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BCI Barro Colorado Island Tree Counts
Description

Tree counts in 1-hectare plots in the Barro Colorado Island.

Usage

data(BCl)

Format

A data frame with 50 plots (rows) of 1 hectare with counts of trees on each plot with total of 225
species (columns). Full Latin names are used for tree species.

Details

Data give the numbers of trees at least 10 cm in diameter at breast height (1.3 m above the ground)
in each one hectare square of forest. Within each one hectare square, all individuals of all species
were tallied and are recorded in this table.

The data frame contains only the Barro Colorado Island subset of the original data.

Source

http://www.sciencemag.org/cgi/content/full/295/5555/666/DC1

References

Condit, R, Pitman, N, Leigh, E.G., Chave, J., Terborgh, J., Foster, R.B., Nufiez, P., Aguilar, S.,
Valencia, R., Villa, G., Muller-Landau, H.C., Losos, E. & Hubbell, S.P. (2002). Beta-diversity in
tropical forest treesScience295, 666—-669.


http://www.sciencemag.org/cgi/content/full/295/5555/666/DC1

anosim 3

Examples

data(BCl)

anosim Analysis of Similarities

Description

Analysis of similarities (ANOSIM) provides a way to test statistically whether there is a significant
difference between two or more groups of sampling units.

Usage

anosim(dis, grouping, permutations=1000, strata)

Arguments
dis Dissimilarity matrix.
grouping Factor for grouping observations.

permutations Number of permutation to assess the significance of the ANOSIM statistic.

strata An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata.

Details

Analysis of similarities (ANOSIM) provides a way to test statistically whether there is a significant
difference between two or more groups of sampling units. Funetimsim operates directly on a
dissimilarity matrix. A suitable dissimilarity matrix is produced by functialist or vegdist

The method is philosophically allied with NMDS ordinatiaadMDS), in that it uses only the rank
order of dissimilarity values.

If two groups of sampling units are really different in their species composition, then compositional
dissimilarities between the groups ought to be greater than those within the groupsnd&im
statisticR is based on the difference of mean ranks between groypsafd within groupsi(y):

R=(rg—rw)/(N(N—1)/4)

The divisor is chosen so thd will be in the interval—1... + 1, value0 indicating completely
random grouping.

The statistical significance of observétis assessed by permuting the grouping vector to obtain
the empirical distribution of? under null-model.

The function hasummary andplot methods. These both show valuable information to assess
the validity of the method: The function assumes that all ranked dissimilarities within groups have
about equal median and range. THet method useboxplot  with optionsnotch=TRUE and
varwidth=TRUE
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Value

The function returs a list of clagsiosim with following items:

call Function call.

statistic The value of ANOSIM statistid?

signif Significance from permutation.

perm Permutation values a®

class.vec Factor with valueBetween for dissimilarities between classes and class name

for corresponding dissimilarity within class.

dis.rank Rank of dissimilarity entry.
dissimilarity
The name of the dissimilarity index: tlimethod" entry of thedist object.

Note

| don’t quite trust this method. Somebody should study its performance carefully. The function
returns a lot of information to ease further scrutiny.

Author(s)

Jari Oksanen, with a help from Peter R. Minchin.

References

Clarke, K. R. (1993). Non-parametric multivariate analysis of changes in community structure.
Australian Journal of Ecolog$8, 117-143.

See Also

dist andvegdist for obtaining dissimilarities, anghnk for ranking real values. For comparing
dissimilarities against continuous variables, semtel .

Examples

data(dune)

data(dune.env)

dune.dist <- vegdist(dune)

attach(dune.env)

dune.ano <- anosim(dune.dist, Management)
summary(dune.ano)

plot(dune.ano)
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anova.cca Permutation Test for Constrained Correspondence Analysis, Redun-
dancy Analysis and Constrained Analysis of Principal Coordinates

Description

The function performs an ANOVA like permutation test for Constrained Correspondence Analysis
(cca), Redundancy Analysisda ) or Constrained Analysis of Principal Coordinateggscale )
to assess the significance of constraints.

Usage

## S3 method for class 'cca'"
anova(object, alpha=0.05, beta=0.01, step=100, perm.max=10000, ...)
permutest.cca(x, permutations=100, model=c("direct”, "reduced","full"), strata)

Arguments
object,x A result object froncca .
alpha Targeted Type | error rate.
beta Accepted Type Il error rate.
step Number of permutations during one step.
perm.max Maximum number of permutations.

Parameters to permutest.cca.
permutations Number of permutations for assessing significance of constraints.
model Permutation model (partial match).

strata An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata.

Details

Functionsanova.cca andpermutest.cca  implement an ANOVA like permutation test for the
joint effect of constraints inca , rda orcapscale . Functionsanova.cca andpermutest.cca
differ in printout style and in interface. Functigrermutest.cca  is the proper workhorse, but
anova.cca passes all parametersgermutest.cca

In anova.cca the number of permutations is controlled by targeted “critidalalue @lpha )

and accepted Type Il or rejection errbefa ). If the results of permutations differ from the targeted
alpha at risk level given bybeta , the permutations are terminated. If the current estimate of
P does not differ significantly fronalpha of the alternative hypothesis, the permutations are
continued withstep new permutations.

The functionpermutest.cca  implements a permutation test for the “significance” of constraints

in cca, rda orcapscale . Community data are permuted with choioedel = "direct" ,
residuals after partial CCA/RDA/CAP with choierodel = "reduced" , and residuals after
CCA/RDA/CAP under choicenodel = "full" . If there is no partial CCA/RDA/CAP stage,
model = "reduced" simply permutes the data. The test statistic is “psettowhich is the

ratio of constrained and unconstrained total Inertia (Chi-squares, variances or something similar),
each divided by their respective ranks. If there are no conditions ("partial” terms), the sum of all
eigenvalues remains constant, so that pselidmd eigenvalues would give equal results. In partial
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CCA/RDAI/CAP, the effect of conditioning variables (“covariables”) is removed before permutation,
and these residuals are added to the non-permuted fitted values of partial CCA (fitted va{ues of

~ Z). Consequently, the total Chi-square is not fixed, and test based on pRewdaid differ

from the test based on plain eigenvalues. CCA is a weighted method, and environmental data are
re-weighted at each permutation step.

Value

Functionpermutest.cca  returns an object of clagermutest.cca  which has its owprint
method. The functioanova.cca callspermutest.cca |, fillsananova table and usegrint.anova
for printing.

Author(s)

Jari Oksanen

References

Legendre, P. and Legendre, L. (1998umerical Ecology2nd English ed. Elsevier.

See Also

cca, rda , capscale

Examples

data(varespec)

data(varechem)

vare.cca <- cca(varespec ~ Al + P + K, varechem)

anova(vare.cca)

permutest.cca(vare.cca)

## Test for adding variable N to the previous model:
anova(cca(varespec ~ N + Condition(Al + P + K), varechem), step=40)

bioenv Best Subset of Environmental Variables with Maximum (Rank) Corre-
lation with Community Dissimilarities

Description

Function finds the best subset of environmental variables, so that the Euclidean distances of scaled
environmental variables have the maximum (rank) correlation with community dissimilarities.

Usage

## Default S3 method:

bioenv(comm, env, method = "spearman”, index = "bray",
upto = ncol(env), ...)

## S3 method for class ‘formula’:

bioenv(formula, data, ...)
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Arguments
comm Community data frame.
env Data frame of continuous environmental variables.
method The correlation method used @or.test
index The dissimilarity index used for community dataviegdist
upto Maximum number of parameters in studied subsets.

formula, data
Modelformula and data.

Other parameters passed to function.

Details

The function calculates a community dissimilarity matrix usiegdist . Then it selects all pos-
sible subsets of environmental variablesale s the variables, and calculates Euclidean distances
for this subset usinglist . Then it finds the correlation between community dissimilarities and
environmental distances, and for each size of subsets, saves the best result. T}Herelaebsets

of p variables, and exhaustive search may take a very, very, very long time (parapteteoffers

a partial relief).

The function can be called with a modelrmula where the LHS is the data matrix and RHS
lists the environmental variables. The formula interface is practical in selecting or transforming
environmental variables.

Clarke & Ainsworth (1993) suggested this method to be used for selecting the best subset of en-
vironmental variables in interpreting results of nonmetric multidimensional scaling (NMDS). They
recommended a parallel display of NMDS of community dissimilarities and NMDS of Euclidean
distances from the best subset of scaled environmental variables. They warned against the use of
Procrustes analysis, but to me this looks like a good way of comparing these two ordinations.

Clarke & Ainsworth wrote a computer program BIO-ENV giving the name to the current function.
Presumably BIO-ENV was later incorporated in Clarke’s PRIMER software (available for Win-
dows). In addition, Clarke & Ainsworth suggested a novel method of rank correlation which is not
available in the current function.

Value

The function returns an object of clds®env with asummary method.

Author(s)
Jari Oksanen. The code for selecting all possible subsets was posted to the R mailing list by Prof.
B. D. Ripley in 1999.

References
Clarke, K. R & Ainsworth, M. 1993. A method of linking multivariate community structure to
environmental variabledMarine Ecology Progress Serig82, 205—-219.

See Also

vegdist , dist , cor for underlying routinesisoMDS for ordination,procrustes  for Pro-
crustes analysigrotest  for an alternative, andankindex for studying alternatives to the
default Bray-Curtis index.
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Examples

# The method is very slow for large number of possible subsets.

# Therefore only 6 variables in this example.

data(varespec)

data(varechem)

sol <- bioenv(wisconsin(varespec) ~ log(N) + P + K + Ca + pH + Al, varechem)
sol

summary(sol)

capscale [Partial] Constrained Analysis of Principal Coordinates

Description

Constrained Analysis of Principal Coordinates (CAP) is an ordination method similar to Redun-
dancy Analysis da ), but it allows non-Euclidean dissimilarity indices, such as Manhattan or
Bray—Curtis distance. Despite this non-Euclidean feature, the analysis is strictly linear and metric.
If called with Euclidean distance, the results are identicalo, but capscale will be much

more inefficient. Functiomapscale may be useful with other dissimilarity measures, since Eu-
clidean distances inherentida are generally poor with community data

Usage

capscale(formula, data, distance = "euclidean", comm = NULL, add =
FALSE, ..)

Arguments

formula Model formula. The function can be called only with the formula interface.
Most usual features dbrmula hold, especially as defined ota andrda .
The LHS must be either a community data matrix or a dissimilarity matrix, e.g.,
fromvegdist ordist . If the LHS is a data matrix, functionegdist  will
be used to find the dissimilarities. RHS defines the constraints. The constraints
can be continuous or factors, they can be transformed within the formula, and
they can have interactions as in typié@mula . The RHS can have a special
termCondition  that defines variables “partialled out” before constraints, just
like in rda orcca. This allows the use of partial CAP.

data Data frame containing the variables on the right hand side of the model formula.

distance Dissimilarity (or distance) index imegdist  used if the LHS of théormula
is a data frame instead of dissimilarity matrix.

comm Community data frame which will be used for finding species scores when the
LHS of theformula was a dissimilarity matrix. This is not used if the LHS is
a data frame. If this is not supplied, the “species scores” are the axes of initial
metric scaling ¢mdscale ) and may be confusing.

add logical indicating if an additive constant should be computed, and added to the
non-diagonal dissimilarities such that all eigenvalues are non-negative in under-
lying Principal Co-ordinates Analysis (semdscale for details).

Other parameters passedtia .
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Details

The Canonical Analysis of Principal Coordinates (CAP) is simply a Redundancy Analysis of results
of Metric (Classical) Multidimensional Scaling (Anderson & Willis 2003). Function capscale uses
two steps: (1) it ordinates the dissimilarity matrix usitrgdscale and (2) analyses these results
usingrda . If the user supplied a community data frame instead of dissimilarities, the function
will find the needed dissimilarity matrix usingegdist ~ with specifieddistance . However, the
method will accept dissimilarity matrices fromegdist , dist , or any other method producing
similar matrices. The constraining variables can be continuous or factors or both, they can have
interaction terms, or they can be transformed in the call. Moreover, there can be a special term
Condition justlike inrda andcca so that “partial” CAP can be performed.

The current implementation differs from the method suggested by Anderson & Willis (2003) in
three major points:

1. Anderson & Willis used orthonormal solution oidscale , whereasapscale uses axes
weighted by corresponding eigenvalues, so that the ordination distances are best approxima-
tions of original dissimilarities. In the original method, later “noise” axes are just as important
as first major axes.

2. Anderson & Willis take only a subset of axes, whereagscale uses all axes with positive
eigenvalues. The use of subset is necessary with orthonormal axes to chop off some “noise”,
but the use of all axes guarantees that the results are the best approximation of original dis-
similarities.

3. Functioncapscale adds species scores as weighted sums of (residual) community matrix (if

the matrix is available), whereas Anderson & Willis have no fixed method for adding species
scores.

With these definitions, functionapscale with Euclidean distances will be identical tda in
eigenvalues and in site, species and biplot scores (except for possible sign reversal). However, it
makes no sense to usapscale with Euclidean distances, since direct used# is much more
efficient. Even with non-Euclidean dissimilarities, the rest of the analysis will be metric and linear.

Value

The function returns an object of clasapscale which is identical to the result afla . At the
momentcapscale does not have specific methods, but it usess andrda methodglot.cca
summary.rda etc. Moreover, you can usova.cca for permutation tests of “significance”
of the results.

Note

Warnings of negative eigenvalues are issued with most dissimilarity indices. These are harmless,
and negative eigenvalues will be ignored in the analysis. If the warnings are disturbing, you can
use argumerdadd = TRUEpassed temdscale , or, preferably, a distance measure that does not
cause these warnings. Wegdist , method = "jaccard" gives such an index. Alternatively,

after square root transformation many indices do not cause warnings.

Functionrda usually divides the ordination scores by number of sites minus one. In this way,
the inertia is variance instead of sum of squares, and the eigenvalues sum up to variance. Many
dissimilarity measures are in the range 0 to 1, so they have already made a similar division. If
the largest original dissimilarity is less or equal to 4 (allowing $tepacross ), this division

is undone incapscale and original dissimilarities are used. The inertia is called@sared
dissimilarity (as defined in the dissimilarity matrix), but keyworgtanis added to the inertia

in cases where division was made, e.g. in Euclidean and Manhattan distances.
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Author(s)

Jari Oksanen

References

Anderson, M.J. & Willis, T.J. (2003). Canonical analysis of principal coordinates: a useful method
of constrained ordination for ecologifcology84, 511-525.

See Also

rda , cca, plot.cca ,anova.cca ,vegdist ,dist ,cmdscale .

Examples

data(varespec)

data(varechem)

vare.cap <- capscale(varespec ~ N + P + K + Condition(Al), varechem, dist="bray")
vare.cap

plot(vare.cap)

anova(vare.cap)

cca [Partial] [Constrained] Correspondence Analysis and Redundancy
Analysis

Description

Functioncca performs correspondence analysis, or optionally constrained correspondence analysis
(a.k.a. canonical correspondence analysis), or optionally partial constrained correspondence anal-
ysis. Functionrda performs redundancy analysis, or optionally principal components analysis.
These are all very popular ordination techniques in community ecology.

Usage

## S3 method for class ‘formula’:
cca(formula, data)

## Default S3 method:

cca(X, Y, Z, ..)

## S3 method for class 'formula’
rda(formula, data, scale=FALSE)

## Default S3 method:

rda(X, Y, Z, scale=FALSE, ..)

## S3 method for class 'cca”
summary(object, scaling=2, axes=6, digits, ...)

Arguments

formula Model formula, where the left hand side gives the community data matrix, right
hand side gives the constraining variables, and conditioning variables can be
given within a special functio€ondition

data Data frame containing the variables on the right hand side of the model formula.
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X Community data matrix.
Y Constraining matrix, typically of environmental variables. Can be missing.
Z Conditioning matrix, the effect of which is removed (‘partialled out’) before
next step. Can be missing.
object A cca result object.
scaling Scaling for species and site scores. Either spedg( site (L) scores are
scaled by eigenvalues, and the other set of scores is left unscaled, Grlvath
are scaled symmetrically by square root of eigenvalues. Corresponding negative
values can be used tta to additionally multiply results with /(1/(1 — \)).
This scaling is know as Hill scaling (although it has nothing to do with Hill's
rescaling ofdecorana ). With corresponding negative valuesda , species
scores are divided by standard deviation of each species. Unscaled raw scores
stored in the result can be accessed withling = 0
axes Number of axes in summaries.
digits Number of digits in output.
scale Scale species to unit variance (like correlations do).
Other parameters fgrint  orplot functions.
Details

Since their introduction (ter Braak 1986), constrained or canonical correspondence analysis, and
its spin-off, redundancy analysis have been the most popular ordination methods in community
ecology. Functiongca andrda are similar to popular proprietary softwa@anoco, although
implementation is completely different. The functions are based on Legendre & Legendre’s (1998)
algorithm: incca Chi-square transformed data matrix is subjected to weighted linear regression on
constraining variables, and the fitted values are submitted to correspondence analysis performed via
singular value decompositios\d ). Functionrda is similar, but uses ordinary, unweighted linear
regression and unweighted SVD.

The functions can be called either with matrix entries for community data and constraints, or with
formula interface. In general, the formula interface is preferred, because it allows a better control
of the model and allows factor constraints.

In matrix interface, the community data matdxmust be given, but any other data matrix can be
omitted, and the corresponding stage of analysis is skipped. If niatsxsupplied, its effects are
removed from the community matrix, and the residual matrix is submitted to the next stage. This
is called ‘partial’ correspondence or redundancy analysis. If matisxsupplied, it is used to con-

strain the ordination, resulting in constrained or canonical correspondence analysis, or redundancy
analysis. Finally, the residual is submitted to ordinary correspondence analysis (or principal com-
ponents analysis). If both matric&sandY are missing, the data matrix is analysed by ordinary
correspondence analysis (or principal components analysis).

Instead of separate matrices, the model can be defined using a foodala . The left hand

side must be the community data matrk).(The right hand side defines the constraining model.
The constraints can contain ordered or unordered factors, interactions among variables and func-
tions of variables. The definecbntrasts  are honoured ifactor  variables. The formula

can include a special ter@ondition  for conditioning variables (“covariables”) “partialled out”
before analysis. So the following commands are equivalece(X, y, z) ,cca(X ~y +
Condition(z)) , Wherey andz refer to single variable constraints and conditions.

Constrained correspondence analysis is indeed a constrained method: CCA does not try to display
all variation in the data, but only the part that can be explained by the used constraints. Con-
sequently, the results are strongly dependent on the set of constraints and their transformations or
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interactions among the constraints. The shotgun method is to use all environmental variables as con-
straints. However, such exploratory problems are better analysed with unconstrained methods such
as correspondence analysite¢orana , ca) or non-metric multidimensional scalingsMDS)

and environmental interpretation after analysis\fit , ordisurf ). CCA is a good choice if

the user has clear and stroagriori hypotheses on constraints and is not interested in the major
structure in the data set.

CCA is able to correct a common curve artefact in correspondence analysis by forcing the config-
uration into linear constraints. However, the curve artefact can be avoided only with a low number
of constraints that do not have a curvilinear relation with each other. The curve can reappear even
with two badly chosen constraints or a single factor. Although the formula interface makes easy to
include polynomial or interaction terms, such terms often allow curve artefact (and are difficult to
interpret), and should probably be avoided.

According to folklore,rda should be used with “short gradients” rather tltaa . However, this
is not based on research which finds methods based on Euclidean metric as uniformly weaker than
those based on Chi-squared metric.

Partial CCA (pCCA,; or alternatively partial RDA) can be used to remove the effect of some condi-
tioning or “background” or “random” variables or “covariables” before CCA proper. In fact, pPCCA
compares modelsca(X ~ z) andcca(X ~ y + z) and attributes their difference to the ef-

fect ofy cleansed of the effect af. Some people have used the method for extracting “components
of variance” in CCA. However, if the effect of variables together is stronger than sum of both sep-
arately, this can increase total Chi-square after “partialling out” some variation, and give negative
“components of variance”. In general, such components of “variance” are not to be trusted due to
interactions between two sets of variables.

The functions havesummary andplot methods. Thesummary method lists all species and

site scores, and results may be very long. Palmer (1993) suggested using linear constraints (“LC
scores”) in ordination diagrams, because these gave better results in simulations and site scores
(“WA scores”) are a step from constrained to unconstrained analysis. However, McCune (1997)
showed that noisy environmental variables (and all environmental measurements are noisy) destroy
“LC scores” whereas “WA scores” were little affected. Thereforgiloé function uses site scores

(“WA scores”) as the default. This is consistent with the usage in statistics and other functidns in

(Ida , cancor ).

Value

Functioncca returns a huge object of classa , which is described separatelyéoa.object

Functionrda returns an object of claggla which inherits from clasgca and is described in
cca.object . The scaling used irda scores is desribed in a separate vignette with this package.

Author(s)
The responsible author was Jari Oksanen, but the code borrows heavily from Dave Rahgerts (
/Nabdsv.nr.usu.edu/ ).

References

The original method was by ter Braak, but the current implementations follows Legendre and Leg-
endre.

Legendre, P. and Legendre, L. (1998)merical Ecology2nd English ed. Elsevier.

McCune, B. (1997) Influence of noisy environmental data on canonical correspondence analysis.
Ecology78, 2617-2623.


http://labdsv.nr.usu.edu/
http://labdsv.nr.usu.edu/
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Palmer, M. W. (1993) Putting things in even better order: The advantages of canonical correspon-

dence analysi€cology74, 2215-2230.

Ter Braak, C. J. F. (1986) Canonical Correspondence Analysis: a new eigenvector technique for

multivariate direct gradient analysi&cology67, 1167-1179.

See Also

There is a special documentation faot.cca  function with its helper functionst¢xt.cca
points.cca , scores.cca ). Functionanova.cca provides an ANOVA like permutation

test for the “significance” of constraints. Automatic model building (dangerous!) is discussed in
deviance.cca . Diagnostic tools, prediction and adding new points in ordination are discussed

in goodness.cca andpredict.cca . FunctionsCAIV (library CoCoAn) andcca (library

ade4 ) provide alternative implementations of CCA (these are internally quite different). Function

capscale is a non-Euclidean generalizationrofa .

Examples

data(varespec)

data(varechem)

## Common but bad way: use all variables you happen to have in your
## environmental data matrix

vare.cca <- cca(varespec, varechem)

vare.cca

plot(vare.cca)

## Formula interface and a better model

vare.cca <- cca(varespec ~ Al + P*(K + Baresoil), data=varechem)
vare.cca

plot(vare.cca)

## "Partialling out' and ‘negative components of variance'
cca(varespec ~ Ca, varechem)

cca(varespec ~ Ca + Condition(pH), varechem)

## RDA

data(dune)

data(dune.env)

dune.Manure <- rda(dune ~ Manure, dune.env)

plot(dune.Manure)

cca.object Result Object from Constrained Ordination with cca, rda or capscale

Description

Ordination methodsca , rda andcapscale return similar result objects. Functi@apscale

inherits fromrda andrda inherits fromcca . This inheritance structure is due to historic rea-

sons:cca was the first of these implemented in vegan. Hence the nomenclatoeca.imbject

reflectscca . This help page describes the internal structure ottt object for programmers.
Value

A cca object has the following elements:

call function call.
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colsum, rowsum
Column and row sums ioca . Inrda , itemcolsum contains standard devia-
tions of species anebwsum is NA

grand.total Grand total of community data icca andNAin rda .

inertia Text used as the name of inertia.

method Text used as the name of the ordination method.

terms Theterms component of théormula . This is missing if the ordination was

not called withformula

terminfo Further information on terms with three subitemterms which is like the
terms component above, but lists conditions and constrainst similaidy,
which lists the factor levels, amakdered which is TRUEto ordered factors.
This is produced byeganinternal functionordiTerminfo  , and it is needed
in predict.cca with newdata . This is missing if the ordination was not
called withformula

tot.chi Total inertia or the sum of all eigenvalues.

pCCA, CCA, CA
Actual ordination results for conditioned (partial), constrained and unconstrained
components of the model. Any of these carNigLL if there is no correspond-
ing component. ItempCCA CCAandCA have similar structure, and contain
following items:

alias The names of the aliased constraints or conditions. Funatias.cca  does
not access this item directly, but it finds the aliased variables and their defining
equations from the iter®R

biplot Biplot scores of constraints. Only CA

centroids (Weighted) centroids of factor levels of constraints. OnlZi@A Missing if the
ordination was not called witformula

eig Eigenvalues of axes. l8CAandCA

envcentre (Weighted) means of the original constraining or conditioning variables. In
pCCAand inCCA

Fit The fitted values of standardized data matrix after fitting conditions. Only in
pCCA

QR The QR decomposition of explanatory variables as producegt byThe con-

strained ordination algorithm is based QRdecomposition of constraints and
conditions (environmental data). The environmental data are first centred in
rda or weighted and centred itca . The QR decomposition is used in many
functions that accesta results, and it can be used to find many items that are
not directly stored in the object. For examples, seef.cca , coefrda
vif.cca ,permutest.cca ,predict.cca ,predict.rda , calibrate.cca

For possible uses of this component, gee In pCCAandCCA

rank The rank of the component.
tot.chi Total inertia or the sum of all eigenvalues of the component.
u (Weighted) orthonormal site scores. Please note that scaled scores are not stored

in the cca object, but they are made when the object is accessed with func-
tions like scores.cca , summary.cca or plot.cca , or theirrda vari-
ants. Only inCCAand CA In CCAcomponent these are the so-called linear
combination scores.

u.eig u scaled by eigenvalues. There is no guarantee thatggy variants of scores
will be kept in the future releases.
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% (Weighted) orthonormal species scores. If missing species were omitted from
the analysis, this will contain attribute.action  that lists the omitted species.
Only in CCAandCA

v.eig v weighted by eigenvalues.

wa Site scores found as weighted averages () or weighted sums{a ) of v with
weightsXbar , but the multiplying effect of eigenvalues removed. These often
are known as WA scores itta . Only in CCA

wa.eig The direct result of weighted avaraging or weighted summation (matrix multi-
plication) with the resulting eigenvalue inflation.

Xbar The standardized data matrix after previous stages of analysiSCAthis is
after possiblgpCCAor after partialling out the effects of conditions, anddA
after bothpCCAand CCA In cca the standardization is Chi-square, and in
rda centring and optional scaling by species standard deviations using function
scale .

Author(s)

Jari Oksanen

References

Legendre, P. and Legendre, L. (1998)merical Ecology2nd English ed. Elsevier.

See Also

The description here provides a hacker’s interface. For more user friendly accesta tiobject
seaalias.cca ,coef.cca ,deviance.cca ,predict.cca ,scores.cca ,summary.cca ,
vif.cca ,weights.cca ,spenvcor orrda variants of these functions.

Examples

# Some species will be missing in the analysis, because only a subset
# of sites is used below.

data(dune)

data(dune.env)

mod <- cca(dune[l:15,] ~ ., dune.env[1:15,])

# Look at the names of missing species

attr(mod$CCA$v, "na.action")

# Look at the names of the aliased variables:

mod$CCASalias

# Access directly constrained weighted orthonormal species and site
# scores, constrained eigenvalues and margin sums.

spec <- mod$CCAS$v

sites <- mod$CCA$u

eig <- mod$CCASeig

rsum <- mod$rowsum

csum <- mod$colsum
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decorana Detrended Correspondence Analysis and Basic Reciprocal Averaging

Description

Performs detrended correspondence analysis and basic reciprocal averaging or orthogonal corre-
spondence analysis.

Usage

decorana(veg, iweigh=0, iresc=4, ira=0, mk=26, short=0, before=NULL,
after=NULL)
## S3 method for class 'decorana':
plot(x, choices=c(1,2), origin=TRUE,
display=c("both","sites","species","none"),
cex = 0.8, cols = c¢(1,2), type, xlim, ylim,...)
## S3 method for class 'decorana’:
text(x, display = c("sites", "species"), labels, choices = 1:2,
origin = TRUE, select, ...)
## S3 method for class 'decorana'’:
points(x, display = c("sites", "species"), choices = 1:2,
origin = TRUE, select, ...)
## S3 method for class 'decorana’:
summary(object, digits=3, origin=TRUE,
display=c("both", "species","sites","none"), ...
downweight(veg, fraction = 5)
## S3 method for class 'decorana’:
scores(x, display=c("sites","species"), choices =1:4, origin=TRUE, ...

Arguments

veg Community data matrix.

iweigh Downweighting of rare species (0: no).

iresc Number of rescaling cycles (0: no rescaling).

ira Type of analysis (0: detrended, 1: basic reciprocal averaging).

mk Number of segments in rescaling.

short Shortest gradient to be rescaled.

before Hill's piecewise transformation: values before transformation.

after Hill’s piecewise transformation: values after transformation — these must corre-
spond to values ibefore

X, object A decorana result object.

choices Axes shown.

origin Use true origin even in detrended correspondence analysis.

display Display only sites, only species, both or neither.

cex Plot character size.

cols Colours used for sites and species.

type Type of plots, partial match text" ,"points”  or"none" .
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labels Optional text to be used instead of row names.

select Items to be displayed. This can either be a logical vector whicFREEfor
displayed items or a vector of indices of displayed items.

xlim, ylim the x and y limits (min,max) of the plot.

digits Number of digits in summary output.

fraction Abundance fraction where downweighting begins.

Other parameters fgriot function.

Details

In late 1970s, correspondence analysis became the method of choice for ordination in vegetation
science, since it seemed to be able to cope with non-linear species responses better than principal
components analysis. However, even correspondence analysis produced arc-shaped configuration
of a single gradient. Mark Hill developed detrended correspondence analysis to correct two assumed
‘faults’ in correspondence analysis: curvature of straight gradients and packing of sites at the ends
of the gradient.

The curvature is removed by replacing the orthogonalization of axes with detrending. In orthogo-
nalization the successive axes are made non-correlated, but detrending should remove all system-
atic dependence between axes. Detrending is made using a five-segment smoothing window with
weights (1,2,3,2,1) omk segments — which indeed is more robust than the suggested alternative of
detrending by polynomials. The packing of sites at the ends of the gradient is undone by rescaling
the axes after extraction. After rescaling, the axis is supposed to be scaled by ‘SD’ units, so that the
average width of Gaussian species responses is supposed to be one over whole axis. Other inno-
vations were the piecewise linear transformation of species abundances and downweighting of rare
species which were regarded to have an unduly high influence on ordination axes.

It seems that detrending works actually by twisting the ordination space, so that the results look non-
curved in two-dimensional projections (‘lolly paper effect’). As a result, the points have usually an
easily recognized triangle or diamond shaped pattern, obviously as a detrending artefact. Rescaling
works differently than commonly presented, tddecorana does not use, or even evaluate, the
widths of species responses. Instead, it tries to equalize the weighted variance of species scores on
axis segments (parametmk has only a small effect, sinakecorana finds the segment number

from the current estimate of axis length). This equalizes response widths only for the idealized
species packing model, where all species initially have unit width responses and equally spaced
modes.

Functionsummary prints the ordination scores, possible prior weights used in downweighting,
and the marginal totals after applying these weights. Fungtioh plots species and site scores.
Classicaldecorana scaled the axes so that smallest site score was 0 (and smallest species score
was negative), blsummary, plot andscores use the true origin, unlegsigin = FALSE

In addition to proper eigenvalues, the function also reports ‘decorana values’ in detrended analysis.
These are the values that the legacy codieabrana returns as ‘eigenvalues’. They are estimated
internally during iteration, and it seems that detrending interferes the estimation so that these values
are generally too low and have unclear interpretation. Moreover, ‘decorana values’ are estimated
before rescaling which will change the eigenvalues. The proper eigenvalues are estimated after
extraction of the axes and they are always the ratio of biased weighted variances of site and species
scores even in detrended and rescaled solutions. The ‘decorana values’ are provided only for the
the compatibility with legacy software, and they should not be used.

Value

Function returns an object of clagecorana , which hasprint , summary andplot methods.
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Note

Functiondecorana uses the central numerical engine of the original Fortran code (which is in
public domain), or about 1/3 of the original program. | have tried to implement the original be-
haviour, although a great part of preparatory steps were writteR language, and may differ
somewhat from the original code. However, well-known bugs are corrected and strict criteria used
(Oksanen & Minchin 1997).

Please note that there really is no need for piecewise transformation or even downweighting within
decorana , since there are more powerful and extensive alternativés tout these options are
included for compliance with the original software. If different fraction of abundance is needed in
downweighting, functiomownweight must be applied befoldecorana . Functiondownweight
indeed can be applied prior to correspondence analysis, and so it can be used togetbea with
CAIV andca as well.

The function finds only four axes: this is not easily changed.

Author(s)

Mark O. Hill wrote the original Fortran cod® port was by Jari Oksanen.

References

Hill, M.O. and Gauch, H.G. (1980). Detrended correspondence analysis: an improved ordination
technique Vegetatiod2, 47-58.

Oksanen, J. and Minchin, P.R. (1997). Instability of ordination results under changes in input data
order: explanations and remedidsurnal of Vegetation Scien@& 447-454.

See Also

For unconstrained ordination, non-metric multidimensional scalingdMDS may be more ro-
bust. Constrained (or ‘canonical’) correspondence analysis can be madecoaith Orthogo-
nal correspondence analysis can be made width or with decorana or cca, but the scal-
ing of results vary (and the one ofecorana correspondes tecaling = -1 in cca.). See

predict.decorana for adding new points to ordination.
Examples

data(varespec)

vare.dca <- decorana(varespec)

vare.dca

summary(vare.dca)

plot(vare.dca)

### the detrending rationale:

gaussresp <- function(x,u) exp(-(x-u)*2/2)

X <- seq(0,6,length=15) ## The gradient

u <- seq(-2,8,len=23) ## The optima

pack <- outer(x,u,gaussresp)

matplot(x, pack, type="I", main="Species packing")

opar <- par(mfrow=c(2,2))

plot(scores(prcomp(pack)), asp=1, type="b", main="PCA")
plot(scores(decorana(pack, ira=1)), asp=1, type="b", main="CA")
plot(scores(decorana(pack)), asp=1, type="b", main="DCA")
### Let's add some noise:

noisy <- (0.5 + runif(length(pack)))*pack
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par(mfrow=c(2,1))

matplot(x, pack, type="I", main="Ideal model")

matplot(x, noisy, type="I", main="Noisy model")
par(mfrow=c(2,2))

plot(scores(prcomp(noisy)), type="b", main="PCA", asp=1)

plot(scores(decorana(noisy)), type="b", main="DCA", asp=1)
plot(scores(cca(noisy ~ x), dis="sites"), asp=1, type="b", main="CCA")
par(opar)

decostand Standardizaton Methods for Community Ecology

Description

The function provides some popular (and effective) standardization methods for community ecolo-
gists.

Usage

decostand(x, method, MARGIN, range.global, na.rm = FALSE)
wisconsin(x)

Arguments
X Community data matrix.
method Standardization method.
MARGIN Margin, if default is not acceptable.
range.global Matrix from which the range is found imethod = "range" . This allows
using same ranges across subsets of data. The dimensidh&RGINmMust
match withx.
na.rm Ignore missing values in row or column standardizations.
Details

The function offers following standardization methods for community data:

total : divide by margin total (defauMARGIN = ).
max: divide by margin maximum (defauMARGIN = 2.

freq : divide by margin maximum and multiply by number of non-zero items, so that the
average of non-zero entries is one (Oksanen 1983; déflARGIN = 2.

normalize : make margin sum of squares equal to one (defddRGIN = 1.

range : standardize values into range 0 ...1 (defAKRGIN = 3. If all values are con-
stant, they will be transformed to O.

standardize : scale into zero mean and unit variance (defMMRGIN = 2.
pa: scale into presence/absence scale (0/1).
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 chi.square : divide by row sums and square root of column sums, and adjust for square root
of matrix total (Legendre & Gallagher 2001). When used with Euclidean distance, the matrix
should be similar to the the Chi-square distance used in correspondence analysis. However,
the results froncmdscale would still differ, since CA is a weighted ordination method
(defaultMARGIN = 1.

* hellinger : square root ofmethod = "total" (Legendre & Gallagher 2001).
Standardization, as contrasted to transformation, means that the entries are transformed relative to
other entries.

All methods have a default marginMARGIN=1means rows (sites in a normal data set) and
MARGIN=2means columns (species in a hormal data set).

Commandwisconsin is a shortcut to common Wisconsin double standardization where species
(MARGIN=3 are first standardized by maximm#x) and then sitesMARGIN=) by site totals
(tot ).

Most standardization methods will give non-sense results with negative data entries that normally
should not occur in the community data. If there are empty sites or species (or constant with
method = "range" ), many standardization will change these iNt@aN

Value

Returns the standardized data frame.

Note

Common transformations can be made with stan&afainctions.

Author(s)

Jari Oksanen

References

Legendre, P. & Gallagher, E.D. (2001) Ecologically meaningful transformations for ordination of
species dataDecologial29: 271-280.

Oksanen, J. (1983) Ordination of boreal heath-like vegetation with principal component analysis,
correspondence analysis and multidimensional scalfagetaticb2, 181-189.

Examples

data(varespec)

sptrans <- decostand(varespec, "max")

apply(sptrans, 2, max)

sptrans <- wisconsin(varespec)

# Chi-square: Similar but not identical to Correspondence Analysis.
sptrans <- decostand(varespec, "chi.square")
plot(procrustes(rda(sptrans), cca(varespec)))
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deviance.cca Statistics Resembling Deviance and AIC for Constrained Ordination

Description

The functions extract statistics that resemble deviance and AIC from the result of constrained cor-
respondence analysisa or redundancy analysisla . These functions are rarely needed directly,

but they are called bgtep in automatic model building. Actuallgca andrda do not haveAlC

and these functions are certainly wrong.

Usage

## S3 method for class ‘cca”
deviance(object, ...)

## S3 method for class 'cca"
extractAIC(fit, scale = 0, k = 2, ..)

Arguments
object the result of a constrained ordinatiacté orrda ).
fit fitted model from constrained ordination.
scale optional numeric specifying the scale parameter of the modelssale in
step .
k numeric specifying the "weight" of thequivalent degrees of freeddm:edf )
part in the AIC formula.
further arguments.
Details

The functions find statistics that resembi&viance andAIC in constrained ordination. Actually,
constrained ordination methods do not have log-Likelihood, which means that they cannot have AIC
and deviance. Therefore you should not use these functions, and if you use them, you should not
trust them. If you use these functions, it remains as your responsibility to check the adequacy of the
result.

The deviance ofca is equal to Chi-square of the residual data matrix after fitting the constraints.
The deviance ofda is defined as the residual sum of squares. The deviance functida & also
used forcapscale . FunctionextractAIC ~ mimicsextractAlIC.Im in translating deviance

to AIC.

There is little need to call these functions directly. However, they are called implicityein

function used in automatic selection of constraining variables. You should check the resulting model
with some other criteria, because the statistics used here are unfounded. In particular, the penalty
k is not properly defined, and the defaklt= 2 is not justified theoretically. If you have only
continuous covariates, tisgep function will base the model building on magnitude of eigenvalues,

and the value ok only influences the stopping point (but variable with highest eigenvalues is not
necessarily the most significant one in permutation tesémova.cca ). If you also have multi-

class factors, the value &fwill have a capricious effect in model building.

Value

Thedeviance functions return “deviance”, anetractAIC  returns effective degrees of free-
dom and “AIC".
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Note
These functions are unfounded and untested and they should not be used directly or implicitly.
Moreover, usual caveats in usigtep are very valid.

Author(s)

Jari Oksanen

References
Godinez-Dominguez, E. & Freire, J. (2003) Information-theoretic approach for selection of spatial
and temporal models of community organizatitdarine Ecology Progress Seri@s3, 17-24.

See Also

cca,rda ,anova.cca ,step ,extractAlC

Examples

# The deviance of correspondence analysis equals Chi-square
data(dune)

data(dune.env)

chisq.test(dune)

deviance(cca(dune))

# Backward elimination from a complete model "dune ~ ."
ord <- cca(dune ~ ., dune.env)

ord

step(ord)

# Stepwise selection (forward from an empty model "dune ~ 1")

step(cca(dune ~ 1, dune.env), scope = formula(ord))

# ANOVA for the added variable

anova(cca(dune ~ Moisture, dune.env))

# ANOVA for the next candidate variable that was not added

anova(cca(dune ~ Condition(Moisture) + Management, dune.env), perm.max=1000)

distconnected Connectedness and Minimum Spanning Tree for Dissimilarities

Description

Functiondistconnected finds groups that are connected disregarding dissimilarities that are
at or above a threshold &A The function can be used to find groups that can be ordinated to-
gether or transformed bgtepacross . Functionno.shared returns a logical dissimilarity
object, whereTRUEmeans that sites have no species in common. This is a minimal structure for
distconnected or can be used to set missing values to dissimilarities. Funepamtree

finds a minimum spanning tree connecting all points, but disregarding dissimilarities that are at or
above the threshold &A

Usage

distconnected(dis, toolong = 1, trace = TRUE)
no.shared(x)
spantree(dis, toolong = 0)
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Arguments

dis Dissimilarity data inheriting from clasdist or a an object, such as a matrix,
that can be converted to a dissimilarity matrix. Functioegdist anddist
are some functions producing suitable dissimilarity data.

toolong Shortest dissimilarity regarded & The function uses a fuzz factor, so that
dissimilarities close to the limit will be mad€A too. Iftoolong = 0 (or
negative), no dissimmilarity is regarded as too long.

trace Summarize results afistconnected
X Community data.
Details

Data sets are disconnected if they have sample plots or groups of sample plots which share no
species with other sites or groups of sites. Such data sets cannot be sensibly ordinated by any
unconstrained method, because these subsets cannot be related to each other. For instance, corre-
spondence analysis will polarize these subsets with eigenvalue 1. Neither can such dissimilarities
be transformed wittstepacross , because there is no path between all points, and result will
containNAs. Functiondistconnected will find such subsets in dissimilarity matrices. The
function will return a grouping vector that can be used for subsetting the data. If data are connected,
the result vector will be alls. The connectedness between two points can be defined either by a
thresholdtoolong  or using input dissimilarities withNAs.

Functionno.shared returns alist structure having valuERUEwhen two sites have nothing in
common, and valuEALSEwhen they have at least one shared species. This is a minimal structure
that can be analysed witlistconnected . The function can be used to select dissimilarities
with no shared species in indices which do not have a fixed upper limit.

Functionspantree finds a minimum spanning tree for dissimilarities (there may be several min-
imum spanning trees, but the function finds only one). Dissimilarities at or above the threshold
toolong andNAs are disregarded, and the spanning tree is found through other dissimilarities. If
the data are disconnected, the function will return a disconnected tree (or a forest), and the corre-
sponding link iSNA The results opantree  can be overlaid onto an ordination diagram using
functionordispantree

Functiondistconnected uses depth-first search (Sedgewick 1990). Functfiantree  uses
Prim’s method implemented as priority-first search for dense graphs (Sedgewick 1990).

Value

Functiondistconnected returns a vector for observations using integers to identify connected
groups. If the data are connected, values will belalFunctionno.shared returns an object of
classdist . Functionspantree returns a list with two vectors, each of length- 1. The number

of links in a tree is one less the number of observations, and the first item is omitted. The items are

kid The child node of the parent, starting from parent number two. If there is no link
from the parent, value will bBlAand tree is disconnected at the node.
dist Corresponding distance. kfd = NA , thendist = 0
Note

In principle, minimum spanning tree is equivalent to single linkage clustering that can be performed
usinghclust oragnes . However, these functions combine clusters to each other and the infor-
mation of the actually connected points (the “single link”) cannot be recovered from the result. The
graphical output of a single linkage clustering plotted watHicluster will look very different

from an equivalent spanning tree plotted watltlispantree
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Author(s)

Jari Oksanen

References

Sedgewick, R. (1990Algorithms in C Addison Wesley.

See Also

vegdist or dist for getting dissimilarities,stepacross for a case where you may need
distconnected ,ordispantree  for displaying results odpantree , andhclust oragnes
for single linkage clustering.

Examples

## There are no disconnected data in vegan, and the following uses an
## extremely low threshold limit for connectedness. This is for

## illustration only, and not a recommended practice.

data(dune)

dis <- vegdist(dune)

ord <- cmdscale(dis) ## metric MDS

gr <- distconnected(dis, toolong=0.4)

tr <- spantree(dis, toolong=0.4)

ordiplot(ord, type="n")

ordispantree(ord, tr, col="red", lwd=2)

points(ord, cex=1.3, pch=21, col=1, bg = gr)

# Make sites with no shared species as NA in Manhattan dissimilarities
dis <- vegdist(dune, "manhattan")

is.na(dis) <- no.shared(dune)

diversity Ecological Diversity Indices and Rarefaction Species Richness

Description

Shannon, Simpson, Rényi, Hill and Fisher diversity indices and rarefied species richness for com-
munity ecologists.

Usage

diversity(x, index = "shannon", MARGIN = 1, base = exp(l))
rarefy(x, sample, se = FALSE, MARGIN = 1)

renyi(x, scales=c(0,0.25,0.5,1,2,4,8,16,32,64,Inf), hill = FALSE)
fisher.alpha(x, MARGIN = 1, se = FALSE, ..)
specnumber(x, MARGIN = 1)

Arguments
X Community data matrix.
index Diversity index, one ofhannon , simpson orinvsimpson

MARGIN Margin for which the index is computed.
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base The logarithmbase used inshannon .
sample Subsample size for rarefying community.
se Estimate standard errors.

scales Scales of Rényi diversity.

hill Calculate Hill numbers.

Parameters passedritm

Details

Shannon or Shannon-Weaver (or Shannon-Wiener) index is definéd as — ). p; log,, p;,
wherep; is the proportional abundance of speciemndb is the base of the logarithm. It is most
popular to use natural logarithms, but some argue for base2 (which makes sense, but no real
difference).

Both variants of Simpson’s index are based@n= 3" p?. Choicesimpson returnsl — D and
invsimpson  returnsl/D.

Shannon and Simpson indices are both special cases of Rényi diversity

1 a
Ha, = 1—_a Ingpi

wherea is a scale parameter, and Hill (1975) suggested to use so-called “Hill numbers” defined
asN, = exp(H,). Some Hill numbers are the number of species witk= 0, exp(H’) or the
exponent of Shannon diversity with = 1, inverse Simpson witlh = 2 and 1/ max(p;) with

a = oo. According to the theory of diversity ordering, one community can be regarded as more
diverse than another only if its Rényi diversities are all higher (Téthmérész 1995).

Functionrarefy  gives the expected species richness in random subsamples sésipée from

the community. The size glample should be smaller than total community size, but the function
will silently work for largersample as well and return non-rarefied species richness (and standard
error = 0). Rarefaction can be performed only with genuine counts of individuals. The function
rarefy is based on Hurlbert's (1971) formulation, and the standard errors on Heck et al. (1975).

Functionfisher.alpha estimates the parameter of Fisher’s logarithmic series (fskerfit ).
The estimation is possible only for genuine counts of individuals. The function can optionally re-
turn standard errors @f. These should be regarded only as rough indicators of the accuracy: the
confidence limits ofx are strongly non-symmetric and standard errors cannot be used in Normal
inference.

Functionspecnumber finds the number of species. WIMARGIN = 2 it finds frequencies of
species. The function is extremely simple, and shortcuts are easy irRplain

Better stories can be told about Simpson’s index than about Shannon’s index, and still more grandiose
stories about rarefaction (Hurlbert 1971). However, these indices are all very closely related (Hill
1973), and there is no reason to despise one more than others (but if you are a graduate student,
don’t drag me in, but obey your Professor’s orders). In particular, exponent of the Shannon index
is linearly related to inverse Simpson (Hill 1973) although the former may be more sensitive to rare
species. Moreover, inverse Simpson is asymptotically equal to rarefied species richness in sample
of two individuals, and Fisher'a is very similar to inverse Simpson.

Value

Vector of diversity indices or rarefied species richness values. With opgor TRUE, func-
tionrarefy returns a 2-row matrix with rarefied richne&) énd its standard erros€¢ ). Function
renyi returns a data frame of selected indices. With opsen= TRUE, functionfisher.alpha
returns a data frame with items far(alpha ), its approximate standard errose(), residual de-
grees of freedomdf.residual ), and thecode returned bynim on the success of estimation.
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Author(s)

Jari Oksanen, Roeland Kinitkindt@cgiar.ory (renyi ) and Bob O’Hargbob.ohara@helsinkifi
(fisher.alpha ).

References

Fisher, R.A., Corbet, A.S. & Williams, C.B. (1943). The relation between the number of species
and the number of individuals in a random sample of animal populalmurnal of Animal Ecology
12, 42-58.

Heck, K.L., van Belle, G. & Simberloff, D. (1975). Explicit calculation of the rarefaction diversity
measurement and the determination of sufficient sample Bzdogy56, 1459-1461.

Hill, M.O. (1973). Diversity and evenness: a unifying notation and its consequeBcekgy54,
427-473.

Hurlbert, S.H. (1971). The nonconcept of species diversity: a critique and alternative parameters.
Ecological Monograph®4, 187-211.

Tothmérész, B. (1995). Comparison of different methods for diversity ordefmgnal of Vegeta-
tion Sciences, 283—-290.

Examples

data(BCl)

H <- diversity(BCl)

simp <- diversity(BCI, "simpson")

invsimp <- diversity(BCI, "inv")

r.2 <- rarefy(BCl, 2)

alpha <- fisher.alpha(BCI)

pairs(cbind(H, simp, invsimp, r.2, alpha), pch="+", col="blue")
## Species richness (S) and Pielou's evenness (J):

S <- specnumber(BCl) ## rowSums(BCl > 0) does the same...
J <- Hllog(S)

dune Vegetation and Environment in Dutch Dune Meadows.

Description

The dune meadow vegetation datane has cover class values of 30 species on 20 sites. The
corresponding environmental data fracthene.env  has following entries:

Usage

data(dune)
data(dune.env)

Format

Al anumeric vector of thickness of Al horizon.
Moisture an ordered factor with levels

Moisture 1<2<4<5

Management a factor with levels
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Management BF: Biological Farming

Management HF. Hobby Farming

Management NM Nature Conservation Management
Management SF: Standard Farming

Use an ordered factor of landuse with levels

Use Hayfield <Haypastu < Pasture

Manure an ordered factor with levels

Manure 0<1<2<3<4

Source
Jongman, R.H.G, ter Braak, C.J.F & van Tongeren, O.F.R. (198@)a Analysis in Community
and Landscape Ecologyudog, Wageningen.

Examples

data(dune)

envfit Fits an Environmental Vector or Factor onto an Ordination

Description

The function fits environmental vectors or factors onto an ordination. The projection of points onto
vectors have maximum correlations with corresponding environmental variables, and the factors
show the averages of factor levels.

Usage

## Default S3 method:

envfit(X, P, permutations = 0, strata, choices=c(1,2), ...)

## S3 method for class ‘formula”:

envfit(formula, data, ...)

## S3 method for class 'envfit"

plot(x, choices = c(1,2), arrow.mul, at = c(0,0), axis = FALSE,

p.max = NULL, col = "blue", add = TRUE, ...

## S3 method for class 'envfit":

scores(x, display, choices, ...

vectorfit(X, P, permutations = 0, strata, choices=c(1,2),
display = c("sites", "Ic"), w = weights(X), ...)

factorfit(X, P, permutations = 0, strata, choices=c(1,2),
display = c("sites", "Ic"), w = weights(X), ...)

Arguments
X Ordination configuration.
P Matrix or vector of environmental variable(s).

permutations Number of permutations for assessing significance of vectors or factors.
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formula, data
Modelformula and data.

X A result object fromenvfit

choices Axes to plotted.

arrow.mul Multiplier for vector lengths. The arrows are automatically scaled similarly as
in plot.cca if this is not given anchdd = TRUE

at The origin of fitted arrows in the plot. If you plot arrows in other places then
origin, you probably have to speciérrrow.mul

axis Plot axis showing the scaling of fitted arrows.

p.max Maximum estimatedP value for displayed variables. You must calculdte
values with settingpermutations  to use this option.

col Colour in plotting.

add Results added to an existing ordination plot.

strata An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata.

display In fitting functions these are ordinary site scores or linear combination scores
("lc" ) in constrained ordinatiorc€a , rda , capscale ). In scores func-
tion they are eithefvectors" or "factors" (with synonyms"bp" or
“cn" |, resp.).

w Weights used in fitting (concerns maintga anddecorana results which

have nonconstant weights).
Parameters passeddgoores .

Details

Functionenvfit  finds vectors or factor averages of environmental variables. Furpdtbenvfit

adds these in an ordination diagram. Xfis a data.frame , envfit  usesfactorfit for

factor variables andrectorfit for other variables. 1X is a matrix or a vectoenvfit  uses

only vectorfit . Alternatively, the model can be defined a simplified mddemula , where

the left hand side must be an ordination result object or a matrix of ordination scores, and right
hand side lists the environmental variables. The formula interface can be used for easier selection
and/or transformation of environmental variables. Only the main effects will be analysed even if
interaction terms were defined in the formula.

Functionsvectorfit andfactorfit can be called directly. Functiorectorfit finds di-
rections in the ordination space towards which the environmental vectors change most rapidly and
to which they have maximal correlations with the ordination configuration. Funfziiarfit

finds averages of ordination scores for factor levels. Fund#otorfit treats ordered and un-
ordered factors similarly.

If permutations > 0, the ‘significance’ of fitted vectors or factors is assessed using permutation
of environmental variables. The goodness of fit statistic is squared correlation coeffiéjeridr
factors this is defined a8 = 1 — ss,,/ss;, wheress,, andss, are within-group and total sums of
squares.

User can supply a vector of prior weights|f the ordination object has weights, these will be used.
In practise this means that the row totals are used as weightgedttor decorana results. This
means that sites with lower totals will have lower weights. If you do not like this, but want to give
equal weights to all sites, you should set= NULL The weighted fitting gives similar results to
biplot arrows and class centroidsdna . For complete similarity between fitted vectors and biplot
arrows, you should selisplay = "Ic" (and possiblyscaling = 2 ).

The results can be accessed vatores.envfit function which returns either the fitted vectors
scaled by correlation coefficient or the centroids of the fitted environmental variables.
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Value

Functionsvectorfit and factorfit return lists of classesgectorfit and factorfit
which have grint  method. The result object have the following items:

arrows Arrow endpoints fronvectorfit . The arrows are scaled to unit length.
centroids Class centroids frorfactorfit
r Goodness of fit statistic: Squared correlation coefficient

permutations Number of permutations.
pvals Empirical P-values for each variable.

Functionenvfit  returns a list of clasgnvfit  with results ofvectorfit andenvfit as
items.

Functionplot.envfit scales the vectors by correlation.

Note

Fitted vectors have become the method of choice in displaying environmental variables in ordina-
tion. Indeed, they are the optimal way of presenting environmental variables in Constrained Corre-
spondence Analysista , since there they are the linear constraints. In unconstrained ordination the
relation between external variables and ordination configuration may be less linear, and therefore
other methods than arrows may be more useful. The simplest is to adjust the plotting symbol sizes
(cex, symbols ) by environmental variables. Fancier methods involve smoothing and regression
methods that abound R, andordisurf  provides a wrapper for some.

Author(s)

Jari Oksanen. The permutation test derives from the code suggested by Michael Scroggie.

See Also

A better alternative to vectors may bedisurf

Examples

data(varespec)

data(varechem)

library(MASS)

ord <- metaMDS(varespec)

(fit <- envfit(ord, varechem, perm = 1000))

scores(fit, "vectors")

plot(ord)

plot(fit)

plot(fit, p.max = 0.05, col = "red")

## Adding fitted arrows to CCA. We use "Ic" scores, and hope
## that arrows are scaled similarly in cca and envfit plots
ord <- cca(varespec ~ Al + P + K, varechem)

plot(ord, type="p")

fit <- envfit(ord, varechem, perm = 1000, display = "Ic")
plot(fit, p.max = 0.05, col = "red")

## Class variables, formula interface, and displaying the
## inter-class variability with “ordispider'

data(dune)

data(dune.env)
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attach(dune.env)

ord <- cca(dune)

fit <- envfit(ord ~ Moisture + Al, dune.env)

plot(ord, type = "n")

ordispider(ord, Moisture, col="skyblue")

points(ord, display = "sites", col = as.numeric(Moisture), pch=16)
plot(fit, cex=1.2, axis=TRUE)

fisherfit Fit Fisher's Logseries and Preston’s Lognormal Model to Abundance
Data
Description
Functionfisherfit fits Fisher’s logseries to abundance data. Fungbi@stonfit groups

species frequencies into doubling octave classes and fits Preston’s lognormal model, and function
prestondistr fits the truncated lognormal model without pooling the data into octaves.

Usage

fisherfit(x, ...)

## S3 method for class ‘fisherfit"

confint(object, parm, level = 0.95, ..)

## S3 method for class ‘fisherfit":

profile(fitted, alpha = 0.01, maxsteps = 20, del = zmax/5,
)

prestonfit(x, ...)

prestondistr(x, truncate = -1, ...)

## S3 method for class 'prestonfit":

plot(x, xlab = "Frequency", ylab = "Species", bar.col = "skyblue",
line.col = "red", lwd = 2, ..)

## S3 method for class 'prestonfit'

lines(x, line.col = "red", lwd = 2, ..)

veiledspec(x, ...)

as.fisher(x, ...)

Arguments

X Community data vector for fitting functions or their result objectdtmt  func-
tions.

object, fitted
Fitted model.

parm Not used.

level The confidence level required.

alpha The extend of profiling as significance.

maxsteps Maximum number of steps in profiling.

del Step length.

truncate Truncation point for log-Normal model, in log2 units. Default valué cor-

responds to the left border of zero Octave. The choice strongly influences the
fitting results.
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xlab, ylab Labels forx andy axes.
bar.col Colour of data bars.
line.col Colour of fitted line.
Iwd Width of fitted line.

Other parameters passed to functions.

Details

In Fisher’s logarithmic series the expected number of spegiasth n observed individuals is

fn = az™/n (Fisher et al. 1943). The estimation follows Kempton & Taylor (1974) and uses
functionnim. The estimation is possible only for genuine counts of individuals. The parameter
is used as a diversity index, andand its standard error can be estimated with a separate function
fisher.alpha . The parametet is taken as a nuisance parameter which is not estimated sepa-
rately but taken to bé&V/(N + «). Helper functionas.fisher transforms abundance data into
Fisher frequency table.

Functionfisherfit estimates the standard error@f However, the confidence limits cannot

be directly estimated from the standard error, but you should use funotiofint  based on
profile likelihood. Functiorconfint  uses functiorconfint.glm of the MASS package, us-

ing profile.fisherfit for the profile likelihood. Functioprofile.fisherfit follows
profile.glm and finds the- parameter or signed square root of two times log-Likelihood profile.
The profile can be inspected withplot  function which shows the and a dotted line correspond-

ing to the Normal assumption: if standard errors can be directly used in Normal inference these two
lines are similar.

Preston (1948) was not satisfied with Fisher's model which seemed to imply infinite species rich-
ness, and postulated that rare species is a diminishing class and most species are in the middle of
frequency scale. This was achieved by collapsing higher frequency classes into wider and wider
“octaves” of doubling class limits: 1, 2, 3-4, 5-8, 9-16 etc. occurrences. Any logseries data will
look like lognormal when plotted this way. The expected frequefiay abundance octaveis de-

fined by f, = S exp(—(logy(0) — 11)?/2/0?), wherep is the location of the mode andthe width,

both inlog, scale, and) is the expected number of species at mode. The lognormal model is usu-
ally truncated on the left so that some rare species are not observed. Fumestonfit fits the
truncated lognormal model as a second degree log-polynomial to the octave pooled data using Pois-

son error. Functiomprestondistr fits left-truncated Normal distribution tvg, transformed
non-pooled observations with direct maximization of log-likelihood. Functimestondistr
is modelled after functioffitdistr which can be used for alternative distribution models. The

functions have commoprint , plot andlines methods. Thdines function adds the fitted
curve to the octave range with line segments showing the location of the mode and the width (sd)
of the response.

The total extrapolated richness from a fitted Preston model can be found with funeiledspec
The function accepts results both frgmestonfit and fromprestondistr . If veiledspec
is called with a species count vector, it will internally ysestonfit . Functionspecpool
provides alternative ways of estimating the number of unseen species. In fact, Preston’s lognormal
model seems to be truncated at both ends, and this may be the main reason why its result differ

from lognormal models fitted in Rank—Abundance diagrams with functiaddognormal or
rad.veil

Value
The functionprestonfit returns an object with fittedoefficients , and with observed

(freq ) and fitted fitted ) frequencies, and a string describing the fittimgthod . Function
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prestondistr omits the entnfitted . The functionfisherfit returns the result afilm,
where itemestimate  is «. The result object is amended with the following items:
df.residuals Residual degrees of freedom.
nuisance Parametets:.
fisher Observed data froras.fisher

Note

It seems that Preston regarded frequencies 1, 2tc¢4, as “tied” between octaves. This means

that only half of the species with frequency 1 were shown in the lowest octave, and the rest were
transferred to the second octave. Half of the species from the second octave were transferred to
the higher one as well, but this is usually not as large number of species. This practise makes data
look more lognormal by reducing the usually high lowest octaves, but is too unfair to be followed.
Therefore the octaves used in this function include the upper limit. If you do not accept this, you
must change the function yourself.

Author(s)

Bob O’Hara(bob.ohara@helsinkiifisherfit ) and Jari Oksanen.

References

Fisher, R.A., Corbet, A.S. & Williams, C.B. (1943). The relation between the number of species
and the number of individuals in a random sample of animal populalmurnal of Animal Ecology
12: 42-58.

Kempton, R.A. & Taylor, L.R. (1974). Log-series and log-normal parameters as diversity discrimi-
nators for Lepidopteralournal of Animal Ecology#3: 381-399.

Preston, F.W. (1948) The commonness and rarity of spelesdogy29, 254—-283.

See Also

diversity  , fisher.alpha , radfit |, specpool . Functionfitdistr of MASS package
was used as the model fprestondistr . Functiondensity can be used for smoothed “non-
parametric” estimation of responses, ajgplot is an alternative, traditional and more effective
way of studying concordance of observed abundances to any distribution model.

Examples

data(BCl)

mod <- fisherfit(BCI[5,])

mod

plot(profile(mod))

confint(mod)

# prestonfit seems to need large samples
mod.oct <- prestonfit(colSums(BCI))

mod.ll <- prestondistr(colSums(BCI))
mod.oct

mod.ll

plot(mod.oct)

lines(mod.ll, line.col="blue3") # Different
## Smoothed density

den <- density(log2(colSums(BCI)))
lines(den$x, ncol(BCl)*den$y, lwd=2) # Fairly similar to mod.oct
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## Extrapolated richness
veiledspec(mod.oct)
veiledspec(mod.ll)

goodness.cca Diagnostic Tools for [Constrained] Ordination (CCA, RDA, DCA, CA,
PCA)

Description

Functionsgoodness andinertcomp can be used to assess the goodness of fit for individual
sites or species. Functiaif.cca  andalias.cca  can be used to analyse linear dependencies
among constraints and conditions. In addition, there are some other diagnostic tools (see 'Details’).

Usage

## S3 method for class 'cca":
goodness(object, display = c("species”, "sites"), choices,
model = c("CCA", "CA"), statistic = c("explained", "distance"),
summarize = FALSE, ...)
inertcomp(object, display = c("species"”, "sites"),
statistic = c("explained”, "distance"), proportional = FALSE)
spenvcor(object)
vif.cca(object)
## S3 method for class 'cca'
alias(object, ...)

Arguments
object A result object froncca , rda , capscale ordecorana .
display Display"species"  or"sites"
choices Axes shown. Default is to show all axes of theodel”
model Show constrained'CCA") or unconstrained'CA" ) results.
statistic Stastic used:"explained" gives the cumulative percentage accounted for,
"distance" shows the residual distances.
summarize Show only the accumulated total.
proportional Give the inertia components as proportional for the corresponding total.
Other parameters to the functions.
Details

Functiongoodness gives the diagnostic statistics for species or sites. The alternative statistics
are the cumulative proportion of inertia accounted for by the axes, or the residual distance left
unaccounted for. The conditional (“partialled out”) constraints are always regarded as explained
and included in the statistics.

Functioninertcomp  decomposes the inertia into partial, constrained and unconstrained com-
ponents for each site or species. Instead of inertia, the function can give the total dispersion or
distances from the centroid for each component.
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Functionspenvcor finds the so-called “species — environment correlation” or (weighted) cor-
relation of site weighted average scores and linear combination scores. This is a bad measure of
goodness of ordination, because it is sensitive to extreme scores (like correlations are), and very
sensitive to overfitting or using too many constraints. Better models often have poorer correlations.
Functionordispider can show the same graphically.

Functionvif.cca  gives the variance inflation factors for each constraint or contrast in factor
constraints. In partial ordination, conditioning variables are analysed together with constraints.
Variance inflation is a diagnostic tool to identify useless constraints. A common rule is that values
over 10 indicate redundant constraints. If later constraints are complete linear combinations of
conditions or previous constraints, they will be completely removed from the estimation, and no
biplot scores or centroids are calculated for these aliased constraints. A note will be printed with
default output if there are aliased constraints. Functibas will give the linear coefficients
defining the aliased constraints.

Value

The functions return matrices or vectors as is appropriate.

Note

It is a common practise to ugmodness statistics to remove species from ordination plots, but
this may not be a good idea, as the total inertia is not a meaningful conaegat inn particular for
rare species.

Functionvif is defined as generic in packagar (vif ), but if you have not loaded that package

you must specify the call agf.cca . Variance inflation factor is useful diagnostic tool for de-
tecting nearly collinear constraints, but these are not a problem with algorithm used in this package
to fit a constrained ordination.

Author(s)

Jari Oksanen. Theif.cca  relies heavily on the code by W. N. Venablealias.cca is a
simplified version oflias.Im

References

Greenacre, M. J. (1984). Theory and applications of correspondence analysis. Academic Press,
London.

Gross, J. (2003). Variance inflation factoRsNews3(1), 13-15.

See Also

cca,rda , capscale ,decorana , vif

Examples

data(dune)

data(dune.env)

mod <- cca(dune ~ Al + Management + Condition(Moisture), data=dune.env)
goodness(mod)

goodness(mod, summ = TRUE)

# Inertia components

inertcomp(mod, prop = TRUE)

inertcomp(mod, stat="d")

# vif.cca
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vif.cca(mod)

# Aliased constraints

mod <- cca(dune ~ ., dune.env)

mod

vif.cca(mod)

alias(mod)

with(dune.env, table(Management, Manure))

goodness.metaMDS Goodness of Fit and Shepard Plot for Nonmetric Multidimensional
Scaling

Description
Functiongoodness.metaMDS find goodness of fit measure for points in nonmetric multidimen-
sional scaling, and functiostressplot makes &Shepard diagram.

Usage

## S3 method for class 'metaMDS":
goodness(object, dis, ...)

stressplot(object, dis, pch, p.col = "blue", l.col = "red", lwd = 2,
)
Arguments
object A result object frommetaMDSor isoMDS.
dis Dissimilarities. Normally this should not used withetaMDS but should be
always used witlisoMDS .
pch Plotting character for points. Default is dependent on the number of points.
p.col, l.col Point and line colours.
Iwd Line width.

Other parameters to functions, e.g. graphical parameters.

Details

Functiongoodness.metaMDS finds a goodness of fit statistic for observations (points). This is
defined so that sum of squared values is equal to squared stress. Large values indicate poor fit.

Functionstressplot is a wrapper t&shepard function inMASS package. It plots ordination
distances against original dissimilarities, and draws a step line of the nonlinear fit. In addition,
it adds to the graph two correlation like ststistics on the goodness of fit. The correlation based
on stressS is defined as/1 — S2. The “linear fit" is the correlation between fitted values and
ordination distances.

Both functions can be used both withetaMDS and withisoMDS. With metaMDS the func-

tions try to reconstruct the dissimilarities usingetaMDSredist , and dissimilarities should not

be given. WithisoMDS the dissimilarities must be given. In either case, the functions inspect that
dissimilarities are consistent with current ordination, and refuse to analyse inconsistent dissimilari-
ties. Functiorgoodness.metaMDS is generic invegan , but you must spell its name completely
with isoMDS which has no class.



36

Value

Functiongoodness returns a vector of values. Functistmessplot
object.

Author(s)

Jari Oksanen.

See Also

metaMDS isoMDS, Shepard .

Examples

data(varespec)

mod <- metaMDS(varespec)
stressplot(mod)

gof <- goodness(mod)

gof

plot(mod, display = "sites", type = "n")
points(mod, display = "sites", cex = gof/2)

humpfit

returns invisibly éshepard

humpfit No-interaction Model for Hump-backed Species Richness vs. Biomass
Description
Functionhumpfit  fits a no-interaction model for species richness vs. biomass data (Oksanen

1996). This is a null model that produces a hump-backed response as an artifact of plant size and

density.

Usage

humpfit(mass, spno, family = poisson, start)
## S3 method for class ‘humpfit'
summary(object, ...)

## S3 method for class 'humpfit":
predict(object, newdata = NULL, ...)

## S3 method for class
plot(x, xlab = "Biomass",
l.col = "blue", p.col
## S3 method for class
points(x, ...)
## S3 method for class
lines(x, segments=101,
## S3 method for class
profile(fitted, parm = 1:3,

"humpfit":

ylab = "Species Richness", lwd =
= 1, type = "b", ..)

"humpfit";

"humpfit":

)

‘humpfit;
alpha = 0.01, maxsteps = 20, del

2;

= zmax/5, ...
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Arguments
mass Biomass.
spno Species richness.
start Vector of starting values for all three parameters.
family Family of error distribution. Anyfamily can be used, but the link function is

always Fisher’s diversity model, and othimk  functions are silently ignored.
X, object, fitted
Result object ohumpfit

newdata Values ofmass used inpredict . The original data values are used if missing.

xlab,ylab Axis labels inplot

Iwd Line width

l.col, p.col Line and point colour irplot

type Type ofplot : "p" for observed points]" for fitted lines,"b" for both, and
"n" for only setting axes.

segments Number of segments used for fitted lines.

parm Profiled parameters.

alpha, maxsteps, del
Parameters for profiling range and density.

Other parameters to functions.

Details

The no-interaction model assumes that the humped species richness pattern along biomass gradient
is an artifact of plant size and density (Oksanen 1996). For low-biomass sites, it assumes that
plants have a fixed size, and biomass increases with increasing number of plants. When the sites
becomes crowded, the number of plants and species richness reaches the maximum. Higher biomass
is reached by increasing the plant size, and then the number of plants and species richness will
decrease. At biomasses below the hump, plant number and biomass are linearly related, and above
the hump, plant number is proportional to inverse squared biomass. The number of plants is related
to the number of species by the relationshiplk( function) from Fisher’s log-series (Fisher et al.

1943).

The parameters of the model are:

1. hump: the location of the hump on the biomass gradient.
2. scale : an arbitrary multiplier to translate the biomass into virtual number of plants.
3. alpha : Fisher'sa to translate the virtual number of plants into number of species.

The parameterscale andalpha are intermingled and this function should not be used for es-
timating Fisher'sc. Probably the only meaningful and interesting parameter is the location of the
hump.

Function may be very difficult to fit and easily gets trapped into local solutions, or fails with non-
Poisson families, and functigorofile ~ should be used to inspect the fitted models. If you have
loadedpackage MASS, you can use functior@ot.profile.glm , pairs.profile.gim

for graphical inspection of the profiles, andnfint.profile.gim for the profile based con-
fidence intervals.

The original model intended to show that there is no need to speculate about ‘competition’ and
‘stress’ (Al-Mufti et al. 1977), but humped response can be produced as an artifact of using fixed
plot size for varying plant sizes and densities.
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Value

The function returns an object of claSsumpfit" inheriting from class'gim" . The result
object has specifisummary, predict , plot , points andlines methods. In addition, it
can be accessed by the following methodsdbn objects: AIC, extractAIC |, deviance
coef , residuals.gim (exceptype = "partial" ), fitted , and perhaps some others. In
addition, functiorellipse.glm (packageellipse) can be used to draw approximate confidence
ellipses for pairs of parameters, if the normal assumptions look appropriate.

Note

The function is a replacement for the origir@dLIM4 function at the archive of Journal of Ecol-
ogy. There the function was represented as a mgded with one non-linear parametenymp)

and a special one-parameter link function from Fisher’s log-series. The current function directly
applies non-linear maximum likelihood fitting using functiolm . Some expected problems with

the current approach are:

» The function is discontinuous &atump and may be difficult to optimize in some cases (the
lines will always join, but the derivative jumps).

» The function does not try very hard to find sensible starting values and can fail. The user may
supply starting values in argumestart  if fitting fails.

» The estimation is unconstrained, but bettale andalpha should always be positive. Per-
haps they should be fitted as logarithmic. Fitt@gmmafamily models might become
easier, too.

Author(s)

Jari Oksanen

References

Al-Mufti, M.M., Sykes, C.L, Furness, S.B., Grime, J.P & Band, S.R. (1977) A quantitative analysis
of shoot phenology and dominance in herbaceous vegetdtomnal of Ecology65,759-791.

Fisher, R.A., Corbet, A.S. & Williams, C.B. (1943) The relation between the number of species
and the number of individuals in a random sample of of an animal populat@rnal of Animal
Ecologyl12, 42-58.

Oksanen, J. (1996) Is the humped relationship between species richness and biomass an artefact
due to plot sizedournal of Ecologys4, 293—295.

See Also

fisherfit , profile.glm , confint.glm

Examples

#t

## Data approximated from Al-Mufti et al. (1977)

#it

mass <- ¢(140,230,310,310,400,510,610,670,860,900,1050,1160,1900,2480)
spno <- c¢(1, 4, 3, 9, 18, 30, 20, 14, 3, 2, 3, 2, 5 2

sol <- humpfit(mass, spno)

summary(sol) # Almost infinite alpha...

plot(sol)

# confint is in MASS, and impicitly calls profile.humpfit.
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# Parameter 3 (alpha) is too extreme for profile and confint, and we
# must use only "hump" and "scale".

library(MASS)

plot(profile(sol, parm=1:2))

confint(sol, parm=c(1,2))

linestack Plots One-dimensional Labelled Diagrams without Overwriting La-
bels

Description

Functionlinestack plots vertical one-dimensional plots for numeric vectors. The plots are
always labelled, but the the labels are moved vertically to avoid overwriting.

Usage

linestack(x, cex = 0.8, label = "right", hoff = 2, air = 1.1, at = 0,
add = FALSE, axis = FALSE, ..)

Arguments
X Numeric vector to be plotted.
cex Size of the labels.
label Put labels to théright" or"left" of the axis.
hoff Distance from the vertical axis to the label in units of the width of letter “m”.
air Multiplier to string height to leave empty space between labels.
at Position of plot in horizontal axis.
add Add to an existing plot.
axis Add axis to the plot.
Other graphical parameters to labels.
Value

The function draws a plot and returns nothing useful.

Note

The function always draws labelled diagrams. If you want to have unlabelled diagrams, you can
use, e.g.plot , stripchart orrug .

Author(s)

Jari Oksanen

Examples

## First DCA axis

data(dune)

ord <- decorana(dune)

linestack(scores(ord, choices=1, display="sp"))

linestack(scores(ord, choices=1, display="si"), label="left", add=TRUE)
titte(main="DCA axis 1")
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make.cepnames Abbreviates a Botanical or Zoological Latin Name into an Eight-
character Name

Description

A standard CEP name has four first letters of the generic name and four first letters of the spe-
cific epithet of a Latin name. The last epithet, that may be a subspecific name, is used in the
current function. If the name has only one component, it is abbreaviated to eight characters (see
abbreviate ).. The returned names are made unique with funatiake.unique which adds
numbers to the end of CEP names if needed.

Usage

make.cepnames(names)

Arguments

names The names to be formatted into CEP names.

Details

Cornell Ecology Programs (CEP) used eight-letter abbreviations for species and site names. In
species, the names were formed by taking four first letters of the generic name and four first letters
of the specific or subspecific epithet. The CEP names were originally used, becab&RIIRAN
IV did not haveCHARACTERata type, but text variables had to be stored into numerical variables,
which in popular computers could hold four characters. In modern times, there is no reason for this
limitation, but ecologists are used to these names, and they may be practical to avoid congestion in
ordination plots.

Value

Function returns CEP names.

Note

The function is simpleminded and rigid. You must write a better one if you need.

Author(s)

Jari Oksanen

See Also

make.names , strsplit , substring , paste , abbreviate

Examples

make.cepnames(c("Aa maderoi”, "Poa sp.", "Cladina rangiferina”,
"Cladonia cornuta”, "Cladonia cornuta var. groenlandica”,
"Cladonia rangiformis”, "Bryoerythrophyllum"))

data(BCl)

colnames(BCI) <- make.cepnames(colnames(BCl))
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mantel Mantel and Partial Mantel Tests for Dissimilarity Matrices

Description

Functionmantel finds the Mantel statistic as a matrix correlation between two dissimilarity matri-
ces, and functiomantel.partial finds the partial Mantel statistic as the partial matrix correla-
tion between three dissimilarity matricies. The significance of the statistic is evaluated by permuting
rows and columns of the first dissimilarity matrix.

Usage

mantel(xdis, ydis, method="pearson", permutations=1000, strata)
mantel.partial(xdis, ydis, zdis, method = "pearson”, permutations = 1000,

strata)
Arguments
xdis, ydis, zdis
Dissimilarity matrices or aist objects.
method Correlation method, as acceptedday : "pearson” ,"spearman" or"kendall"

permutations Number of permutations in assessing significance.

strata An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata.

Details

Mantel statistic is simply a correlation between entries of two dissimilarity matrices (some use cross
products, but these are linearly related). However, the significance cannot be directly assessed,
because there at¥ (N — 1)/2 entries for justN observations. Mantel developed asymptotic test,

but here we use permutations 8frows and columns of dissimilarity matrix.

Partial Mantel statistic uses partial correlation conditioned on the third matrix. Only the first matrix

is permuted so that the correlation structure between second and first matrices is kept constant. Al-
thoughmantel.partial silently accepts other methods thgearson™ , partial correlations

will probably be wrong with other methods.

The function usesor , which should accept alternativesarson for product moment correla-
tions andspearman or kendall for rank correlations.

Value

The function returns a list of clagsantel with following components:

Call Function call.

method Correlation method used, as returnedcoy.test
statistic The Mantel statistic.

signif Empirical significance level from permutations.
perm A vector of permuted values.

permutations Number of permutations.
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Note

Legendre & Legendre (1998) say that partial Mantel correlations often are difficult to interpet.

Author(s)

Jari Oksanen

References

The test is due to Mantel, of course, but the current implementation is based on Legendre and
Legendre.

Legendre, P. and Legendre, L. (1998)merical Ecology2nd English Edition. Elsevier.

See Also

cor for correlation coefficientsprotest  (“Procrustes test”) for an alternative with ordination
diagrams, andnosim for comparing dissimilarities against classification. For dissimilarity matri-
ces, seeegdist ordist . Seebioenv for selecting environmental variables.

Examples

## Is vegetation related to environment?
data(varespec)

data(varechem)

veg.dist <- vegdist(varespec) # Bray-Curtis
env.dist <- vegdist(scale(varechem), "euclid")
mantel(veg.dist, env.dist)

mantel(veg.dist, env.dist, method="spear")

metaMDS Nonmetric Multidimensional Scaling with Stable Solution from Ran-
dom Starts, Axis Scaling and Species Scores

Description

FunctionmetaMDSusesisoMDS to perform Nonmetric Multidimensional Scaling (NMDS), but

tries to find a stable solution using several random starts (fundtidDS ). In addition, it
standardizes the scaling in the result, so that the configurations are easier to interpret (function
postMDS), and adds species scores to the site ordination (funetémtores ).

Usage

metaMDS(comm, distance = "bray", k = 2, trymax = 20, autotransform =TRUE,
noshare = 0.1, expand = TRUE, trace = 1, plot = FALSE,
previous.best, ...)

## S3 method for class 'metaMDS"

plot(x, display = c("sites", "species"), choices = c(1, 2),

type = "p", shrink = FALSE, ..)

## S3 method for class 'metaMDS":

points(x, display = c("sites", "species"),
choices = c(1,2), shrink = FALSE, select, ...)
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## S3 method for class 'metaMDS":
text(x, display = c("sites", "species"), labels,
choices = c¢(1,2), shrink = FALSE, select, ...)
## S3 method for class 'metaMDS"
scores(x, display = c("sites"”, "species"), shrink = FALSE,
choices, ...)
metaMDSdist(comm, distance = "bray", autotransform = TRUE, noshare = 0.1,

trace =

1, commname, ...)

metaMDSiter(dist, k = 2, trymax = 20, trace = 1, plot = FALSE, previous.best,

)

initMDS(x, k=2)

postMDS(X, dist, pc=TRUE, center=TRUE, halfchange=TRUE, threshold=0.8,
nthreshold=10, plot=FALSE)
metaMDSredist(object, ...)

Arguments

comm
distance
k

trymax
autotransform

noshare

expand
trace
plot

previous.best

X
choices
type
display
shrink
labels
select

X
commname
dist

pc

center
halfchange

Community data.

Dissimilarity index used ivegdist

Number of dimensions iilsoMDS.

Maximum number of random starts in search of stable solution.

Use simple heuristics for possible data transformation (see below).

Proportion of site pairs with no shared species to triggepacross  to find

flexible shortest paths among dissimilarities.
Expand weighted averages of speciewascores .
Trace the functiontrace = 2 or higher will be more voluminous.

Graphical tracing: plot interim results. You may want to pat(ask =
TRUE) with this option.

Start searches from a previous solutions. Otherwisésad¢DS default for the
starting solution.

Dissimilarity matrix forisoMDS or plot object.
Axes shown.

Plot type:"p" for points,"t" for text, and'n" for axes only.
Display"sites"  or"species"

Shrink back species scores if they were expanded originally.
Optional test to be used instead of row names.

Items to be displayed. This can either be a logical vector whicFREEfor
displayed items or a vector of indices of displayed items.

Configuration from multidimensional scaling.

The name otomm should not be given if the function is called directly.
Dissimilarity matrix used in multidimensional scaling.

Rotate to principal components.

Centre the configuration.

Scale axes to half-change units.
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threshold Largest dissimilarity used in half-change scaling.
nthreshold Minimum number of points in half-change scaling.
object A result object froometaMDS

Other parameters passed to functions.

Details

Non-metric Multidimensional Scaling (NMDS) is commonly regarded as the most robust uncon-
strained ordination method in community ecology (Minchin 1987). FunctimtddDS andpostMDS
together with some other functions are intended to help run NMD®%wiMDS like recommended

by Minchin (1987). FunctioometaMDScombines all recommendations into one command for a
shotgun style analysis. The stepsiietaMDSare:

1. Transformation: If the data values are larger than common class scales, the function performs a
Wisconsin double standardization usingconsin . If the values look very large, the func-
tion also performsqrt transformation. Both of these standardization are generally found to
improve the results. However, the limits are completely arbitrary (at present, data maximum
50 triggerssqrt and >9 triggerswvisconsin ). If you want to have a full control of the
analysis, you should sautotransform = FALSE  and make explicit standardization in
the command.

2. Choice of dissimilarity: For a good result, you should use dissimilarity indices that have a
good rank order relation to ordering sites along gradients (Faith et al. 1987). The default is
Bray dissimilarity, because it often is the test winner. However, any other dissimilarity index
in vegdist can be used. Functiaankindex can be used for finding the test winner for
you data and gradients.

3. Step-across dissimilarities: Ordination may be very difficult if a large proportion of sites have
no shared species. In this case, the results may be improvedsigacross  dissimi-
larities, or flexible shortest paths among all sites. $tepacross s triggered by option
noshare . If you do not like manipulation of original distances, you should®sethare =
1.

4. NMDS with random starts: NMDS easily gets trapped into local optima, and you must start
NMDS several times from random start to be confident that you have found the global solution.
The default inisoMDS s to start from metric scaling (witbmdscale ) which typically is
close to a local optimum. The strategyriretaMDSis to first run a defaultsoMDS, or use
the previous.best solution if supplied, and take its solution as the stand&un( 0).
ThenmetaMDS startsisoMDS from several random starts (maximum number is given by
trymax ). If a solution is better (has a lower stress) than the previous standard, it is taken
as the new standard. If the solution is better or close to a stanuatdMDScompares two
solutions using Procrustes analysis using funcpoocrustes  with option symmetric
= TRUE If the two solutions are very similar in their Procrustese and the largest residual
is very small, the solutions are regarded as convergent and the best one is saved. Please note
that the conditions are stringent, and you may have found good and relatively stable solutions
although the function is not yet satisfied. Settingce = TRUE will monitor the final
stresses, anplot = TRUE will display Procrustes overlay plots from each comparison.

5. Scaling of the resultametaMDSwill run postMDS for the final result. FunctiopostMDS
provides the following ways of “fixing” the indeterminacy of scaling and orientation of axes
in NMDS: Centring moves the origin to the average of the axes. Principal components rotate
the configuration so that the variance of points is maximized on first dimension. Half-change
scaling scales the configuration so that one unit means halving of community similarity from
replicate similarity. Half-change scaling is based on closer dissimilarities where the relation
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between ordination distance and community dissimilarity is rather linear; the limit is con-
trolled by parameteahreshold . If there are enough points below this threshold (controlled

by the the parametathreshold ), dissimilarities are regressed on distances. The intercept
of this regression is taken as the replicate dissimilarity, and half-change is the distance where
similarity halves according to linear regression. Obviously the method is applicable only for
dissimilarity indices scaled 1. . . 1, such as Kulczynski, Bray-Curtis and Canberra indices.

6. Species scores: Function adds the species scores to the final solution as weighted averages us-
ing functionwascores with given value of paramet@&xpand . The expansion of weighted
averages can be undone withrink = TRUE in plot orscores functions.

Value

FunctionmetaMDSreturns an object of clasaetaMDS The final site ordination is stored in the
item points , and species ordination in the itespecies . The other items store the infor-
mation on the steps taken by the function. The objectgrag , plot , points andtext
methods. FunctionmetaMDSdist andmetaMDSredist returnvegdist objects. Function
initMDS  returns a random configuration which is intended to be used witbMDS only. Func-
tionsmetaMDSiter andpostMDS returns the result aBoMDS with updated configuration.

Note

FunctionmetaMDSis a simple wrapper fasoMDS and some support functions. You can also call
parts of the function separately for better control of results. Data transformation, dissmilarities and
possiblestepacross  are made in functiometaMDSdist which returns a dissimilarity result.
Iterative search (with starting values framtMDS ) is made inmetaMDSiter . Processing of

result configuration is done postMDS, and species scores addedviyscores . If you want to

be more certain of reaching a global solution, you can compare results from several independent
runs. You can also continue analysis from previous results or from your own configuration. Func-
tion does not save the used dissimilarity matrix, toetaMDSredist  tries to reconstruct the used
dissimilarities with original data transformation and poss#tépacross

Author(s)

Jari Oksanen

References

Faith, D. P, Minchin, P. R. and Belbin, L. (1987). Compositional dissimilarity as a robust measure
of ecological distance/egetatio69, 57—68.

Minchin, P.R. (1987) An evaluation of relative robustness of techniques for ecological ordinations.
Vegetatior1, 145-156.

See Also

isoMDS, decostand , wisconsin , vegdist , rankindex , stepacross , procrustes
wascores , ordiplot

Examples

## The recommended way of running NMDS (Minchin 1987)
#it

data(dune)

library(MASS) ## isoMDS

# NMDS
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sol <- metaMDS(dune)
sol
plot(sol, type="t")

ordihull Add Graphical Items to Ordination Diagrams

Description

Functions to add convex hulls, arrows, line segments, regular grids of points, ‘spider’ graphs, el-
lipses, cluster dendrogram or spanning trees to ordination diagrams. The ordination diagrams can
be produced byegan plot.cca , plot.decorana or ordiplot

Usage

ordihull(ord, groups, display = "sites", draw = c("lines","polygon™),
show.groups, ...)

ordiarrows(ord, groups, levels, replicates, display = "sites",
show.groups, ...)

ordisegments(ord, groups, levels, replicates, display = "sites",
show.groups, ...)

ordigrid(ord, levels, replicates, display = "sites", ...)

ordispider(ord, groups, display="sites", w = weights(ord, display),
show.groups, ...)

ordiellipse(ord, groups, display="sites", kind
draw = c("lines","polygon”), w =
show.groups, ...)

ordicluster(ord, cluster, prune = 0, display = "sites",
w = weights(ord, display), ...)

ordispantree(ord, tree, display = "sites", ...)

= c¢("sd","se"), conf,
weights(ord, display),

Arguments
ord An ordination object or anrdiplot  object.
groups Factor giving the groups for which the graphical item is drawn.

levels, replicates
Alternatively, regular groups can be defined with argumkwvsls  andreplicates
wherelevels  gives the number of groups, angplicates the number of
successive items at the same group.

display Item to displayed.

draw Use eitherlines or polygon to draw the line. Graphical parameters are
passed to both. The main difference is thatygon s may be filled and non-
transparent.

show.groups Show only given groups. This can be a vector,T&UEIf you want to show
items for which condition iFRUE This argument makes it possible to use dif-
ferent colours and line types for groups. The default is to show all groups.

w Weights used to find the average within group. Weights are used automatically
for cca anddecorana results, unless undone by the useeNULLsets equal
weights to all points.
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kind Whether standard deviations of poingsl | or standard deviations of their (weighted)
averagesde) are used.

conf Confidence limit for ellipses, e.g. 0.95. If given, the correspondoh@r se is
multiplied with the corresponding value found from the Chi-squared distribution
with 2df.

cluster Result of hierarchic cluster analysis, suchhakist oragnes .

prune Number of upper level hierarchies removed from the dendrogramprulfie

> 0, dendrogram will be disconnected.

tree Structure defining a spanning tree. This can be aressfiarfitree or avector
giving the child node of each parent omitting the first point. Valhdameans
that there is no link from the corresponding parent.

Parameters passed to graphical functions suthes , segments , arrows
polygon ortoscores to select axes and scaling etc.

Details

Functionordihull drawslines or polygon s for the convex hulls found by functiarhull
encircling the items in the groups.

Functionordiarrows  drawsarrows andordisegments  draws linesegments between
successive items in the groups. Functiodigrid ~ draws linesegments both within the groups
and for the corresponding items among the groups.

Functionordispider draws a ‘spider’ diagram where each point is connected to the group cen-
troid with segments . Weighted centroids are used in the correspondence analysis mettzods
anddecorana or if the user gives the weights in the call.difdispider is called withcca or

rda result withoutgroups argument, the function connects each ‘WA’ scores to the correspoding
‘LC’ score.

Functionordiellipse drawslines orpolygon s for dispersiorellipse  using either stan-

dard deviation of point scores or standard error of the (weighted) average of scores, and the (weighted)
correlation defines the direction of the principal axis of the ellipse. The function requires package
ellipse An ellipsoid hull can be drawn with functiogllipsoidhull of packagecluster.

Functionordicluster overlays a cluster dendrogram onto ordination. It needs the result from
a hierarchic clustering such &glust or agnes, or other with a similar structure. Function
ordicluster connects cluster centroids to each other with 8egments . Function uses cen-
troids of all points in the clusters, and is therefore similar to average linkage methods.

Functionordispantree overlays a (minimum) spanning tree onto ordination. It needs a result
from spantree or a vector listing children of each parent, starting from second (i.e., omitting the
first: the number of links is one less number of points). Missing links are denotidé\ dsor an
example, sespantree

Note

These functions add graphical items to ordination graph: You must draw a graph first.

Author(s)

Jari Oksanen
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See Also

The function pass parameters to basic graphical functions, and you may wish to change the default
values inarrows , lines , segments andpolygon . You can pass parametersdoores as
well. Other underlying functions ahull  andellipse

Examples

data(dune)

data(dune.env)

mod <- cca(dune ~ Moisture, dune.env)

attach(dune.env)

plot(mod, type="n")

ordihull(mod, Moisture)

ordispider(mod, col="red")

plot(mod, type = "p", display="sites")

ordicluster(mod, hclust(vegdist(dune)), prune=3, col = "blue")

# The following is not executed automatically because it needs
# a non-standard library “ellipse'.

## Not run:

ordiellipse(mod, Moisture, kind="se", level=0.95, lwd=2, col="blue")
## End(Not run)

ordiplot Alternative plot and identify Functions for Ordination
Description
Ordination plot function especially for congested plots. Functadiplot always plots only
unlabelled points, butlentify.ordiplot can be used to add labels to selected site, species or
constraint points. Functiadentify.ordiplot can be used to identify points fropfiot.cca
plot.decorana , plot.procrustes andplotrad  as well.
Usage

ordiplot(ord, choices = c(1, 2), type="points", display, xlim, ylim, ...)
## S3 method for class ‘ordiplot':

identify(x, what, labels, ...)

## S3 method for class 'ordiplot":

points(x, what, select, ...

## S3 method for class 'ordiplot":

text(x, what, labels, select, ...)

Arguments
ord A result from an ordination.
choices Axes shown.
type The type of graph which may boints" , "text" or "none" for any
ordination method.
display Display only "sites" or "species". The default for most methods is to display

both, but forcca , rda andcapscale it is the same as iplot.cca
xlim, ylim the x and y limits (min,max) of the plot.
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Other graphical parameters.
X A result object fromordiplot

what Items identified in the ordination plot. The types depend on the kind of plot used.
Most methods knovsites andspecies , functionscca andrda know in
addition constraints (for ‘LC’ scores), centroids  andbiplot , and

plot.procrustes ordination plot hasieads andpoints
labels Optional text used for labels. Row names will be used if this is missing.
select Items to be displayed. This can either be a logical vector whichREEfor

displayed items or a vector of indices of displayed items.

Details

Functionordiplot  draws an ordination diagram using black circles for sites and red crosses for
species. Itreturns invisibly an object of classdiplot ~ which can be used bgentify.ordiplot
to label selected sites or species, or constraintgé@n andrda .

The function can handle output from several alternative ordination methodscc&orrda and
decorana it uses theiplot method with optiortype = "points" . In addition, theplot
functions of these methods return invisibly@ndiplot ~ object which can be used igentify.ordiplot
to label points. For other ordinations it relies secores to extract the scores.

For full user control of plots, it is best to calkdiplot ~ with type = "none" and save the
result, and then add sites and species upioigts.ordiplot or text.ordiplot which
both pass all their arguments to the corresponding default graphical functions.

Value

Functionordiplot  returns invisibly an object of clagsdiplot  with itemssites , species
andconstraints (if these are available in the ordination object). Funcigentify.ordiplot
uses this object to label the point.

Note

The purpose of these functions is to provide similar functionality asptbe , plotid and

specid methods in librarylabdsv . The functions are somewhat limited in parametrization,

but you can call directly the standaidentify andplot functions for a better user control.
Author(s)

Jari Oksanen

See Also
identify for basic operationgplot.cca , plot.decorana , plot.procrustes which
also produce objects fadentify.ordiplot andscores for extracting scores from non-

vegan ordinations.

Examples

# Draw a cute NMDS plot from a non-vegan ordinatin (isoMDS).
# Function metaMDS would be an easier alternative.

data(dune)

dune.dis <- vegdist(wisconsin(dune))

library(MASS)
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dune.mds <- isoMDS(dune.dis)

dune.mds <- postMDS(dune.mds, dune.dis)

dune.mds$species <- wascores(dune.mds$points, dune, expand = TRUE)
fig <- ordiplot(dune.mds, type = "none")

points(fig, "sites", pch=21, col="red", bg="yellow")

text(fig, “species”, col="blue", cex=0.9)

# Default plot of the previous using identify to label selected points
## Not run:

fig <- ordiplot(dune.mds)

identify(fig, "spec")

## End(Not run)

ordiplot3d Three-Dimensional and Dynamic Ordination Graphics

Description

Functionordiplot3d displays three-dimensional ordination graphics usicatterplot3d
Functionordirgl  displays three-dimensional dynamic ordination graphs which can be rotated
and zoomed into usingygl package. Both work with all ordination results foragan and all
ordination results known bgcores function.

Usage

ordiplot3d(object, display = "sites", choices = 1:3, ax.col = 2,
arrlen = 0.1, arr.col = 4, envfit, xlab, ylab, zlab, ...
ordirgl(object, display = "sites", choices = 1:3, type = "p",
ax.col = "red", arr.col = "yellow", text, envfit, ...)
orglpoints(object, display = "sites", choices = 1:3, ...)
orgltext(object, text, display = "sites", choices = 1:3, justify = "center",
adj = 0.5, ..)
orglsegments(object, groups, display = "sites", choices = 1:3, ..)
orglspider(object, groups, display = "sites", w = weights(object, display),
choices = 1:3, ..)

Arguments
object An ordination result or any object known lsgores .
display Display "sites" or "species”  or other ordination object recognized by
scores .
choices Selected three axes.
arr.len ‘Length’ (width) of arrow head passed &rows function.
arr.col Colour of biplotarrows and centroids of environmental variables.
type The type of plots’p" for points or"t" for text labels.
ax.col Axis colour (concerns only the crossed axes through the origin).
text Text to override the default wittype = "t"

envfit Fitted environmental variables froenvfit ~ displayed in the graph.
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xlab, ylab, zlab
Axis labels passed tscatterplot3d . If missing, labels are taken from the
ordination result. Set thlAto supress labels.

justify, adj Text justification passed tgl.texts . One of these is used depending on the
versionofrgl installed.

groups Factor giving the groups for which the graphical item is drawn.

w Weights used to find the average within group. Weights are used automatically

for cca anddecorana results, unless undone by the usesNULLsets equal
weights to all points.

Other parameters passed to graphical functions.

Details

Both function display three-dimensional ordination graphics. Funaiidiplot3d plots static
scatter diagrams usingcatterplot3d . Functionordirgl plots dynamic graphics using
OpenGL inrgl . Both functions use most default settings of underlying graphical functions, and
you must consult their help pages to change graphics to suit your tastecgéerplot3d ,

rgl , rgl.points J[gl.texts ). Both functions will display only one selected setsgbres
typically either"sites"  or "species" , but for instancecca also has'lc" scores. In con-
strained ordinationoca , rda , capscale ), biplot arrows and centroids are always displayed sim-
ilarly as in two-dimensional plotting functioplot.cca . Alternatively, it is possible to display
fitted environmental vectors or class centroids fremvfit  in both graphs. These are displayed
similarly as the results of constrained ordination, and they can be shown only for non-constrained
ordination. The user must remember to specify at least three aresfiih  if the results are used
with these functions.

Functionordiplot3d plots only points. However, it returns invisibly an object inheriting from
ordiplot ~ so that you can uselentify.ordiplot to identify "points”  or "arrows"

The underlyingscatterplot3d function acceptsype = "n" so that only the axes, biplot
arrows and centroids of environmental variables will be plotted, and the ordination scores can be
added withtext.ordiplot or points.ordiplot . Further, you can use any functions from
theordihull  family with the invisble result obrdiplot3d  , but you must remember to specify
thedisplay as"points" or"arrows" . To change the viewing angle, orientation etc. you
must seescatterplot3d

Functionordigl makes a dynamic three-dimensional graph that can be rotated with mouse,
and zoomed into with mouse buttons or wheel (but Mac users with one-button mouse should see

rgl.viewpoint ), or try ctrl-button. MacOS X users must stat1 before callingrgl com-
mands. Functiorordirgl uses default settings, and you should consult the underlying func-
tionsrgl.points , rgl.texts to see how to control the graphics. Functamdirgl  always

cleans its graphic window before drawing. Functienglpoints adds points andrgltext

adds text to existingrdirgl ~ windows. In addition, functiolrglsegments  combines points
within "groups”  with line segments similarly asrdisegments . Functionorglspider

works similarly aordispider it connects points to their weighted centroid withgroups"

and in constrained ordination it can conn&ef" or weighted averages scores to corresponding
“Ic" or linear combination scores fyroups" is missing. In addition, basiggl functions

rgl.points , rgl.texts , rgl.lines and many others can be used.

Value
Functionordiplot3d returns invisibly an object of claserdiplot3d" inheriting fromordiplot
The return object will contain the coordinates projected onto two dimensioripdorts" , and

possibly for the heads darrows" and"centroids" of environmental variables. Functions
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like identify.ordiplot , points.ordiplot , text.ordiplot can use this result, as
well as ordihull and other functions documented with the latter. In addition, the result will
contain the object returned scatterplot3d , including functionxyz.converter which

projects three-dimensional coordinates onto the plane used in the current plot. Fendiigh
returns nothing.
Warning

Functionordirgl  uses OpenGL packaggl which may not be functional in all platforms, and
can crash R in some: usave.image before tryingordirgl . Mac users must stak11 (and

first installX11 and some other libraries) before being able tong$e. It seems thatgl.texts

does not always position the text like supposed, and it may be safe to verify text location with
corresponding points.

Note
The user interface afjl changed in version 0.65, but thedirgl ~ functions do not yet fully use
the new capablities. However, they should work both in old and new versiags. of

Author(s)

Jari Oksanen

See Also
scatterplot3d ,rgl , rgl.points , rgl.texts , rgl.viewpoint ,ordiplot | identify.ordiplot
text.ordiplot , points.ordiplot ,ordihull | plot.cca , envfit

Examples

## Examples are not run, because they need non-standard packages
## 'scatterplot3d' and 'rgl' (and the latter needs user interaction).
ittt

##### Default 'ordiplot3d’

## Not run:

data(dune)

data(dune.env)

ord <- cca(dune ~ Al + Moisture, dune.env)

ordiplot3d(ord)

##H#H# A boxed 'pin' version

ordiplot3d(ord, type = "h")

#### More user control

pl <- ordiplot3d(ord, angle=15, type="n")

points(pl, "points", pch=16, col="red", cex = 0.7)

##H## identify(pl, "arrows", col="blue") would put labels in better positions
text(pl, "arrows", col="blue", pos=3)

text(pl, "centroids", col="blue", pos=1, cex = 1.2)

##H### ordirgl

ordirgl(ord, size=2)

ordirgl(ord, display = "species", type = "t")

rgl.quit()

## End(Not run)
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ordisurf Smooths Variables and Plots Contours on Ordination.
Description
Functionordisurf  fits a smooth surface for given variable and plots the result on ordination
diagram.
Usage

ordisurf(x, y, choices=c(1, 2), knots=10, family="gaussian", col="red",
thinplate = TRUE, add = FALSE, display = "sites",
w = weights(x), ...)

Arguments
X Ordination configuration, either a matrix or a result knowrsbgres .
y Variable to be plotted.
choices Ordination axes.
knots Number of initial knots igam (one more than degrees of freedom).
family Error distribution ingam.
col Colour of contours.
thinplate Use thinplate splines igam
add Add contours on an existing diagram or draw a new plot.
display Type of scores known bgcores : typically "sites" for ordinary site scores or
“Ic" for linear combination scores.
w Prior weights on the data. Concerns maioba anddecorana results which
have nonconstant weights.
Other graphical parameters.
Details

Functionordisurf  fits a smooth surface using thinplate spline fittingg@am, and interpolates the

fitted values into a regular grid usingterp . Finally, it plots the results either over an existing
ordination diagram or draws a new plot with sample plots and fitted contours. The function uses
scores to extract ordination scores, arccan be any result object known by that function.

User can supply a vector of prior weights|f the ordination object has weights, these will be used.
In practise this means that the row totals are used as weightg@étior decorana results. This
means that sites with lower totals will have lower weights. If you do not like this, but want to give
equal weights to all sites, you should set= NULL The behaviour is consistent witgnvfit

For complete accordance with constraimed , you should sedlisplay = "Ic" (and possibly
scaling = 2 ).

Value

Function is usually called for its side effect of drawing the contour plot, but it returns the result
object ofgam.



54 orditorp

Note

The function requires librariemgcv (gam) andakima (interp ). In fact, it is a very primitive
wrapper for these.

The default is to use thinplate splines. These make sense in ordination as they have equal smoothing
in all directions and are rotation invariant. However, they seem to fail badly in some case, and then
separate spline smoothing may be used.

Author(s)

Dave Roberts and Jari Oksanen

See Also

For basic routinegam, interp  andscores . Functionenvfit  provides a poorer but more
traditional and compact alternative.

Examples

## The examples are not run by ‘example(ordisurf)’ because they need
## libraries ‘'mgev' and “akima' which may not exist in every system.
## Not run:

data(varespec)

data(varechem)

library(MASS)

vare.dist <- vegdist(varespec)

vare.mds <- isoMDS(vare.dist)

attach(varespec)

attach(varechem)

ordisurf(vare.mds, Baresoil, xlab="Dim1", ylab="Dim2")

## Total cover of reindeer lichens

ordisurf(vare.mds, Cla.ste+Cla.arb+Cla.ran, xlab="Dim1", ylab="Dim2")
## End(Not run)

orditorp Add Text or Points to Ordination Plots

Description

The function adddext or points to ordination plots. Text will be used if this can be done
without overwriting other text labels, and points will be used otherwise. The function can help in
reducing clutter in ordination graphics, but manual editing may still be necessary.

Usage

orditorp(x, display, labels, choices = c(1, 2), priority, tcex = 0.7,
pcex, tcol = par(“"col"), pcol, pch = par("pch"), air = 1, ...)
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Arguments
X A result object from ordination or aordiplot  result.
display Items to be displayed in the plot. Only one alternative is allowed. Typically this
is "sites"  or"species"
labels Optional text used for labels. Row names will be used if this is missing.
choices Axes shown.
priority Text will be used for items with higher priority if labels overlap. This should be
vector of the same length as the number of items plotted.
tcex, pcex Text and point sizes, sgxot.default
tcol, pcol Text and point colours, sqot.default
pch Plotting character, sg@ints
air Amount of empty space between text labels. Values <1 allow overlapping text.
Other arguments ttext andpoints
Details

Functionorditorp  will add either text or points to an existing plot. The items with higiority

will be added firstantext  will be used if this can be done without overwriting previous labels,and
points  will be used otherwise. Ibriority is missing, labels will be added from the outskirts to
the centre. Functioorditorp  can be used with most ordination results, or plotting results from
ordiplot  or ordination plot functionsglot.cca , plot.decorana , plot.metaMDS ).

Value

The function returns invisibly a logical vector wheFfRUEmeans that item was labelled with text
andFALSE means that it was marked with a point. The returned vector can be usedsaddtte
argument in ordinatiotext andpoints functions.

Author(s)

Jari Oksanen

Examples

## A cluttered ordination plot :

data(BCl)

mod <- cca(BCl)

plot(mod, dis="sp", type="t")

# Now with orditorp and abbreviated species names
cnam <- make.cepnames(names(BCl))

plot(mod, dis="sp", type="n")

stems <- colSums(BCI)
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plot.cca

Plot or Extract Results of Constrained Correspondence Analysis or
Redundancy Analysis

Description

Functions to plot or extract results of constrained correspondence anabgsis (edundancy anal-
ysis (da ) or constrained analysis of principal coordinatesgscale ).

Usage

## S3 method for class 'cca':

plot(x, choices

= c(1, 2), display = c("sp", "wa", "cn"),
scaling = 2, type, xlim, ylim, ...)

## S3 method for class 'cca"

text(x, display = "sites", labels, choices = c(1, 2), scaling = 2,
arrow.mul, head.arrow = 0.05, select, ...)

## S3 method for class 'cca":

points(x, display = "sites", choices = c(1, 2), scaling = 2,
arrow.mul, head.arrow = 0.05, select, ...)

## S3 method for class 'cca'"

scores(X, choices=c(1,2), display=c('sp","wa","cn"),scaling=2, ...)

Arguments

X
choices

display

type

scaling

xlim, ylim
labels

arrow.mul

head.arrow

select

A cca result object.
Axes shown.

Scores shown. These must some of the alternatipefor species scoresya
for site scoredlc for linear constraints or “LC scores”, dp for biplot arrows
or cn for centroids of factor constraints instead of an arrow.

Type of plot: partial match teext for text labels,points  for points, and
none for setting frames only. If omittedext is selected for smaller data sets,
andpoints for larger.

Scaling for species and site scores. Either spe2iesr(site (L) scores are scaled
by eigenvalues, and the other set of scores is left unscaled, oBvitth are
scaled symmetrically by square root of eigenvalues.

the x and y limits (min,max) of the plot.
Optional text to be used instead of row names.

Factor to expand arrows in the graph. Arrows will be scaled automatically to fit
the graph if this is missing.

Default length of arrow heads.

Items to be displayed. This can either be a logical vector whicFREEfor
displayed items or a vector of indices of displayed items.

Other parameters for plotting functions.
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Details

Sameplot function will be used forcca andrda . This produces a quick, standard plot with
currentscaling

Theplot function sets colourscl ), plotting charactergoch ) and character sizeséx ) to cer-
tain standard values. For a fuller control of produced plot, it is best tpksll with type="none"
first, and then add each plotting item separately usexg.cca  or points.cca  functions.
These use the default settings of standar andpoints functions and accept all their param-
eters, allowing thus a full user control of produced plots.

Environmental variables receive a special treatment. Wighlay="bp" , arrows will be drawn.
These are labelled witlext and unlabelled witlpoints . The basiglot function uses a simple

(but not very clever) heuristics for adjusting arrow lengths to plots, but pdthts.cca and
text.cca  the user must give the expansion factomnl.arrow . The behaviour is still more
peculiar withdisplay="cn" which requests centroids of levelsfattor variables (these are
available only if there were factors and a formula interface was usedanor rda ). With this
option, biplot arrows are plotted in addition to centroids in cases which do not have a centroid:
Continuous variables are presented with arrows and ordered factors with arrows and centroids.

If you want to have still a better control of plots, it is better to produce them using primitive
plot commands.. Functioscores helps in extracting the needed components with the selected
scaling

Value

Theplot function returns invisibly a plotting structure which can be used by fundtientify.ordiplot
to identify the points or other functions in tioediplot ~ family.

Note
Optiondisplay="cn" (centroids and biplot arrows) may become the default instead of the cur-
rentdisplay="bp" in the future version.

Author(s)

Jari Oksanen

See Also

cca, rda andcapscale for getting something to ploprdiplot ~ for an alternative plotting
routine and more support functions, aedt , points andarrows for the basic routines.

Examples

data(dune)

data(dune.env)

mod <- cca(dune ~ Al + Moisture + Management, dune.env)
plot(mod, type="n")

text(mod, dis="cn")

points(mod, pch=21, col="red", bg="yellow", cex=1.2)

text(mod, "species", col="blue", cex=0.8)
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predict.cca Prediction Tools for [Constrained] Ordination (CCA, RDA, DCA, CA,
PCA)

Description

Functionpredict  can be used to find site and species scores with new data sets.

Usage

## S3 method for class 'cca"

fitted(object, model = c("CCA", "CA"), ...)

## S3 method for class 'cca':

predict(object, newdata, type = c("response", "wa", "sp", "Ic"),
rank = "full", model = c("CCA", "CA"), scaling = FALSE, ...)

calibrate.cca(object, newdata, rank = "full", ...)

## S3 method for class 'cca"

coef(object, ...)

## S3 method for class 'decorana’:

predict(object, newdata, type = c("response", "sites", "species"),

rank = 4, ..)
Arguments
object A result object froncca , rda , capscale ordecorana .
model Show constrained'CCA") or unconstrained'CA" ) results.
newdata New data frame to be used in prediction of species and site scores or for calibra-
tion. Usually this a new community data frame, but poedict.cca type
= "Ic" itmustbe anenvironment data frame, andfme = "response"

this is ignored.

type The type of prediction!'response"  gives an approximation of the original
data matrix,'wa" the site scores as weighted averages of the community data,
“Ic" the site scores as linear combinations of environmental data;spid
the species scores. predict.decorana the alternatives are scores for
"sites"  or"species"

rank The rank or the number of axes used in the approximation. The default is to use
all axes (full rank) of thémodel" or all available four axes ipredict.decorana
scaling Scaling or predicted scores with the same meaning@sdnrda andcapscale

Other parameters to the functions.

Details

Functionfitted  gives the approximation of the original data matrix from the ordination result.
Functionresiduals  gives the approximation of the original data from the unconstrained ordina-
tion. Thefitted.cca andresiduals.cca function both have the same marginal totals as the
original data matrix, and their entries do not add up to the original data. They are defined so that for
modelmod <- cca(y ~ x) , cca(fitted(mod)) is equal to constrained ordination, and
cca(residuals(mod)) is equal to unconstrained part of the ordination.



predict.cca 59

Functionpredict  can find the estimate of the original data matfixpé = "response" )

with any rank. Withrank = "full" it is identical tofitted . In addition, the function can

find the species scores or site scores from the community data matrix. The function can be used with
new data, and it can be used to add new species or site sccores to existing ordinations. The function
returns (weighted) orthornormal scores by default, and you must specify esghiditg to add

those scores to ordination diagrams. Wighe = "wa" the function finds the site scores from
species scores. In that case, the new data can contain new sites, but species must match in the
original and new data. Wittype = "sp" the function finds species scores from site constraints
(linear combination scores). In that case the new data can contain new species, but sites must match
in the original and new data. Witlgpe = "Ic"  the function finds the linear combination scores

for sites from environmental data. In that case the new data frame must contain all constraining
and conditioning environmental variables of the model formula. If a completely new data frame is
created, extreme care is needed defining variables similarly as in the original model, in particular
with (ordered) factors.

Functioncalibrate.cca finds estimates of constraints from community ordinatiorivea"

scores froncca, rda andcapscale . This is often known as calibration, bioindication or en-
vironmental reconstruction. Basically, the method is similar to projecting site scores onto biplot
arrows, but it uses regression coefficients. The function can be called&vitiata so that cross-
validation is possible. Theewdata may contain new sites, but species must match in the original
and new data The function does not work with ‘partial’ models v@bndition  term, and it
cannot be used withewdata for capscale results. The results may only be interpretable for
continuous variables.

Functioncoef will give the regression coefficients from centred environmental variables (con-
straints and conditions) to linear combination scores. The coefficients are for unstandardized envi-
ronmental variables. The coefficients will D& for aliased effects.

Functionpredict.decorana is similar topredict.cca . Howevertype = "species"

is not available in detrended correspondence analysis (DCA), because detrending destroys the mu-
tual reciprocal averaging (except for the first axis when rescaling is not used). Detrended CA does
not attempt to approximate the original data matrixtygge = "response” has no meaningin
detrended analysis (except witlnk = 1 ).

Value

The functions return matrices or vectors as is appropriate.

Author(s)

Jari Oksanen.

References

Greenacre, M. J. (1984). Theory and applications of correspondence analysis. Academic Press,
London.

Gross, J. (2003). Variance inflation factoRsNews3(1), 13-15.

See Also

cca,rda, capscale ,decorana ,vif , goodness.cca
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Examples

data(dune)

data(dune.env)

mod <- cca(dune ~ Al + Management + Condition(Moisture), data=dune.env)

# Definition of the concepts ‘fitted' and 'residuals’

mod

cca(fitted(mod))

cca(residuals(mod))

# Remove rare species (freq==1) from ‘cca' and find their scores

# 'passively'.

freq <- specnumber(dune, MARGIN=2)

freq

mod <- cca(dune[, freq>1] ~ Al + Management + Condition(Moisture), dune.env)
predict(mod, type="sp", newdata=dune[, freq==1], scaling=2)

# New sites

predict(mod, type="Ic", new=data.frame(Al = 3, Management="NM", Moisture="2"), scal=2)
# Calibration and residual plot

mod <- cca(dune ~ Al + Moisture, dune.env)

pred <- calibrate.cca(mod)

pred
with(dune.env, plot(Al, pred[,"A1"] - Al, ylab="Prediction Error"))
abline(h=0)
procrustes Procrustes Rotation of Two Configurations
Description

Functionprocrustes  rotates a configuration to maximum similarity with another configuration.
Functionprotest  tests the non-randomness (‘significance’) between two configurations.

Usage

procrustes(X, Y, scale = TRUE, symmetric = FALSE, scores = "sites", ...)
## S3 method for class 'procrustes':
summary(object, ...
## S3 method for class 'procrustes':
plot(x, kind=1, choices=c(1,2), xlab, ylab, main,
ar.col = "blue", len=0.05, ...)
## S3 method for class 'procrustes'
points(x, display = c("target", "rotated"), ...)
## S3 method for class 'procrustes'
lines(x, type = c("segments”, "arrows"), choices = c(1, 2), ...)
## S3 method for class 'procrustes':
residuals(object, ...)
## S3 method for class 'procrustes'
fitted(object, truemean = TRUE, ..)
protest(X, Y, scores = "sites", permutations = 1000, strata, ...
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Arguments

X Target matrix

Y Matrix to be rotated.

scale Allow scaling of axes of.

symmetric Use symmetric Procrustes statistic (the rotation will still be non-symmetric).

scores Kind of scores used. This is thiisplay  argument used with the correspond-
ing scores function: seescores , scores.cca andscores.cca for al-
ternatives.

X, object An object of clasprocrustes

kind For plot function, the kind of plot producekind = 1 plots shifts in two
configurationskind = 0 draws a corresponding empty plot, daidd = 2
plots an impulse diagram of residuals.

choices Axes (dimensions) plotted.

xlab, ylab Axis labels, if defaults unacceptable.

main Plot title, if default unacceptable.

display Show only the'target”  or "rotated"” matrix as points.

type Combinetarget androtated points with line segments or arrows.

truemean Use the original range of target matrix instead of centring the fitted values.

permutations Number of permutation to assess the significance of the symmetric Procrustes
statistic.

strata An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata.

ar.col Arrow colour.

len Width of the arrow head.

Other parameters passed to functiongrocrustes  andprotest parame-
ters are passed sxores , in graphical functions to underlying graphical func-
tions.

Details

Procrustes rotation rotates a matrix to maximum similarity with a target matrix minimizing sum of
squared differences. Procrustes rotation is typically used in comparison of ordination results. Itis
particularly useful in comparing alternative solutions in multidimensional scalirsgale=FALSE

the function only rotates matriX. If scale=TRUE , it scales linearly configuratioyifor maximum
similarity. SinceY is scaled to fiX, the scaling is non-symmetric. However, wiymmetric=TRUE ,

the configurations are scaled to equal dispersions and a symmetric version of the Procrustes statistic
is computed.

Instead of matrixX andY can be results from an ordination from whietores can extract results.
Functionprocrustes  passes extra argumentsdoores , scores.cca  etc. so that you can
specify arguments such asaling

Functionplot plots aprocrustes  object and returns invisibly aardiplot object so that
functionidentify.ordiplot can be used for identifying points. The items in thdiplot

object are calletieads andpoints withkind=1 (ordination diagram) ansites with kind=2
(residuals). In ordination diagrams, the arrow heads point to the target configuration, which may
be either logical or illogical. Target and original rotated axes are shown as cross hairs in two-
dimensional Procrustes analysis, and with a higher number of dimensions, the rotated axes are
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projected onto plot with their scaled and centred range. Funpt@n passes parameters to under-
lying plotting functions. For full control of plots, you can draw the axes usgiog with kind =

0, and then add items withoints  orlines . These functions pass all parameters to the underly-

ing functions so that you can select the plotting characters, their size, colours etc., or you can select
the width, colour and type of lineegments or arrows, or you can select the orientation and head
width of arrows .

Functionresiduals  returns the pointwise residuals, afitfied  the fitted values, either cen-
tred to zero mean (ifruemean=FALSE ) or with the original scale (these hardly make sense if
symmetric = TRUE ). In addition, there areummary andprint methods.

If matrix X has a lower number of columns than matyixthen matrixX will be filled with zero
columns to match dimensions. This means that the function can be used to rotate an ordination
configuration to an environmental variable (most practically extracting the result wifltéte

function).

Functionprotest  callsprocrustes(..., symmetric = TRUE) repeatedly to estimate
the ‘significance’ of the Procrustes statistic. Functpotest uses a correlation-like statistic
derived from the symmetric Procrustes sum of squasesr = /(1 — ss), and sometimes called

mys. Functionprotest has ownprint method, but otherwise usg@socrustes  methods.
Thusplot with aprotest object yields a “Procrustean superimposition plot.”

Value

Functionprocrustes  returns an object of claggocrustes  with items. Functiorprotest
inherits fromprocrustes , but amends that with some new items:

Yrot Rotated matrixY.

X Target matrix.

ss Sum of squared differences betweeandYrot .

rotation Orthogonal rotation matrix.

translation Translation of the origin.

scale Scaling factor.

symmetric Type ofss statistic.

call Function call.

t0 This and the following items are only in clagstest : Procrustes correlation
from non-permuted solution.

t Procrustes correlations from permutations.

signif ‘Significance’ oft

permutations Number of permutations.

strata The name of the stratifying variable.

stratum.values
Values of the stratifying variable.

Note

The functionprotest  follows Peres-Neto & Jackson (2001), but the implementation is still after
Mardiaet al. (1979).

Author(s)

Jari Oksanen
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References

Mardia, K.V., Kent, J.T. and Bibby, J.M. (1973ultivariate Analysis Academic Press.

Peres-Neto, P.R. and Jackson, D.A. (2001). How well do multivariate data sets match? The advan-
tages of a Procrustean superimposition approach over the MantéDtesilogial29: 169-178.

See Also

isoMDS, initMDS for obtaining objects foprocrustes , andmantel for an alternative to
protest  without need of dimension reduction.

Examples

data(varespec)

vare.dist <- vegdist(wisconsin(varespec))
library(MASS) ## isoMDS

mds.null <- isoMDS(vare.dist, tol=1e-7)
mds.alt <- isoMDS(vare.dist, initMDS(vare.dist), maxit=200, tol=1e-7)
vare.proc <- procrustes(mds.alt, mds.null)
vare.proc

summary(vare.proc)

plot(vare.proc)

plot(vare.proc, kind=2)
residuals(vare.proc)

radfit Rank — Abundance or Dominance / Diversity Models

Description

Functions construct rank — abundance or dominance / diversity or Whittaker plots and fit pre-
emption, log-Normal, veiled log-Normal, Zipf and Zipf — Mandelbrot models of species abundance.

Usage

## S3 method for class 'data.frame':

radfit(df, ...)

## S3 method for class 'radfit.frame"

plot(x, order.by, BIC = FALSE, model, legend = TRUE,
as.table = TRUE, ..)

## Default S3 method:

radfit(x, ...)

## S3 method for class 'radfit"

plot(x, BIC = FALSE, legend = TRUE, ...)

rad.preempt(x, family = poisson, ...

rad.lognormal(x, family = poisson, ...)

rad.veil(x, family = poisson, ...)

rad.zipf(x, family = poisson, ...

rad.zipfbrot(x, family = poisson, ...)

## S3 method for class 'radline":

plot(x, xlab = "Rank", ylab = "Abundance", type = "b", ...)

## S3 method for class 'radline":
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lines(x, ...

## S3 method for class 'radline':

points(x, ...)

as.rad(x)

## S3 method for class 'rad"

plot(x, xlab = "Rank", ylab = "Abundance", ...

Arguments
df Data frame where sites are rows and species are columns.
X A vector giving species abundances in a site, or an object to be plotted.
order.by A vector used for ordering sites in plots.
BIC Use Bayesian Information Criterion, BIC, instead of Akaike’s AIC. The penalty
for a parameter i& = log(S) whereS is the number of species, whereas AIC
usesk = 2.
model Show only the specified model. If missing, AIC is used to select the model.
The model names (which can be abbreviatedPaeemption , Lognormal ,
Veiled.LN , Zipf , Mandelbrot
legend Add legend of line colours.
as.table Arrange panels starting from upper left corner (passeg/pbot ).
family Error distribution (passed gim ). All alternatives acceptintink = "log"
in family  can be used, although not all make sense.
xlab,ylab Labels forx andy axes.
type Type of the plot;'b" for plotting both observed points and fitted lings, for
only points,"l"  for only fitted lines, andn" for only setting the frame.
Other parameters to functions.
Details

Rank — Abundance Dominance (RAD) or Dominance/Diversity plots (Whittaker 1965) display log-
arithmic species abundances against species rank order in the community. These plots are supposed
to be effective in analysing types of abundance distributions in communities. These functions fit
some of the most popular models following Wilson (1991). Functismad constructs observed

RAD data. Functionsad. XXXX (whereXXXXis a name) fit the individual models, and function
radfit  fits all models. The argument of the functicadfit ~ can be either a vector for a single
community or a data frame where each row represents a distinct community. All these functions
have their owrplot functions. When the argument is a data fraplet useslLattice  graph-

ics, and other functions use ordinary graphics. The ordinary graphics functions return invisibly an
ordiplot  object for observed points, and functimientify.ordiplot can be used to label
selected species. The most complete control of graphics can be achievedddXX methods

which havepoints andlines functions to add observed values and fitted models into existing
graphs.

Functionrad.preempt  fits the niche preemption model, a.k.a. geometric series or Motomura
model, where the expected abundana# species at rankis a,, = Ja(1 — «)"~L. The only esti-

mated parameter is the preemption coefficiemthich gives the decay rate of abundance per rank.

In addition there is a fixed scaling paramefewhich is the total abundance. The niche preemption
model is a straight line in a RAD plot. Functioad.lognormal fits a log-Normal model which
assumes that the logarithmic abundances are distributed Normadly,-erexp(log i + log o N),
whereN is a Normal deviate. Functiaiad.veil is similar, but it assumes that only a proportion

veil of most common species were observed in the community, the rest being too rare or scanty
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to occur in a sample plot of this size (but would occur in a larger plot). Funcéidrzipf  fits

the Zipf modela, = Jp;r? wherep; is the fitted proportion of the most abundant species, and

~ is a decay coefficient. The Zipf — Mandelbrot modedd.zipfbrot ) adds one parameter:

a, = Je(r + ()7 after whichp, of the Zipf model changes into a meaningless scaling constant

c. There are great histories about ecological mechanisms behind each model (Wilson 1991), but
several alternative and contrasting mechanisms can produce similar models and a good fit does not
imply a specific mechanism.

Log-Normal and Zipf models are generalized linear modglm{ with logarithmic link func-

tion. Veiled log-Normal and Zipf — Mandelbrot add one nonlinear parameter, and these two mod-
els are fitted usingnlm for the nonlinear parameter and estimating other parameters and log-
Likelihood with glm . Pre-emption model is fitted as purely nonlinear model. The deffmuity

is poisson which is appropriate only for genuine counts (integers), but other families that accept
link = "log" can be used. FamilGammamay be appropriate for abundance data, such as
cover. The “best” model is selected BYC . Therefore “quasi” families such agiasipoisson

cannot be used: they do not ha&kC nor log-Likelihood needed in non-linear models.

Value

Functionrad. XXXX will return an object of clasgadline , which is constructed to resemble re-
sults ofglm and has many (but not all) of its components, even when iointywas used in fitting.
At least the followingglm methods can be applied to the resuitted , residuals.gim

with alternatives'deviance"  (default), "pearson” , "response" , function coef , AIC,
extractAIC , anddeviance . Functionradfit  applied to a vector will return an object of
classradfit  with itemy for the constructed RAD, iterffamily  for the error distribution, and
item models containing eachradline  object as an item. In addition, there are spediiT,
coef andfitted implementations foradfit  results. When applied to a data framaelfit

will return an object of clasgadfit.frame which is a list ofradfit ~ objects. The functions
are still preliminary, and the items in thadline  objects may change.

Note

The RAD models are usually fitted for proportions instead of original abundances. However, noth-
ing in these models seems to require division of abundances by site totals, and original observations
are used in these functions. If you wish to use proportions, you must standardize your data by site
totals, e.g. withdecostand and use appropriatamily  such asGamma

The lognormal model is fitted in a standard way, but | do think this is not quite correct — at least it is
not equivalent to fitting Normal density to log abundances like originally suggested (Preston 1948).

Some models may fail. In particulagd.veil often tends taveil = 0 meaning that none of
the community is present, and the function prints an error me€sage  NA/NaN/Inf in
foreign function call (arg 1) . The error is caught andAare returned.

Wilson (1991) defined preemption model@as= Jp; (1 — «)"~!, wherep; is the fitted proportion
of the first species. However, parameteris completely defined by since the fitted proportions
must add to one, and therefore | handle preemption as a one-parameter model.

Author(s)

Jari Oksanen

References

Preston, F.W. (1948) The commonness and rarity of speemsogy29, 254—-283.
Whittaker, R. H. (1965) Dominance and diversity in plant communitizsencel 47, 250—260.
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Wilson, J. B. (1991) Methods for fitting dominance/diversity cundsirnal of Vegetation Science
2, 35-46.

See Also

fisherfit andprestonfit . An alternative approach is to uggnorm or qgplot  with any
distribution. For controlling graphicd:attice , xyplot , Iset

Examples

data(BCl)

mod <- rad.veil(BCI[1,])

mod

plot(mod)

mod <- radfit(BCI[1,])

plot(mod)

# Take a subset of BCI to save time and nerves
mod <- radfit(BCI[2:5,])

mod

plot(mod, pch=".")

rankindex Compares Dissimilarity Indices for Gradient Detection

Description

Rank correlations between dissimilarity indices and gradient separation.

Usage

rankindex(grad, veg, indices = c("euc”, "man", "gow", "bra", "kul"),
stepacross = FALSE, method = "spearman’, ...)

Arguments
grad The gradient variable or matrix.
veg The community data matrix.
indices Dissimilarity indices compared, partial matches to alternativeegdist
stepacross Usestepacross to find a shorter path dissimilarity. The dissimilarities for
site pairs with no shared species areldAtusingno.shared so that indices
with no fixed upper limit can also be analysed.
method Correlation method used.
Other parameters tstepacross
Details

A good dissimilarity index for multidimensional scaling should have a high rank-order similarity
with gradient separation. The function compares most indiceegulist against gradient sepa-
ration using rank correlation coefficientsdor.test
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Value

Returns a named vector of rank correlations.

Note

There are several problems in using rank correlation coefficients. Typically there are very many ties
whenn(n — 1)/2 gradient separation values are derived from jusbservations. Due to floating

point arithmetics, many tied values differ by machine epsilon and are arbitrarily ranked differently
by rank used incor.test . Two indices which are identical with certain transformation or stan-
dardization may differ slightly (magnitude)=1°) and this may lead into third or fourth decimal
instability in rank correlations. Small differences in rank correlations should not be taken too se-
riously. Probably this method should be replaced with a sounder method, but | do not yet know
which. .. You may experiment witmantel , anosim or evenprotest

Earlier version of this function usedethod = "kendall" , but that is far too slow in large data
sets.

Author(s)

Jari Oksanen

References

Faith, F.P., Minchin, P.R. and Belbin, L. (1987). Compositional dissimilarity as a robust measure of
ecological distancé/egetatios9, 57-68.

See Also

vegdist ,stepacross ,no.shared ,isoMDS,cor ,Machine ,and for alternativeanosim ,
mantel andprotest

Examples

data(varespec)

data(varechem)

## The next scales all environmental variables to unit variance.
## Some would use PCA transformation.
rankindex(scale(varechem), varespec)

rankindex(scale(varechem), wisconsin(varespec))

read.cep Reads a CEP (Canoco) data file
Description
read.cep reads a file formatted by relaxed strict CEP format use@€agoco software, among
others.
Usage

read.cep(file, maxdata=10000, positive=TRUE, trace=FALSE, force=FALSE)
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Arguments

file File name (character variable).

maxdata Maximum number of non-zero entries.

positive Only positive entries, like in community data.

trace Work verbosely.

force Run function, even iR refuses first.
Details

Cornell Ecology Programs (CEP) introduced several data formats designed for punched cards. One
of these was the ‘condensed strict’ format which was adopted by popular sobEGORANANd
TWINSPAN Later, Cajo ter Braak wrot€anoco based orDECORANAwhere he adopted the
format, but relaxed it somewhat (that's why | call it a ‘relaxed strict’ format). Further, he introduced

a more ordinary ‘free’ format, and allowed the use of classical Fortran style ‘open’ format with
fixed field widths. This function should be able to deal with all thEs@oco formats, whereas it
cannot read many of the traditional CEP alternatives.

All variants of CEP formats have:

» Two or three title cards, most importantly specifying the format (or WeREE and the
number of items per record (number of species and siteSR&Eformat).

 Data in one of three accepted formats:

1. Condensed format: First number on the line is the site identifier, and it is followed by
pairs (‘couplets’) of numbers identifying the species and its abundance (an integer and a
floating point number).

2. Open Fortran format, where the first number on the line must be the site number, followed
by abundance values in fields of fixed widths. Empty fields are interpreted as zeros.

3. ‘Free’ format, where the numbers are interpreted as abundance values. These numbers
must be separated by blank space, and zeros must be written as zeros.

» Species and site names, given in Fortran for(@8A8) : Ten names per line, eight columns
for each.

With optionpositive = TRUE  the function removes all lines and columns with zero or negative
marginal sums. In community data with only positive entries, this removes empty sites and species.
If data entries can be negative, this ruins data, and such data sets should be read in with option
positive = FALSE

Value

Returns a data frame, where columns are species and rows are sites. Column and row names are
taken from the CEP file, and changed into unidRi@ames bymake.names after stripping the
blanks.

Note

The function relies on smooth linking of Fortran file IORsession. This is not guaranteed to work,
and therefore the function may not workyour system, but it can crash tiesession. Therefore
the default is that the function does not run. If you still want to try:

1. Save your session

2. Runread.cep()  with switchforce=TRUE
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If you transfer files between operating systems or platforms, you should always check that your file
is formatted to your current platform. For instance, if you transfer files from Windows to Linux,
you should change the files tmix format, or your session may crash when Fortran program tries
to read the invisible characters that Windows uses at the end of each line.

If you compiledvegan usinggfortran , the input is probably corrupted. You either should
compilevegan with other FORTRAN compilers or not to ugsead.cep . The problems still
persist ingfortran 4.01

Author(s)

Jari Oksanen

References

Ter Braak, C.J.F. (1984-): CANOCO — a FORTRAN programcamaical communityordination
by [partial] [detrended] [canonical] correspondence analysis, principal components analysis and re-
dundancy analysisINO Inst. of Applied Computer Sci., Stat. Dept. Wageningen, The Netherlands

Examples

## Provided that you have the file “dune.spe’
## Not run:

theclassic <- read.cep("dune.spe”, force=T)
## End(Not run)

scores Get Species or Site Scores from an Ordination

Description

Function to access either species or site scores for specified axes in some ordination methods.

Usage

## Default S3 method:
scores(x, display=c("sites", "species"), choices, ...

Arguments
X An ordination result.
display Partial match to access scores$des or species
choices Ordination axes. If missing, returns all axes.

Other parameters (unused).
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Details

Functionscca anddecorana have specifiscores function to access their ordination scores.

Most standard ordination methods of libramega, multiv. andMASSJo not have a specifitass

and no specific method can be written for them. Howeseaores.default guesses where

some commonly used functions keep their site scores and possible species scores. For site scores,
the function seeks items in ordgoints , rproj , X, andscores . For species, the seeking order
iscproj ,rotation , andloadings . If x is a matrix,scores.default returns the chosen
columns of that matrix, ignoring whether species or sites were requested (do not regard this as a
bug but as a feature, please). Currently the function seems to work at lesstNtipS, prcomp ,

princomp , ca, pca. It may work in other cases or fail mysteriously.

Value

The function returns a matrix of requested scores.

Author(s)

Jari Oksanen

See Also

scores.cca , scores.decorana . These have somewhat different interfacgceres.cca
in particular — but all work with keyworddisplay="sites" anddisplay="species" and
return a matrix with these.

Examples

data(varespec)
vare.pca <- prcomp(varespec)
scores(vare.pca, choices=c(1,2))

specaccum Species Accumulation Curves

Description

Functionspecaccum finds species accumulation curves or the number of species for a certain
number of sampled sites or individuals.

Usage

specaccum(comm, method = "exact”, permutations = 100, ...)
## S3 method for class 'specaccum’:
plot(x, add = FALSE, ci = 2, ci.type = c("bar", "line", "polygon"),
col = par(fg"), ci.col = col, cilty = 1, xlab = "Sites",
ylab = x$method, ...)
## S3 method for class ‘specaccum':
boxplot(x, add = FALSE, ...)
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Arguments

comm Community data set.

method Species accumulation method (partial match). Mettaamlector" adds
sites in the order they happen to be in the datmdom” adds sites in random
order,"exact” finds the expected (mean) species richn&sdeman” finds
the expected richness following Coleman et al. 1982, "aadkfaction”
finds the mean when accumulating individuals instead of sites.

permutations Number of permutations witmethod = "random"

X A specaccum result object

add Add to an existing graph.

ci Multiplier used to get confidence intervals from standard deviation (standard
error of the estimate). Valug = 0 suppresses drawing confidence intervals.

ci.type Type of confidence intervals in the graphar" draws vertical barsline”
draws lines, antpolygon” draws a shaded area.

col Colour for drawing lines.

ci.col Colour for drawing lines or filling th&polygon"

ci.lty Line type for confidence intervals or border of thmlygon"

xlab,ylab Labels forx andy axis.
Other parameters to functions.

Details

Species accumulation curves (SAC) are used to compare diversity properties of community data
sets using different accumulator functions. The classic methwdnslom” which finds the mean

SAC and its standard deviation from random permutations of the data, or subsampling without re-
placement (Gotelli & Colwell 2001). Théexact® method finds the expected SAC using the
method of Kindt (2003), and its standard deviation. Methomleman" finds the expected SAC

and its standard deviation following Coleman et al. (1982). All these methods are based on sam-
pling sites without replacement. In contrast, thethod = "rarefaction" finds the expected
species richness and its standard deviation by sampling individuals instead of sites. It achieves this
by applying functionrarefy  with number of individuals corresponding to average number of
individuals per site.

The function has plot method. In additionnethod = "random" hassummary andboxplot

methods.
Value

The function returns an object of claspecaccum” with items:

call Function call.

method Accumulator method.

sites Number of sites. Fomethod = "rarefaction" this is the average num-
ber of sites corresponding to a certain number of individuals.

richness The number of species corresponding to number of sites. Wathod =
"collector" this is the observed richness, for other methods the average or
expected richness.

sd The standard deviation of SAC (or its standard error). Thi$lg Lin method
= "collector" ,anditis estimated from permutationsynethod = "random" ,

and from analytic equations in other methods.
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perm Permutation results witlmethod = "random" and NULL in other cases.
Each column irperm holds one permutation.

Note

The SAC withmethod = "exact" was developed by Roeland Kindt, and its standard deviation

by Jari Oksanen (both are unpublished). Thethod = "coleman" underestimates the SAC
because it does not handle properly sampling without replacement. Further, its standard deviation
does not take into account species correlations, and is generally too low.

Author(s)
Roeland Kindt({r.kindt@cgiar.ory and Jari Oksanen.

References

Coleman, B.D, Mares, M.A., Willis, M.R. & Hsieh, Y. (1982). Randomness, area and species
richnessEcology63: 1121-1133.

Gotellli, N.J. & Colwell, R.K. (2001). Quantifying biodiversity: procedures and pitfalls in mea-
surement and comparison of species richnessl. Lett.4, 379-391.

Kindt, R. (2003). Exact species richness for sample-based accumulation ddarmsscript.

See Also

rarefy . Underlying graphical functions at®xplot , matlines ,segments andpolygon .

Examples

data(BCl)

spl <- specaccum(BCI)

sp2 <- specaccum(BCI, "random")

sp2

summary(sp2)

plot(spl, ci.type="poly", col="blue", lwd=2, ci.lty=0, ci.col="lightblue")
boxplot(sp2, col="yellow", add=TRUE, pch="+")

specpool Extrapolated Species Richness in a Species Pool

Description

The functions estimate the extrapolated species richness in a species pool, or the number of un-
observed species. Functigpecpool is based on incidences in sample sites, and gives a single
estimate for a collection of sample sites (matrix). FuncestimateR is based on abundances
(counts) on single sample site.

Usage

specpool(x, pool)
specpool2vect(X, index = c("Jack.1","Jack.2", "Chao", "Boot","Species"))
estimateR(x, ...)
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Arguments
X Data frame or matrix with species data.
pool A vector giving a classification for pooling the sites in the species data. If miss-
ing, all sites are pooled together.
X A specpool result object.
index The selected index of extrapolated richness.
Other parameters (not used).
Details

Many species will always remain unseen or undetected in a collection of sample plots. The function
uses some popular ways of estimating the number of these unseen species and adding them to the
observed species richness (Palmer 1990, Colwell & Coddington 1994).

The incidence-based estimatespecpool use the frequencies of species in a collection of sites.
In the following, Sp is the extrapolated richness in a po8), is the observed number of species
in the collectiona; anda, are the number of species occurring only in one or only in two sites in
the collectionp; is the frequency of specigsand NV is the number of sites in the collection. The
variants of extrapolated richnessdpecpool are:

a? a
Chao SP:SO—’—ﬁ—’—%:;;le)Q
First order jackknife Sp =50+ a5+
: : _ aN—3 (N—2)*
Second order jackknife Sp = S + a1 =75 — a2 -1

Bootstrap Sp =580+ Z;iol(l —p)N

The abundance-based estimatesstimateR  use counts (frequencies) of species in a single site.

If called for a matrix or data frame, the function will give separate estimates for each site. The
two variants of extrapolated richnesséstimateR are Chao and ACE. The Chao estimator is
identical to the one above, except thatrefers to number of species with abundandestead of
incidence. The ACE is defined as:

Srare 2
ACE Sp = Sabund + Clace + Ctzlcs Yace

where Cuee =1 — 52—

10 ...
Srare Zi:l 1(1_1)‘“
CaceNTare(Nrare_l)

1,0

2
’Ya,(:e = max

Here a; refers to number of species with abundanand S, is the number of rare species,
Savuna 1S the number of abundant species, with an arbitrary threshold of abundance 10 for rare
species, andv,..,.. is the number of individuals in rare species.

Functions estimate the the standard errors of the estimates. These only concern the number of added
species, and assume that there is no variance in the observed richness. The equations of standard
errors are too complicated to be reproduced in this help page, but they can be studiedRin the
source code of the function. The standard error are based on the following sources: Chao (1987)
for the Chao estimate and Smith and van Belle (1984) for the first-order Jackknife and the bootstrap
(second-order jackknife is still missing). The variance estimato$@f was developed by Bob

O’Hara (unpublished).
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Value

Functionspecpool returns a data frame with entries for observed richness and each of the indices
for each class ipool vector. The utility functiorspecpool2vect  maps the pooled values into

a vector giving the value of select@ttlex for each original site. FunctioestimateR returns

the estimates and their standard errors for each site.

Note

The functions are based on assumption that there is a species pool: The community is closed so that
there is a fixed pool siz8p. Such cases may exist, although | have not seen them yet. All indices
are biased for open communities.

Seehttp://viceroy.eeb.uconn.edu/EstimateS for a more complete (and positive)
discussion and alternative software for some platforms.

Author(s)

Bob O’Hara éstimateR ) and Jari Oksanerspecpool ).

References

Chao, A. (1987). Estimating the population size for capture-recapture data with unequal catchabil-
ity. Biometrics43, 783—-791.

Colwell, R.K. & Coddington, J.A. (1994). Estimating terrestrial biodiversity through extrapolation.
Phil. Trans. Roy. Soc. Londd345, 101-118.

Palmer, M.W. (1990). The estimation of species richness by extrapol&émiogy71, 1195-1198.

Smith, E.P & van Belle, G. (1984). Nonparametric estimation of species richBemnetrics40,
119-129.

See Also

veiledspec , diversity

Examples

data(dune)

data(dune.env)

attach(dune.env)

pool <- specpool(dune, Management)

pool

op <- par(mfrow=c(1,2))

boxplot(specnumber(dune) ~ Management, col="hotpink", border="cyan3",
notch=TRUE)

boxplot(specnumber(dune)/specpool2vect(pool) ~ Management, col="hotpink",
border="cyan3", notch=TRUE)

par(op)

data(BCI)

estimateR(BCI[1:5,])


http://viceroy.eeb.uconn.edu/EstimateS
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stepacross Stepacross as Flexible Shortest Paths or Extended Dissimilarities

Description

Functionstepacross tries to replace dissimilarities with shortest paths stepping across interme-
diate sites while regarding dissimilarities above a threshold as missing igtawith path =
"shortest" this is the flexible shortest path (Williamson 1978, Bradfield & Kenkel 1987), and
with path = "extended" an approximation known as extended dissimilarities (De’ath 1999).
The use ofstepacross  should improve the ordination with high beta diversity, when there are
many sites with no species in common.

Usage

stepacross(dis, path = "shortest", toolong = 1, trace = TRUE, ..)

Arguments

dis Dissimilarity data inheriting from clasdist or a an object, such as a matrix,
that can be converted to a dissimilarity matrix. Functivsegdist anddist
are some functions producing suitable dissimilarity data.

path The method of stepping across (partial match) Alterndslertest” finds
the shortest paths, arfdxtended" their approximation known as extended
dissimilarities.

toolong Shortest dissimilarity regarded & The function uses a fuzz factor, so that
dissimilarities close to the limit will be madeA too.
trace Trace the calculations.

Other parameters (ignored).

Details

Williamson (1978) suggested using flexible shortest paths to estimate dissimilarities between sites
which have nothing in common, or no shared species. \Mith = "shortest" function
stepacross replaces dissimilarities that at@olong  or longer withNA and tries to find short-

est paths between all sites using remaining dissimilarities. Several dissimilarity indices are semi-
metric which means that they do not obey the triangle inequalit< d;. + di;, and shortest path
algorithm can replace these dissimilarities as well, even when they are shortévdlarg

De’ath (1999) suggested a simplified method known as extended dissimilarities, which are calcu-
lated withpath = "extended" . In this method, dissimilarities that ateolong or longer

are first madeNA and then the function tries replace thés&dissimilarities with a path through
single stepping stone points. If not &lAcould be replaced with one pass, the function will make
new passes with updated dissimilarities as long asAblre replaced with extended dissimilarities.

This mean that in the second and further passes, the rem&ldidigsimilarities are allowed to have

more than one stepping stone site, but previously replaced dissimilarities are not updated. Further,
the function does not consider dissimilarities shorter tioatong , although some of these could

be replaced with a shorter path in semi-metric indices, and used as a part of other paths. In optimal
cases, the extended dissimilarities are equal to shortest paths, but in several cases they are longer.

As an alternative to defining too long dissimilarities with paramtietong , the input dissimi-
larities can contaifNAs. If toolong is zero or negative, the function does not make any dissimi-
larities intoNA If there are ndNAs in the input andoolong = 0 , path = "shortest" will
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find shorter paths for semi-metric indices, grath = "extended" will do nothing. Function
no.shared can be used to set dissimilaritiesNié\

If the data are disconnected or there is no path between all points, the result will ddAtaamd

a warning is issued. Several methods cannot haéldissimilarities, and this warning should be
taken seriously. Functiogistconnected can be used to find connected groups and remove rare
outlier observations or groups of observations.

Alternative path = "shortest" uses Dijkstra’s method for finding flexible shortest paths,
implemented as priority-first search for dense graphs (Sedgewick 1990). Alterpative=
"extended" follows De’ath (1999), but implementation is simpler than in his code.

Value

Function returns an object of cladsst with extended dissimilarities (see functiomsgdist
anddist ). The value opath is appended to themethod attribute.

Note

The function changes the original dissimilarities, and not all like this. It may be best to use the
function only when you reallynust extremely high beta diversity where a large proportion of
dissimilarities are at their upper limit (no species in common).

Semi-metric indices vary in their degree of violating the triangle inequality. Morisita and Horn—
Morisita indices ofvegdist may be very strongly semi-metric, and shortest paths can change
these indices very much. Mountford index violates basic rules of dissimilarities: non-identical sites
have zero dissimilarity if species composition of the poorer site is a subset of the richer. With
Mountford index, you can find three sitégj, £ so thatd;;, = 0 andd;; = 0, butd;; > 0. The
results ofstepacross  on Mountford index can be very weird. $tepacross is needed, it is

best to try to use it with more metric indices only.

Author(s)

Jari Oksanen

References

Bradfield, G.E. & Kenkel, N.C. (1987). Nonlinear ordination using flexible shortest path adjustment
of ecological distance$kcology68, 750—753.

De’ath, G. (1999). Extended dissimilarity: a method of robust estimation of ecological distances
from high beta diversity dat@&lant Ecol.144, 191-199.

Sedgewick, R. (1990Algorithms in C Addison Wesley.
Williamson, M.H. (1978). The ordination of incidence dalaEcol.66, 911-920.

See Also

Functiondistconnected can find connected groups in disconnected data, and funuwishared
can be used to set dissimilaritiesda.

Examples

# There are no data sets with high beta diversity in vegan, but this
# should give an idea.

data(dune)

dis <- vegdist(dune)
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edis <- stepacross(dis)

plot(edis, dis, xlab = "Shortest path", ylab = "Original")
## Manhattan distance have no fixed upper limit.

dis <- vegdist(dune, "manhattan")

is.na(dis) <- no.shared(dune)

dis <- stepacross(dis, toolong=0)

varespec Vegetation and environment in lichen pastures

Description

Thevarespec data frame has 24 rows and 44 columns. Columns are estimated cover values
of 44 species. The variable names are formed from the scientific names, and are self explanatory
for anybody familiar with the vegetation type. Tharechem data frame has 24 rows and 14
columns, giving the soil characteristics of the very same sites as iratkepec data frame. The
chemical measurements have obvious nanBzsesoil  gives the estimated cover of bare sail,
Humpdepth the thickness of the humus layer.

Usage
data(varechem)
data(varespec)
References
Vare, H., Ohtonen, R. and Oksanen, J. (1995) Effects of reindeer grazing on understorey vegetation
in dry Pinus sylvestris forestdournal of Vegetation Scienég 523-530.

Examples

data(varespec)
data(varechem)

vegan-internal Internal vegan functions

Description

Internal vegan functions.

Usage

ordiParseFormula(formula, data, xlev = NULL)
ordiTerminfo(d, data)

centroids.cca(x, mf, wt)

permuted.index(n, strata)

spider.cca(x, ...

Details

These are not to be called by the user. Funcsipidler.cca  was replaced witlordispider
and will be removed in the future.
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vegdist Dissimilarity Indices for Community Ecologists

Description

The function computes dissimilarity indices that are useful for or popular with community ecolo-
gists. Gower, Bray—Curtis, Jaccard and Kulczynski indices are good in detecting underlying ecolog-
ical gradients (Faith et al. 1987). Morisita, Horn—Morisita and Binomial indices should be able to
handle different sample sizes (Wolda 1981, Krebs 1999, Anderson & Millar 2004), and Mountford
(1962) and Raup-Crick indices for presence—absence data should be able to handle unknown (and
variable) sample sizes.

Usage

vegdist(x, method="bray", binary=FALSE, diag=FALSE, upper=FALSE,
na.rm = FALSE, ..)

Arguments
X Community data matrix.
method Dissimilarity index, partial match ttmanhattan" ,"euclidean" ,"canberra”
"bray" ,"kulczynski" , "Jaccard" ,"gower" ,"morisita" , "horn"
"mountford” , "raup” or"binomial"
binary Perform presence/absence standardization before analysisiasiogtand
diag Compute diagonals.
upper Return only the upper diagonal.
na.rm Pairwise deletion of missing observations when computing dissimilarities.
Other parameters. These are ignored, excephéthod ="gower" which
acceptgange.global parameter oflecostand
Details

Jaccard 'jaccard” ), Mountford ('mountford® ), Raup—Crick (raup" ) and Binomial in-
dices are discussed below. The other indices are defined as:

euclidean dik = /> (xij — xir)?
manhattan dit = >, |xij — i
|ij—Tik]
gower dJk? ZZ maxzjl min x;
canberra dik = 57 2. ijﬁﬁ::‘
whereN Z is the number of non-zero entries.
|zij—2ik]|
bra _
y Z (ij+xir)
. min(x;;,Tik ~min(z;;,x;
kulczynski djk :1—0.5(2 (i 2in) + 2, mino k))
morisita djp = 2 gt

(ANj+Ax) Z, Tij 21 Tik
_ ;@i (@i —1)
where); = D) SRE=
horn Like morisita , buth; = >, z3,/(30; xi;)?
binomial djr =Y, [wij 1og( L) + @i log () — ny log(3)]/n;
wheren; = z;; + xlk
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Jaccard index is computed 28 /(1 + B), whereB is Bray—Curtis dissimilarity.

Binomial index is derived from Binomial deviance under null hypothesis that the two compared
communities are equal. It should be able to handle variable sample sizes. The index does not have
a fixed upper limit, but can vary among sites with no shared species. For further discussion, see
Anderson & Millar (2004).

Mountford index is defined a8/ = 1/a where« is the parameter of Fisher’s logseries assum-

ing that the compared communities are samples from the same communitfigtoérfit ,
fisher.alpha ). The index)/ is found as the positive root of equatiexip(aM ) + exp(bM) =

1 + exp[(a + b — j)M], wherej is the number of species occurring in both communities, and

andb are the number of species in each separate community (so the index uses presence—absence
information). Mountford index is usually misrepresented in the literature: indeed Mountford (1962)
suggested an approximation to be used as starting value in iterations, but the proper index is defined
as the root of the equation above. The functi@gdist solvesM with the Newton method.
Please note that if eitharor b are equal tg, one of the communities could be a subset of other, and

the dissimilarity is) meaning that non-identical objects may be regarded as similar and the index is
non-metric. The Mountford index is in the ran@e. . log(2), but the dissimilarities are divided by

log(2) so that the results will be in the conventional rafge. 1.

Raup—Crick dissimilarityrhethod = "raup" )is a probabilistic index based on presensec/absence
data. It is defined a$ — prob(j), or based on the probability of observing at leasipecies in
shared in compared communities. Legendre & Legendre (1978) suggest using simulations to as-
sess the probability, but the current function uses analytic result from hypergeometric distribution
(phyper ) instead. This probability (and the index) is dependent on the number of species missing
in both sites, and adding all-zero species to the data or removing missing species from the data
will influence the index. The probability (and the index) may be almost zero or almost one for a
wide range of parameter values. The index is honmetric: two communities with no shared species
may have a dissimilarity slightly below one, and two identical communities may have dissimilarity
slightly above zero.

Morisita index can be used with genuine count data (integers) only. Its Horn—Morisita variant is
able to handle any abundance data.

Euclidean and Manhattan dissimilarities are not good in gradient separation without proper stan-
dardization but are still included for comparison and special needs.

Bray—Curtis and Jaccard indices are rank-order similar, and some other indices become identical or
rank-order similar after some standardizations, especially with presence/absence transformation of
equalizing site totals witdecostand . Jaccard index is metric, and probably should be preferred
instead of the default Bray-Curtis which is semimetric.

The naming conventions vary. The one adopted here is traditional rather than truthful to priority.
The function finds either quantitative or binary variants of the indices under the same name, which
correctly may refer only to one of these alternatives For instance, the Bray index is known also as
Steinhaus, Czekanowski and Sgrensen index. The quantitive version of Jaccard should probably
called Ruzicka index (but spelled with characters that cannot be shown here). The abbreviation
"horn" for the Horn—Morisita index is misleading, since there is a separate Horn index. The
abbreviation will be changed if that index is implementegégan .

Value

Should provide a drop-in replacement flist and return a distance object of the same type.

Note

The function is an alternative ttist adding some ecologically meaningful indices. Both methods
should produce similar types of objects which can be interchanged in any method accepting either.
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Manhattan and Euclidean dissimilarities should be identical in both methods. Canberra index is
divided by the number of variables iregdist , but not indist . So these differ by a constant
multiplier, and the alternative imegdist is in range (0,1). Functiodaisy (packagecluster)
provides alternative implentation of Gower index for mixed data of numeric and class variables (but
it works for mixed variables only).

Most dissimilarity indices irvegdist  are designed for community data, and they will give mis-
leading values if there are negative data entries. The results may also be misleadgrdtaN

if there are empty sites. In principle, you cannot study species compostion without species and you
should remove empty sites from community data.

Author(s)

Jari Oksanen, with contributions from Tyler Smith (Gower index) and Michael Bedward (Raup—
Crick index).

References

Anderson, M.J. and Millar, R.B. (2004). Spatial variation and effects of habitat on temperate reef
fish assemblages in northeastern New Zealdadrnal of Experimental Marine Biology and Ecol-
ogy 305, 191-221.

Faith, D. P, Minchin, P. R. and Belbin, L. (1987). Compositional dissimilarity as a robust measure
of ecological distance/egetatio69, 57—68.

Krebs, C. J. (1999)cological MethodologyAddison Wesley Longman.
Legendre, P, & Legendre, L. (199Bumerical Ecology2nd English Edition. Elsevier.

Mountford, M. D. (1962). An index of similarity and its application to classification problems. In:
P.W.Murphy (ed.)Progress in Soil Zoology3-50. Butterworths.

Wolda, H. (1981). Similarity indices, sample size and diverstgcologia50, 296-302.

See Also

decostand ,dist ,rankindex ,isoMDS, stepacross ,daisy , dsvdis

Examples

data(varespec)

vare.dist <- vegdist(varespec)

# Orloci's Chord distance: range 0 .. sqrt(2)

vare.dist <- vegdist(decostand(varespec, "norm"), “"euclidean")

vegemite Prints a Compact, Ordered Vegetation Table

Description

The function prints a compact vegetation table, where species are rows, and each site takes only one
column without spaces. The vegetation table can be ordered by explicit indexing, by environmental
variables or results from an ordination or cluster analysis.
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Usage

vegemite(x, use, scale, sp.ind, site.ind, zero=".")

coverscale(x, scale=c("Braun.Blanquet”, "Domin", "Hult", "Hill", "fix", "log"))
Arguments

X Vegetation data.

use Either a vector or an object froota , decorana etc.orhclust for ordering

sites and species.

sp.ind Species indices.

site.ind Site indices.

zero Character used for zeros.

scale Cover scale used (can be abbreviated).
Details

The function prints a traditional vegetation table. Unlike in ordinary data matrices, species are used
as rows and sites as columns. The table is printed in compact form: only one character can be used
for abundance, and there are no spaces between columns.

The parametense can be a vector or an object framelust , adendrogram or any ordination

result recognized bgcores . If use is a vector, it is used for ordering sites.u$e is an object

from ordination, both sites and species are arranged by the first axis. Wdeers an object

from hclust |, the sites are ordered similarly as in the cluster dendrogram. If ordination methods
provide species scores, these are used for ordering species. In all cases where species scores are
missing, species are ordered by their weighted averagascpres ) on site scores. There is no

natural, unique ordering in hierarchic clustering, but in some cases species are still nicely ordered.
Alternatively, species and sites can be ordered explicitly giving their indices or names in parameters
sp.ind andsite.ind . If these are given, they take precedence oer.

If scale is given,vegemite callscoverscale to transform percent cover scale or some other
scales into traditional class scales used in vegetation scieocer§cale  can be called directly,

too). Braun-Blanquet and Domin scales are actually not strict cover scales, and the limits used
for codesr and+ are arbitrary. Scalélil may be inappropriately named, since Mark O. Hill
probably never intended this as a cover scale. However, it is used as default ‘cut levels’ in his
TWINSPANand surprisingly many users stick to this default, and so thidis factostandard in
publications. All traditional scales assume that values are cover percentages with maximum 100.
However, non-traditional alternatideg can be used with any scale range. Its class limits are
integer powers of 1/2 of the observed maximum in the data, witised for non-zero entries less
than 1/512 of data maximuntog stands alternatively for logarithmic or logical). Scéile is
intended for ‘fixing’ 10-point scales: it truncates scale values to integers, and replaces 20 with
and positive values below 1 with

Value

The function is used mainly to print a table, but it returns (invisibly) a list with items:

spec Ordered species indices.
sites Ordered site indices.
Note

This function was calledegetab in older versions ofegan . The new name was chosen because
the output is so compact (and to avoid confusion withvibgtab function in thelabdsv package).
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Author(s)

Jari Oksanen

References

The cover scales are presented in many textbooks of vegetation science; | used:
Shimwell, D.W. (1971)he Description and Classification of Vegetati@idgwick & Jackson.

See Also

cut andapprox for making your own ‘cover scalesiyascores for weighted averages.

Examples

data(varespec)

## Print only more common species

freq <- apply(varespec > 0, 2, sum)

vegemite(varespec, scale="Hult", sp.ind = freq > 10)

## Order by correspondence analysis, use Hill scaling and layout:
dca <- decorana(varespec)

wascores Weighted Averages Scores for Species
Description
Computes Weighted Averages scores of species for ordination configuration or for environmental
variables.
Usage

wascores(X, w, expand=FALSE)
eigengrad(x, w)

Arguments
X Environmental variables or ordination scores.
w Weights: species abundances.
expand Expand weighted averages so that they have the same weighted variance as the
corresponding environmental variables.
Details

Functionwascores computes weighted averages. Weighted averages ‘shrink’: they cannot be
more extreme than values used for calculating the averageseWigmd = TRUE, the function
‘dehsrinks’ the weighted averages by making their biased weighted variance equal to the biased
weighted variance of the corresponding environmental variable. Furgtiengrad returns the
inverses of squared expansion factors or the attribbtinkage  of the wascores result for

each environmental gradient. This is equal to the constrained eigenvaloa efhen only this one
gradient was used as a constraint, and describes the strength of the gradient.
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Value

Functionwascores returns a matrix where species define rows and ordination axes or environ-
mental variables define columns.dkpand = TRUE, attributeshrinkage has the inverses of
squared expansion factorsara eigenvalues for the variable. Functieigengrad returns only
theshrinkage attribute.

Author(s)

Jari Oksanen

See Also

isoMDS, cca.

Examples

data(varespec)

data(varechem)

library(MASS) ## isoMDS

vare.dist <- vegdist(wisconsin(varespec))

vare.mds <- isoMDS(vare.dist)

vare.points <- postMDS(vare.mds$points, vare.dist)
vare.wa <- wascores(vare.points, varespec)
plot(scores(vare.points), pch="+", asp=1)

text(vare.wa, rownames(vare.wa), cex=0.8, col="blue")
## Omit rare species (frequency <= 4)

freq <- apply(varespec>0, 2, sum)
plot(scores(vare.points), pch="+", asp=1)
text(vare.wa[freq > 4,], rownames(vare.wa)[freq > 4],cex=0.8,col="blue")
## Works for environmental variables, too.
wascores(varechem, varespec)

## And the strengths of these variables are:
eigengrad(varechem, varespec)
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