’’ (bottom row): Data
were generated with a Ricker model with r 5 1.5 and fit to a Beverton-Holt model. Horizontal lines show the true growth-
rate parameters, log(l) 5 r 5 1.5.

←

FIG. 2. Maximum-likelihood estimates of growth-rate parameters, l for the Beverton-Holt model and r for the Ricker
model. For the Beverton-Holt model (top row), the true value of l is 4.48, shown by the horizontal line (log(4.48) 5 1.5)
in each panel. For the Ricker model (next three rows), the true value of r is 1.5, r 5 2.4 (two-cycle dynamics), or r 5 2.6
(four-cycle dynamics). For each fitting method, a box-and-whisker plot summarizes the distribution of estimates. The box
extends from the 25th to the 75th percentiles, the median is shown by a line in the middle of the box, the mean is marked
with an ‘‘3,’’ the dashed ‘‘whiskers’’ extend to the largest estimate less than 1.5 interquartile distances (i.e., length of the
box) above the 75th and below the 25th percentiles, and all other estimates are individually plotted. The left, middle, and
right columns of figures are grouped by the process noise (PN) and observation error (OE) variances used to generate data,
as labeled above each column. Note the log transformation of l estimates for the Beverton-Holt model, indicating that these
estimates ranged over many orders of magnitude for the LSPN and LSOE methods. (See Table 1 for definitions of fitting-
methods acronyms.)

Since the number of parameters for each model is the
same, the information-criterion methods, which differ
only in the adjustment they make for number of pa-
rameters and data points, amount to picking the model
with the highest maximum likelihood. Information cri-
teria are becoming popular tools for model selection
in ecology (Anderson and Burnham 1992, Burnham et
al. 1994, Hilborn and Mangel 1997, Burnham and An-
derson 1998, Dennis et al. 1998, Zeng et al. 1998).

RESULTS

Estimator properties

Our evaluation of parameter estimation properties of
each fitting method focuses on estimates of the growth-
rate parameters, l for the Beverton-Holt and r for the
Ricker. In all cases there was some correlation—often
strong—between estimates of growth-rate parameters
and density-dependence parameters (l and g for the



70 PERRY DE VALPINE AND ALAN HASTINGS Ecological Monographs
Vol. 72, No. 1

FIG. 4. Frequency density of log-likelihood [log (L)] differences for models with large process noise and large observation
error. Each histogram gives the density of the difference between maximum log likelihood of the Beverton-Holt (BH) model
and maximum log likelihood of the Ricker model. The proportion of differences that fall within the range of x-axis values
for each bar is equal to the area of the bar. When data were generated with a BH model (top row), differences .0 correspond
to correct model identification (larger maximum likelihood for the true model). When data were generated with the Ricker
model (bottom row), differences ,0 correspond to correct model identification. The left, middle, and right vertical pairs of
histograms are grouped by fitting method, as indicated by the label above each pair (see Table 1 for acronym explanations).
The notation ‘‘BH . Ricker: k’’ indicates that the BH model was chosen over the Ricker model k out of 300 times.

Beverton-Holt, r and b for the Ricker), but little or no
correlation between estimates of growth-rate parame-
ters and equilibrium population size ((l 2 1)/g for the
Beverton-Holt, r/b for the Ricker). The distinctions be-
tween the fitting methods were clearer for the growth-
rate parameters than for the equilibrium population siz-
es, hence our focus on the former. When comparing
results from the Beverton-Holt and Ricker models, note
that the order of magnitude of log(l) is comparable to
that of r.

We report results in terms of bias, variance, and mean
squared error of estimates (Table 1), as well as the
distributions of estimates (Fig. 2). Bias is defined as
the difference between the average estimate and the
true value. Variance is the variance of estimates around
their mean. Mean squared error is variance plus the
square of bias, so it combines these two components
of estimation inaccuracy.

For the Beverton-Holt model, the NISS (numerically
integrated state-space) method was less biased and had
lower variance than both the least-squares methods for
all three noise and error combinations (Fig. 2). Esti-

mating growth rate, l, is difficult for a Beverton-Holt
model because Mt, the population size at time t, is
nearly constant for large Mt21. All of the fitting methods
were biased towards putting a flat line between Mt and
Mt21, thus overestimating the growth-rate part of the
curve, but only the NISS method obtained an average
estimate close to the true value and a distribution of
estimates within an order of magnitude of the true val-
ue. The two least-squares methods were not useful for
the Beverton-Holt model, with estimates for l ranging
over many orders of magnitudes.

For the Ricker model with the dynamically simplest
parameters, r 5 1.5, each of the three methods was
less biased than the others for one of the noise as-
sumptions (Fig. 2). With small process noise, LSOE
(least squares with only observation error) was least
biased. Conversely, with small observation error, LSPN
(least squares with only process noise) was least biased.
With both noises large, NISS was least biased, and
indeed nearly unbiased. In all cases, the LSPN esti-
mator had the smallest variance. It should be remem-
bered that the noise and error variances will not be
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FIG. 5. Frequency density of information criterion differences for models with large process noise and small observation
error. The format is as in Fig. 4.

known for real data, and the biases in the NISS esti-
mator are smaller than those for the LSOE and LSPN
estimators when the noise and error conditions are least
suited to them. For example, with large process noise
and small observation error, the assumptions of the
LSOE method are least close to correct, and the cor-
responding bias in the LSOE estimates is large. The
NISS method is more robust to lack of prior knowledge
of noise and error variances. In theory if one knew the
observation error variance, one could fit with LSPN
(because it has the lowest estimator variance) and boot-
strap a bias correction, but if observation noise is un-
known this could be difficult because the bias will de-
pend on the error variance and the bootstrap procedure
would add variance to the overall estimation scheme.

With respect to estimating the correct dynamical re-
gime, the NISS estimator virtually never estimates
r . 2.0, the bifurcation boundary for this parameter
(Figs. 1 and 2; a few replicates produced 2.0 , r , 2.05).
LSPN is also always ,2.0, but that is related to its
negative bias. LSOE frequently chooses parameters
that would lead to dynamically wrong interpretations,
such as spuriously estimating two-cycles.

For the Ricker model with two-cycle parameters, r
5 2.4, and four-cycle parameters, r 5 2.6, NISS was
always the best parameter estimator (Fig. 2). For each

of the noise choices, it produced virtually unbiased
estimates with the lowest estimator variance of the
three methods. The other methods had small bias and
variance only under the noise conditions that approx-
imated their assumptions, and even then the NISS
method was superior. When the true noises did not fit
their assumptions, the LSPN and LSOE methods were
strongly biased. This suggests that in dynamically com-
plicated regimes even small noises are sufficient to
make NISS a better method, and the more complicated
the regime (four-cycle vs. two-cycle), the stronger this
conclusion. The NISS method also does a better job of
estimating parameters with correct dynamical proper-
ties (compare to Fig. 1). For the two-cycle parameters,
it strays occasionally into four-cycle parameter space.
LSPN doesn’t do this, but again it is biased low. LSOE
strays far from dynamically similar parameters except
when the true conditions are most appropriate for it
(i.e., small process noise). A similar comparison of the
three methods holds for the four-cycle parameters.

Model identification

Comparison of maximum likelihoods of data pro-
duced from either a Beverton-Holt or Ricker model and
fit with both models shows a systematic bias toward
larger maximum likelihoods with the Ricker model
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FIG. 6. Frequency density of information criterion differences for models with small process noise and large observation
error. The format is as in Fig. 4.

(Figs. 3–6). Under all three noise assumptions, NISS
(incorrectly) picked Ricker models for about two-thirds
of the runs from a Beverton-Holt model and (correctly)
picked Ricker models for most runs from a Ricker mod-
el. LSOE was similarly biased toward Ricker models.
LSPN was less biased and was the only method with
better than 50% success under all noise and error as-
sumptions and both source models. It remains unclear
whether LSPN is generally superior at model identi-
fication or whether its biases are just fortuitously useful
for the Beverton-Holt vs. Ricker problem.

For all methods, many of the cases of misidentifi-
cation involved small log-likelihood differences. The
likelihood ratio itself can be interpreted as the ratio of
the probability that under one model the data would be
produced to the probability that under the other model
the data would be produced (Edwards 1992, Royall
1997). Royall (1997) explores the interpretation of like-
lihood ratios and suggests that ratios of the magnitudes
common in Figs. 4, 5, and 6 (expressed as differences
of logs) should not be considered as strong evidence
one way or the other between two models.

Asymptotic likelihood-ratio distributions

If the likelihoods calculated with NISS converge
quickly (i.e., with few data points) to the asymptotic

chi-squared likelihood-ratio distribution, hypothesis
testing would be greatly simplified. Quantile–quantile
plots show varying levels of convergence (Fig. 7). For
the Beverton-Holt model, convergence is poor. For the
Ricker model with r 5 1.5, convergence is good for
all noise assumptions. For the Ricker model with
r 5 2.4 and 2.6, large observation error seems to hinder
convergence, but convergence is still better than under
the Beverton-Holt model. For the Ricker r 5 1.5 case,
the good convergence can be used to construct confi-
dence regions.

DISCUSSION

Our results indicate that the numerically integrated
state-space (NISS) method can be an important tool for
statistically relating population models to data. This
method incorporates both process noise and observa-
tion error, can be applied to any model structure, and
allows simple treatment of missing data points (one
just projects the state distribution again without up-
dating by an observation) and unobserved state vari-
ables. For the Beverton-Holt model we would virtually
always recommend NISS over least-squares methods.
For the Ricker model, we would recommend it over
least-squares methods unless one has a priori knowl-
edge that either process noise or observation error is
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FIG. 7. Quantile–quantile plots comparing distributions of simulated likelihood ratios (likelihood with true parameters/
maximum likelihood) to theoretical asymptotic likelihood-ratio distributions. Likelihood-ratio distributions are transformed
to 22(log-likelihood ratio) and compared to a chi-squared distribution with 4 df (see Eq. 34). Points along the identity line
indicate agreement with the theoretical asymptotic distribution. The top row shows Beverton-Holt model results; the next
three rows show Ricker model results with r 5 1.5, r 5 2.4, and r 5 2.6. Columns correspond to different combinations of
process noise and observation error variances, as labeled.
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small and the dynamics are simple. Others have found
substantial biases in fitting biomass dynamics and
catch-age models when process noise and observation
error are not incorporated into the fitting process (Hil-
born 1979, Uhler 1980, Ludwig and Walters 1981,
1989, Ludwig et al. 1988, Polacheck et al. 1993,
Schnute and Richards 1995, Kimura et al. 1996).

Convergence to an asymptotic likelihood-ratio dis-
tribution was not generally sufficient with 20 data
points to provide precise significance levels for hy-
pothesis testing. However, for the Ricker model with
simple dynamics (r 5 1.5), convergence was good. For
the other cases, the asymptotic distributions could be
used to construct only approximate confidence inter-
vals. An alternative approach for approximate confi-
dence intervals would be to use a parametric bootstrap-
ping procedure (e.g., Efron and Tibshirani 1993, Den-
nis and Taper 1994, Dennis et al. 1995). In all cases
our results suggest that evaluation of estimation prop-
erties of different methods with different models can
provide important baseline information before applying
methods to real data.

Some of our results may be related to the amount of
informative coverage of different population sizes pro-
vided by a given time series for each model. For a
Ricker model, both large and small population sizes
provide information about the shape of the function,
while for the Beverton-Holt model, data from small
population sizes are important for estimating the
growth-rate part of the curve, while data from large
population sizes are relatively uninformative about
this. This raises the related issue that in a particular
application the focus of interest might be a function of
parameters such as maximum sustainable yield in fish-
eries, and it would be important to consider the dis-
tribution of estimates of such quantities explicitly. Sim-
ilar issues were discussed by Hilborn (1979), Schaffer
et al. (1986), and Ludwig and Walters (1989), among
others.

Two important conclusions emerged from studying
the model identification properties of the three fitting
methods. First, it is possible to have systematic biases
toward better fits with one model over another, in this
case the Ricker over the Beverton-Holt. In this sense
the Ricker is a more flexible model than the Beverton-
Holt. It would be important to understand such biases
before attempting model identification with data from
natural systems. Second, using an information criterion
alone—in which the better model is chosen regardless
of how close the models are—can be misleading. It
would be better to interpret the likelihood ratio and, if
possible, to bootstrap a distribution of likelihood ratios
(or differences in information criteria) and estimate a
significance level of the actual ratio.

The problem of bootstrapping with the NISS method
is not trivial because it is computationally intense, and
with more state variables, i.e., higher dimensional dis-
tributions, this could be a limitation. However, in ad-

dition to faster computers, two approximations may be
useful for higher-dimension problems. First, in many
cases the more commonplace ‘‘extended’’ Kalman filter
may be satisfactory. We did not use it here because
when the state distribution spans zero or near-zero de-
rivatives of the Ricker model or Beverton-Holt models,
the projected distribution is highly non-normal. How-
ever, in simpler cases it could prove useful, and it is
easier to find or program. Second, Markov chain Monte
Carlo numerical integration methods can give a sto-
chastic approximation to the probability-distribution
calculations of state-space models (Carlin et al. 1992,
Gilks et al. 1996). Although this is an approximation
compared to our implementation, it works, can be quite
accurate, and is easier to implement (Gilks et al. 1996).
Meyer and Millar (1999) and Bjornstad et al. (1999a)
used this approach to analyze fisheries data in a Bayes-
ian framework. Although Markov chain Monte Carlo
methods are often discussed in the context of Bayesian
analyses, they can also be used for frequentist analyses
(Geyer and Thompson 1992, Geyer 1996).

We have evaluated a model-fitting method little used
in ecology and found that it has advantages over other
methods. Relating population models to data statisti-
cally is important for testing hypotheses with both ob-
servational and experimental time series. Development
and testing of model-fitting methods underlies analysis
of real data. Although time-series analysis has most
often been applied to observational data, many exper-
imental time series from systems with short generation
times can also be analyzed by fitting population mod-
els. The approach taken here offers one step toward
providing better tools for such analyses and improving
the connections between models and data and ecology.
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