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BCI Barro Colorado Island Tree Counts

Description

Tree counts in 1-hectare plots in the Barro Colorado Island.

Usage

data(BCI)

Format

A data frame with 50 plots (rows) of 1 hectare with counts of trees on each plot with total of 225
species (columns). Full Latin names are used for tree species.

Details

Data give the numbers of trees at least 10 cm in diameter at breast height (1.3 m above the ground)
in each one hectare square of forest. Within each one hectare square, all individuals of all species
were tallied and are recorded in this table.

The data frame contains only the Barro Colorado Island subset of the original data.

Source

http://www.sciencemag.org/cgi/content/full/295/5555/666/DC1

References

Condit, R, Pitman, N, Leigh, E.G., Chave, J., Terborgh, J., Foster, R.B., Nuñez, P., Aguilar, S.,
Valencia, R., Villa, G., Muller-Landau, H.C., Losos, E. & Hubbell, S.P. (2002). Beta-diversity in
tropical forest trees.Science295, 666–669.

http://www.sciencemag.org/cgi/content/full/295/5555/666/DC1
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Examples

data(BCI)

anosim Analysis of Similarities

Description

Analysis of similarities (ANOSIM) provides a way to test statistically whether there is a significant
difference between two or more groups of sampling units.

Usage

anosim(dis, grouping, permutations=1000, strata)

Arguments

dis Dissimilarity matrix.

grouping Factor for grouping observations.

permutations Number of permutation to assess the significance of the ANOSIM statistic.

strata An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata.

Details

Analysis of similarities (ANOSIM) provides a way to test statistically whether there is a significant
difference between two or more groups of sampling units. Functionanosim operates directly on a
dissimilarity matrix. A suitable dissimilarity matrix is produced by functionsdist or vegdist .
The method is philosophically allied with NMDS ordination (isoMDS), in that it uses only the rank
order of dissimilarity values.

If two groups of sampling units are really different in their species composition, then compositional
dissimilarities between the groups ought to be greater than those within the groups. Theanosim
statisticR is based on the difference of mean ranks between groups (rB) and within groups (rW ):

R = (rB − rW )/(N(N − 1)/4)

The divisor is chosen so thatR will be in the interval−1 . . . + 1, value0 indicating completely
random grouping.

The statistical significance of observedR is assessed by permuting the grouping vector to obtain
the empirical distribution ofR under null-model.

The function hassummary andplot methods. These both show valuable information to assess
the validity of the method: The function assumes that all ranked dissimilarities within groups have
about equal median and range. Theplot method usesboxplot with optionsnotch=TRUE and
varwidth=TRUE .
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Value

The function returs a list of classanosim with following items:

call Function call.

statistic The value of ANOSIM statisticR

signif Significance from permutation.

perm Permutation values ofR

class.vec Factor with valueBetween for dissimilarities between classes and class name
for corresponding dissimilarity within class.

dis.rank Rank of dissimilarity entry.

dissimilarity
The name of the dissimilarity index: the"method" entry of thedist object.

Note

I don’t quite trust this method. Somebody should study its performance carefully. The function
returns a lot of information to ease further scrutiny.

Author(s)

Jari Oksanen, with a help from Peter R. Minchin.

References

Clarke, K. R. (1993). Non-parametric multivariate analysis of changes in community structure.
Australian Journal of Ecology18, 117-143.

See Also

dist andvegdist for obtaining dissimilarities, andrank for ranking real values. For comparing
dissimilarities against continuous variables, seemantel .

Examples

data(dune)
data(dune.env)
dune.dist <- vegdist(dune)
attach(dune.env)
dune.ano <- anosim(dune.dist, Management)
summary(dune.ano)
plot(dune.ano)
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anova.cca Permutation Test for Constrained Correspondence Analysis, Redun-
dancy Analysis and Constrained Analysis of Principal Coordinates

Description

The function performs an ANOVA like permutation test for Constrained Correspondence Analysis
(cca ), Redundancy Analysis (rda ) or Constrained Analysis of Principal Coordinates (capscale )
to assess the significance of constraints.

Usage

## S3 method for class 'cca':
anova(object, alpha=0.05, beta=0.01, step=100, perm.max=10000, ...)
permutest.cca(x, permutations=100, model=c("direct", "reduced","full"), strata)

Arguments

object,x A result object fromcca .

alpha Targeted Type I error rate.

beta Accepted Type II error rate.

step Number of permutations during one step.

perm.max Maximum number of permutations.

... Parameters to permutest.cca.

permutations Number of permutations for assessing significance of constraints.

model Permutation model (partial match).

strata An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata.

Details

Functionsanova.cca andpermutest.cca implement an ANOVA like permutation test for the
joint effect of constraints incca , rda orcapscale . Functionsanova.cca andpermutest.cca
differ in printout style and in interface. Functionpermutest.cca is the proper workhorse, but
anova.cca passes all parameters topermutest.cca .

In anova.cca the number of permutations is controlled by targeted “critical”P value (alpha )
and accepted Type II or rejection error (beta ). If the results of permutations differ from the targeted
alpha at risk level given bybeta , the permutations are terminated. If the current estimate of
P does not differ significantly fromalpha of the alternative hypothesis, the permutations are
continued withstep new permutations.

The functionpermutest.cca implements a permutation test for the “significance” of constraints
in cca , rda or capscale . Community data are permuted with choicemodel = "direct" ,
residuals after partial CCA/RDA/CAP with choicemodel = "reduced" , and residuals after
CCA/RDA/CAP under choicemodel = "full" . If there is no partial CCA/RDA/CAP stage,
model = "reduced" simply permutes the data. The test statistic is “pseudo-F ”, which is the
ratio of constrained and unconstrained total Inertia (Chi-squares, variances or something similar),
each divided by their respective ranks. If there are no conditions ("partial" terms), the sum of all
eigenvalues remains constant, so that pseudo-F and eigenvalues would give equal results. In partial
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CCA/RDA/CAP, the effect of conditioning variables (“covariables”) is removed before permutation,
and these residuals are added to the non-permuted fitted values of partial CCA (fitted values ofX
~ Z). Consequently, the total Chi-square is not fixed, and test based on pseudo-F would differ
from the test based on plain eigenvalues. CCA is a weighted method, and environmental data are
re-weighted at each permutation step.

Value

Functionpermutest.cca returns an object of classpermutest.cca which has its ownprint
method. The functionanova.cca callspermutest.cca , fills ananova table and usesprint.anova
for printing.

Author(s)

Jari Oksanen

References

Legendre, P. and Legendre, L. (1998).Numerical Ecology. 2nd English ed. Elsevier.

See Also

cca , rda , capscale .

Examples

data(varespec)
data(varechem)
vare.cca <- cca(varespec ~ Al + P + K, varechem)
anova(vare.cca)
permutest.cca(vare.cca)
## Test for adding variable N to the previous model:
anova(cca(varespec ~ N + Condition(Al + P + K), varechem), step=40)

bioenv Best Subset of Environmental Variables with Maximum (Rank) Corre-
lation with Community Dissimilarities

Description

Function finds the best subset of environmental variables, so that the Euclidean distances of scaled
environmental variables have the maximum (rank) correlation with community dissimilarities.

Usage

## Default S3 method:
bioenv(comm, env, method = "spearman", index = "bray",

upto = ncol(env), ...)
## S3 method for class 'formula':
bioenv(formula, data, ...)
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Arguments

comm Community data frame.

env Data frame of continuous environmental variables.

method The correlation method used incor.test .

index The dissimilarity index used for community data invegdist .

upto Maximum number of parameters in studied subsets.
formula, data

Model formula and data.

... Other parameters passed to function.

Details

The function calculates a community dissimilarity matrix usingvegdist . Then it selects all pos-
sible subsets of environmental variables,scale s the variables, and calculates Euclidean distances
for this subset usingdist . Then it finds the correlation between community dissimilarities and
environmental distances, and for each size of subsets, saves the best result. There are2p−1 subsets
of p variables, and exhaustive search may take a very, very, very long time (parameterupto offers
a partial relief).

The function can be called with a modelformula where the LHS is the data matrix and RHS
lists the environmental variables. The formula interface is practical in selecting or transforming
environmental variables.

Clarke & Ainsworth (1993) suggested this method to be used for selecting the best subset of en-
vironmental variables in interpreting results of nonmetric multidimensional scaling (NMDS). They
recommended a parallel display of NMDS of community dissimilarities and NMDS of Euclidean
distances from the best subset of scaled environmental variables. They warned against the use of
Procrustes analysis, but to me this looks like a good way of comparing these two ordinations.

Clarke & Ainsworth wrote a computer program BIO-ENV giving the name to the current function.
Presumably BIO-ENV was later incorporated in Clarke’s PRIMER software (available for Win-
dows). In addition, Clarke & Ainsworth suggested a novel method of rank correlation which is not
available in the current function.

Value

The function returns an object of classbioenv with asummary method.

Author(s)

Jari Oksanen. The code for selecting all possible subsets was posted to the R mailing list by Prof.
B. D. Ripley in 1999.

References

Clarke, K. R & Ainsworth, M. 1993. A method of linking multivariate community structure to
environmental variables.Marine Ecology Progress Series, 92, 205–219.

See Also

vegdist , dist , cor for underlying routines,isoMDS for ordination,procrustes for Pro-
crustes analysis,protest for an alternative, andrankindex for studying alternatives to the
default Bray-Curtis index.
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Examples

# The method is very slow for large number of possible subsets.
# Therefore only 6 variables in this example.
data(varespec)
data(varechem)
sol <- bioenv(wisconsin(varespec) ~ log(N) + P + K + Ca + pH + Al, varechem)
sol
summary(sol)

capscale [Partial] Constrained Analysis of Principal Coordinates

Description

Constrained Analysis of Principal Coordinates (CAP) is an ordination method similar to Redun-
dancy Analysis (rda ), but it allows non-Euclidean dissimilarity indices, such as Manhattan or
Bray–Curtis distance. Despite this non-Euclidean feature, the analysis is strictly linear and metric.
If called with Euclidean distance, the results are identical torda , but capscale will be much
more inefficient. Functioncapscale may be useful with other dissimilarity measures, since Eu-
clidean distances inherent inrda are generally poor with community data

Usage

capscale(formula, data, distance = "euclidean", comm = NULL, add =
FALSE, ...)

Arguments

formula Model formula. The function can be called only with the formula interface.
Most usual features offormula hold, especially as defined incca andrda .
The LHS must be either a community data matrix or a dissimilarity matrix, e.g.,
from vegdist or dist . If the LHS is a data matrix, functionvegdist will
be used to find the dissimilarities. RHS defines the constraints. The constraints
can be continuous or factors, they can be transformed within the formula, and
they can have interactions as in typicalformula . The RHS can have a special
termCondition that defines variables “partialled out” before constraints, just
like in rda or cca . This allows the use of partial CAP.

data Data frame containing the variables on the right hand side of the model formula.

distance Dissimilarity (or distance) index invegdist used if the LHS of theformula
is a data frame instead of dissimilarity matrix.

comm Community data frame which will be used for finding species scores when the
LHS of theformula was a dissimilarity matrix. This is not used if the LHS is
a data frame. If this is not supplied, the “species scores” are the axes of initial
metric scaling (cmdscale ) and may be confusing.

add logical indicating if an additive constant should be computed, and added to the
non-diagonal dissimilarities such that all eigenvalues are non-negative in under-
lying Principal Co-ordinates Analysis (seecmdscale for details).

... Other parameters passed torda .
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Details

The Canonical Analysis of Principal Coordinates (CAP) is simply a Redundancy Analysis of results
of Metric (Classical) Multidimensional Scaling (Anderson & Willis 2003). Function capscale uses
two steps: (1) it ordinates the dissimilarity matrix usingcmdscale and (2) analyses these results
using rda . If the user supplied a community data frame instead of dissimilarities, the function
will find the needed dissimilarity matrix usingvegdist with specifieddistance . However, the
method will accept dissimilarity matrices fromvegdist , dist , or any other method producing
similar matrices. The constraining variables can be continuous or factors or both, they can have
interaction terms, or they can be transformed in the call. Moreover, there can be a special term
Condition just like in rda andcca so that “partial” CAP can be performed.

The current implementation differs from the method suggested by Anderson & Willis (2003) in
three major points:

1. Anderson & Willis used orthonormal solution ofcmdscale , whereascapscale uses axes
weighted by corresponding eigenvalues, so that the ordination distances are best approxima-
tions of original dissimilarities. In the original method, later “noise” axes are just as important
as first major axes.

2. Anderson & Willis take only a subset of axes, whereascapscale uses all axes with positive
eigenvalues. The use of subset is necessary with orthonormal axes to chop off some “noise”,
but the use of all axes guarantees that the results are the best approximation of original dis-
similarities.

3. Functioncapscale adds species scores as weighted sums of (residual) community matrix (if
the matrix is available), whereas Anderson & Willis have no fixed method for adding species
scores.

With these definitions, functioncapscale with Euclidean distances will be identical torda in
eigenvalues and in site, species and biplot scores (except for possible sign reversal). However, it
makes no sense to usecapscale with Euclidean distances, since direct use ofrda is much more
efficient. Even with non-Euclidean dissimilarities, the rest of the analysis will be metric and linear.

Value

The function returns an object of classcapscale which is identical to the result ofrda . At the
moment,capscale does not have specific methods, but it usescca andrda methodsplot.cca ,
summary.rda etc. Moreover, you can useanova.cca for permutation tests of “significance”
of the results.

Note

Warnings of negative eigenvalues are issued with most dissimilarity indices. These are harmless,
and negative eigenvalues will be ignored in the analysis. If the warnings are disturbing, you can
use argumentadd = TRUEpassed tocmdscale , or, preferably, a distance measure that does not
cause these warnings. Invegdist , method = "jaccard" gives such an index. Alternatively,
after square root transformation many indices do not cause warnings.

Functionrda usually divides the ordination scores by number of sites minus one. In this way,
the inertia is variance instead of sum of squares, and the eigenvalues sum up to variance. Many
dissimilarity measures are in the range 0 to 1, so they have already made a similar division. If
the largest original dissimilarity is less or equal to 4 (allowing forstepacross ), this division
is undone incapscale and original dissimilarities are used. The inertia is called assquared
dissimilarity (as defined in the dissimilarity matrix), but keywordmean is added to the inertia
in cases where division was made, e.g. in Euclidean and Manhattan distances.
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Author(s)

Jari Oksanen

References

Anderson, M.J. & Willis, T.J. (2003). Canonical analysis of principal coordinates: a useful method
of constrained ordination for ecology.Ecology84, 511–525.

See Also

rda , cca , plot.cca , anova.cca , vegdist , dist , cmdscale .

Examples

data(varespec)
data(varechem)
vare.cap <- capscale(varespec ~ N + P + K + Condition(Al), varechem, dist="bray")
vare.cap
plot(vare.cap)
anova(vare.cap)

cca [Partial] [Constrained] Correspondence Analysis and Redundancy
Analysis

Description

Functioncca performs correspondence analysis, or optionally constrained correspondence analysis
(a.k.a. canonical correspondence analysis), or optionally partial constrained correspondence anal-
ysis. Functionrda performs redundancy analysis, or optionally principal components analysis.
These are all very popular ordination techniques in community ecology.

Usage

## S3 method for class 'formula':
cca(formula, data)
## Default S3 method:
cca(X, Y, Z, ...)
## S3 method for class 'formula':
rda(formula, data, scale=FALSE)
## Default S3 method:
rda(X, Y, Z, scale=FALSE, ...)
## S3 method for class 'cca':
summary(object, scaling=2, axes=6, digits, ...)

Arguments

formula Model formula, where the left hand side gives the community data matrix, right
hand side gives the constraining variables, and conditioning variables can be
given within a special functionCondition .

data Data frame containing the variables on the right hand side of the model formula.
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X Community data matrix.

Y Constraining matrix, typically of environmental variables. Can be missing.

Z Conditioning matrix, the effect of which is removed (‘partialled out’) before
next step. Can be missing.

object A cca result object.

scaling Scaling for species and site scores. Either species (2) or site (1) scores are
scaled by eigenvalues, and the other set of scores is left unscaled, or with3 both
are scaled symmetrically by square root of eigenvalues. Corresponding negative
values can be used incca to additionally multiply results with

√
(1/(1 − λ)).

This scaling is know as Hill scaling (although it has nothing to do with Hill’s
rescaling ofdecorana ). With corresponding negative values inrda , species
scores are divided by standard deviation of each species. Unscaled raw scores
stored in the result can be accessed withscaling = 0 .

axes Number of axes in summaries.

digits Number of digits in output.

scale Scale species to unit variance (like correlations do).

... Other parameters forprint or plot functions.

Details

Since their introduction (ter Braak 1986), constrained or canonical correspondence analysis, and
its spin-off, redundancy analysis have been the most popular ordination methods in community
ecology. Functionscca and rda are similar to popular proprietary softwareCanoco , although
implementation is completely different. The functions are based on Legendre & Legendre’s (1998)
algorithm: incca Chi-square transformed data matrix is subjected to weighted linear regression on
constraining variables, and the fitted values are submitted to correspondence analysis performed via
singular value decomposition (svd ). Functionrda is similar, but uses ordinary, unweighted linear
regression and unweighted SVD.

The functions can be called either with matrix entries for community data and constraints, or with
formula interface. In general, the formula interface is preferred, because it allows a better control
of the model and allows factor constraints.

In matrix interface, the community data matrixX must be given, but any other data matrix can be
omitted, and the corresponding stage of analysis is skipped. If matrixZ is supplied, its effects are
removed from the community matrix, and the residual matrix is submitted to the next stage. This
is called ‘partial’ correspondence or redundancy analysis. If matrixY is supplied, it is used to con-
strain the ordination, resulting in constrained or canonical correspondence analysis, or redundancy
analysis. Finally, the residual is submitted to ordinary correspondence analysis (or principal com-
ponents analysis). If both matricesZ andY are missing, the data matrix is analysed by ordinary
correspondence analysis (or principal components analysis).

Instead of separate matrices, the model can be defined using a modelformula . The left hand
side must be the community data matrix (X). The right hand side defines the constraining model.
The constraints can contain ordered or unordered factors, interactions among variables and func-
tions of variables. The definedcontrasts are honoured infactor variables. The formula
can include a special termCondition for conditioning variables (“covariables”) “partialled out”
before analysis. So the following commands are equivalent:cca(X, y, z) , cca(X ~ y +
Condition(z)) , wherey andz refer to single variable constraints and conditions.

Constrained correspondence analysis is indeed a constrained method: CCA does not try to display
all variation in the data, but only the part that can be explained by the used constraints. Con-
sequently, the results are strongly dependent on the set of constraints and their transformations or
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interactions among the constraints. The shotgun method is to use all environmental variables as con-
straints. However, such exploratory problems are better analysed with unconstrained methods such
as correspondence analysis (decorana , ca ) or non-metric multidimensional scaling (isoMDS)
and environmental interpretation after analysis (envfit , ordisurf ). CCA is a good choice if
the user has clear and stronga priori hypotheses on constraints and is not interested in the major
structure in the data set.

CCA is able to correct a common curve artefact in correspondence analysis by forcing the config-
uration into linear constraints. However, the curve artefact can be avoided only with a low number
of constraints that do not have a curvilinear relation with each other. The curve can reappear even
with two badly chosen constraints or a single factor. Although the formula interface makes easy to
include polynomial or interaction terms, such terms often allow curve artefact (and are difficult to
interpret), and should probably be avoided.

According to folklore,rda should be used with “short gradients” rather thancca . However, this
is not based on research which finds methods based on Euclidean metric as uniformly weaker than
those based on Chi-squared metric.

Partial CCA (pCCA; or alternatively partial RDA) can be used to remove the effect of some condi-
tioning or “background” or “random” variables or “covariables” before CCA proper. In fact, pCCA
compares modelscca(X ~ z) andcca(X ~ y + z) and attributes their difference to the ef-
fect ofy cleansed of the effect ofz . Some people have used the method for extracting “components
of variance” in CCA. However, if the effect of variables together is stronger than sum of both sep-
arately, this can increase total Chi-square after “partialling out” some variation, and give negative
“components of variance”. In general, such components of “variance” are not to be trusted due to
interactions between two sets of variables.

The functions havesummary andplot methods. Thesummary method lists all species and
site scores, and results may be very long. Palmer (1993) suggested using linear constraints (“LC
scores”) in ordination diagrams, because these gave better results in simulations and site scores
(“WA scores”) are a step from constrained to unconstrained analysis. However, McCune (1997)
showed that noisy environmental variables (and all environmental measurements are noisy) destroy
“LC scores” whereas “WA scores” were little affected. Therefore theplot function uses site scores
(“WA scores”) as the default. This is consistent with the usage in statistics and other functions inR
(lda , cancor ).

Value

Functioncca returns a huge object of classcca , which is described separately incca.object .

Functionrda returns an object of classrda which inherits from classcca and is described in
cca.object . The scaling used inrda scores is desribed in a separate vignette with this package.

Author(s)

The responsible author was Jari Oksanen, but the code borrows heavily from Dave Roberts (http:
//labdsv.nr.usu.edu/ ).

References

The original method was by ter Braak, but the current implementations follows Legendre and Leg-
endre.

Legendre, P. and Legendre, L. (1998)Numerical Ecology. 2nd English ed. Elsevier.

McCune, B. (1997) Influence of noisy environmental data on canonical correspondence analysis.
Ecology78, 2617-2623.

http://labdsv.nr.usu.edu/
http://labdsv.nr.usu.edu/
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Palmer, M. W. (1993) Putting things in even better order: The advantages of canonical correspon-
dence analysis.Ecology74, 2215-2230.

Ter Braak, C. J. F. (1986) Canonical Correspondence Analysis: a new eigenvector technique for
multivariate direct gradient analysis.Ecology67, 1167-1179.

See Also

There is a special documentation forplot.cca function with its helper functions (text.cca ,
points.cca , scores.cca ). Functionanova.cca provides an ANOVA like permutation
test for the “significance” of constraints. Automatic model building (dangerous!) is discussed in
deviance.cca . Diagnostic tools, prediction and adding new points in ordination are discussed
in goodness.cca andpredict.cca . FunctionsCAIV (library CoCoAn) andcca (library
ade4 ) provide alternative implementations of CCA (these are internally quite different). Function
capscale is a non-Euclidean generalization ofrda .

Examples

data(varespec)
data(varechem)
## Common but bad way: use all variables you happen to have in your
## environmental data matrix
vare.cca <- cca(varespec, varechem)
vare.cca
plot(vare.cca)
## Formula interface and a better model
vare.cca <- cca(varespec ~ Al + P*(K + Baresoil), data=varechem)
vare.cca
plot(vare.cca)
## `Partialling out' and `negative components of variance'
cca(varespec ~ Ca, varechem)
cca(varespec ~ Ca + Condition(pH), varechem)
## RDA
data(dune)
data(dune.env)
dune.Manure <- rda(dune ~ Manure, dune.env)
plot(dune.Manure)

cca.object Result Object from Constrained Ordination with cca, rda or capscale

Description

Ordination methodscca , rda andcapscale return similar result objects. Functioncapscale
inherits from rda andrda inherits fromcca . This inheritance structure is due to historic rea-
sons:cca was the first of these implemented in vegan. Hence the nomenclature incca.object
reflectscca . This help page describes the internal structure of thecca object for programmers.

Value

A cca object has the following elements:

call function call.
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colsum, rowsum
Column and row sums incca . In rda , itemcolsum contains standard devia-
tions of species androwsum is NA.

grand.total Grand total of community data incca andNAin rda .

inertia Text used as the name of inertia.

method Text used as the name of the ordination method.

terms The terms component of theformula . This is missing if the ordination was
not called withformula .

terminfo Further information on terms with three subitems:terms which is like the
terms component above, but lists conditions and constrainst similarly;xlev
which lists the factor levels, andordered which is TRUEto ordered factors.
This is produced byveganinternal functionordiTerminfo , and it is needed
in predict.cca with newdata . This is missing if the ordination was not
called withformula .

tot.chi Total inertia or the sum of all eigenvalues.
pCCA, CCA, CA

Actual ordination results for conditioned (partial), constrained and unconstrained
components of the model. Any of these can beNULL if there is no correspond-
ing component. ItemspCCA, CCAandCAhave similar structure, and contain
following items:

alias The names of the aliased constraints or conditions. Functionalias.cca does
not access this item directly, but it finds the aliased variables and their defining
equations from the itemQR.

biplot Biplot scores of constraints. Only inCCA.

centroids (Weighted) centroids of factor levels of constraints. Only inCCA. Missing if the
ordination was not called withformula .

eig Eigenvalues of axes. InCCAandCA.

envcentre (Weighted) means of the original constraining or conditioning variables. In
pCCAand inCCA.

Fit The fitted values of standardized data matrix after fitting conditions. Only in
pCCA.

QR The QR decomposition of explanatory variables as produced byqr . The con-
strained ordination algorithm is based onQRdecomposition of constraints and
conditions (environmental data). The environmental data are first centred in
rda or weighted and centred incca . The QR decomposition is used in many
functions that accesscca results, and it can be used to find many items that are
not directly stored in the object. For examples, seecoef.cca , coef.rda ,
vif.cca , permutest.cca , predict.cca , predict.rda , calibrate.cca .
For possible uses of this component, seeqr . In pCCAandCCA.

rank The rank of the component.

tot.chi Total inertia or the sum of all eigenvalues of the component.

u (Weighted) orthonormal site scores. Please note that scaled scores are not stored
in the cca object, but they are made when the object is accessed with func-
tions like scores.cca , summary.cca or plot.cca , or their rda vari-
ants. Only inCCAandCA. In CCAcomponent these are the so-called linear
combination scores.

u.eig u scaled by eigenvalues. There is no guarantee that any.eig variants of scores
will be kept in the future releases.
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v (Weighted) orthonormal species scores. If missing species were omitted from
the analysis, this will contain attributena.action that lists the omitted species.
Only in CCAandCA.

v.eig v weighted by eigenvalues.

wa Site scores found as weighted averages (cca ) or weighted sums (rda ) of v with
weightsXbar , but the multiplying effect of eigenvalues removed. These often
are known as WA scores incca . Only in CCA.

wa.eig The direct result of weighted avaraging or weighted summation (matrix multi-
plication) with the resulting eigenvalue inflation.

Xbar The standardized data matrix after previous stages of analysis. InCCAthis is
after possiblepCCAor after partialling out the effects of conditions, and inCA
after bothpCCAand CCA. In cca the standardization is Chi-square, and in
rda centring and optional scaling by species standard deviations using function
scale .

Author(s)

Jari Oksanen

References

Legendre, P. and Legendre, L. (1998)Numerical Ecology. 2nd English ed. Elsevier.

See Also

The description here provides a hacker’s interface. For more user friendly acces to thecca object
seealias.cca , coef.cca , deviance.cca , predict.cca , scores.cca , summary.cca ,
vif.cca , weights.cca , spenvcor or rda variants of these functions.

Examples

# Some species will be missing in the analysis, because only a subset
# of sites is used below.
data(dune)
data(dune.env)
mod <- cca(dune[1:15,] ~ ., dune.env[1:15,])
# Look at the names of missing species
attr(mod$CCA$v, "na.action")
# Look at the names of the aliased variables:
mod$CCA$alias
# Access directly constrained weighted orthonormal species and site
# scores, constrained eigenvalues and margin sums.
spec <- mod$CCA$v
sites <- mod$CCA$u
eig <- mod$CCA$eig
rsum <- mod$rowsum
csum <- mod$colsum
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decorana Detrended Correspondence Analysis and Basic Reciprocal Averaging

Description

Performs detrended correspondence analysis and basic reciprocal averaging or orthogonal corre-
spondence analysis.

Usage

decorana(veg, iweigh=0, iresc=4, ira=0, mk=26, short=0, before=NULL,
after=NULL)

## S3 method for class 'decorana':
plot(x, choices=c(1,2), origin=TRUE,

display=c("both","sites","species","none"),
cex = 0.8, cols = c(1,2), type, xlim, ylim,...)

## S3 method for class 'decorana':
text(x, display = c("sites", "species"), labels, choices = 1:2,

origin = TRUE, select, ...)
## S3 method for class 'decorana':
points(x, display = c("sites", "species"), choices = 1:2,

origin = TRUE, select, ...)
## S3 method for class 'decorana':
summary(object, digits=3, origin=TRUE,

display=c("both", "species","sites","none"), ...)
downweight(veg, fraction = 5)
## S3 method for class 'decorana':
scores(x, display=c("sites","species"), choices =1:4, origin=TRUE, ...)

Arguments

veg Community data matrix.

iweigh Downweighting of rare species (0: no).

iresc Number of rescaling cycles (0: no rescaling).

ira Type of analysis (0: detrended, 1: basic reciprocal averaging).

mk Number of segments in rescaling.

short Shortest gradient to be rescaled.

before Hill’s piecewise transformation: values before transformation.

after Hill’s piecewise transformation: values after transformation – these must corre-
spond to values inbefore .

x, object A decorana result object.

choices Axes shown.

origin Use true origin even in detrended correspondence analysis.

display Display only sites, only species, both or neither.

cex Plot character size.

cols Colours used for sites and species.

type Type of plots, partial match to"text" , "points" or "none" .
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labels Optional text to be used instead of row names.

select Items to be displayed. This can either be a logical vector which isTRUEfor
displayed items or a vector of indices of displayed items.

xlim, ylim the x and y limits (min,max) of the plot.

digits Number of digits in summary output.

fraction Abundance fraction where downweighting begins.

... Other parameters forplot function.

Details

In late 1970s, correspondence analysis became the method of choice for ordination in vegetation
science, since it seemed to be able to cope with non-linear species responses better than principal
components analysis. However, even correspondence analysis produced arc-shaped configuration
of a single gradient. Mark Hill developed detrended correspondence analysis to correct two assumed
‘faults’ in correspondence analysis: curvature of straight gradients and packing of sites at the ends
of the gradient.

The curvature is removed by replacing the orthogonalization of axes with detrending. In orthogo-
nalization the successive axes are made non-correlated, but detrending should remove all system-
atic dependence between axes. Detrending is made using a five-segment smoothing window with
weights (1,2,3,2,1) onmksegments – which indeed is more robust than the suggested alternative of
detrending by polynomials. The packing of sites at the ends of the gradient is undone by rescaling
the axes after extraction. After rescaling, the axis is supposed to be scaled by ‘SD’ units, so that the
average width of Gaussian species responses is supposed to be one over whole axis. Other inno-
vations were the piecewise linear transformation of species abundances and downweighting of rare
species which were regarded to have an unduly high influence on ordination axes.

It seems that detrending works actually by twisting the ordination space, so that the results look non-
curved in two-dimensional projections (‘lolly paper effect’). As a result, the points have usually an
easily recognized triangle or diamond shaped pattern, obviously as a detrending artefact. Rescaling
works differently than commonly presented, too.Decorana does not use, or even evaluate, the
widths of species responses. Instead, it tries to equalize the weighted variance of species scores on
axis segments (parametermk has only a small effect, sincedecorana finds the segment number
from the current estimate of axis length). This equalizes response widths only for the idealized
species packing model, where all species initially have unit width responses and equally spaced
modes.

Functionsummary prints the ordination scores, possible prior weights used in downweighting,
and the marginal totals after applying these weights. Functionplot plots species and site scores.
Classicaldecorana scaled the axes so that smallest site score was 0 (and smallest species score
was negative), butsummary , plot andscores use the true origin, unlessorigin = FALSE .

In addition to proper eigenvalues, the function also reports ‘decorana values’ in detrended analysis.
These are the values that the legacy code ofdecorana returns as ‘eigenvalues’. They are estimated
internally during iteration, and it seems that detrending interferes the estimation so that these values
are generally too low and have unclear interpretation. Moreover, ‘decorana values’ are estimated
before rescaling which will change the eigenvalues. The proper eigenvalues are estimated after
extraction of the axes and they are always the ratio of biased weighted variances of site and species
scores even in detrended and rescaled solutions. The ‘decorana values’ are provided only for the
the compatibility with legacy software, and they should not be used.

Value

Function returns an object of classdecorana , which hasprint , summary andplot methods.
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Note

Functiondecorana uses the central numerical engine of the original Fortran code (which is in
public domain), or about 1/3 of the original program. I have tried to implement the original be-
haviour, although a great part of preparatory steps were written inR language, and may differ
somewhat from the original code. However, well-known bugs are corrected and strict criteria used
(Oksanen & Minchin 1997).

Please note that there really is no need for piecewise transformation or even downweighting within
decorana , since there are more powerful and extensive alternatives inR, but these options are
included for compliance with the original software. If different fraction of abundance is needed in
downweighting, functiondownweight must be applied beforedecorana . Functiondownweight
indeed can be applied prior to correspondence analysis, and so it can be used together withcca ,
CAIV andca as well.

The function finds only four axes: this is not easily changed.

Author(s)

Mark O. Hill wrote the original Fortran code,R port was by Jari Oksanen.

References

Hill, M.O. and Gauch, H.G. (1980). Detrended correspondence analysis: an improved ordination
technique.Vegetatio42, 47–58.

Oksanen, J. and Minchin, P.R. (1997). Instability of ordination results under changes in input data
order: explanations and remedies.Journal of Vegetation Science8, 447–454.

See Also

For unconstrained ordination, non-metric multidimensional scaling inisoMDS may be more ro-
bust. Constrained (or ‘canonical’) correspondence analysis can be made withcca . Orthogo-
nal correspondence analysis can be made withca , or with decorana or cca , but the scal-
ing of results vary (and the one indecorana correspondes toscaling = -1 in cca .). See
predict.decorana for adding new points to ordination.

Examples

data(varespec)
vare.dca <- decorana(varespec)
vare.dca
summary(vare.dca)
plot(vare.dca)
### the detrending rationale:
gaussresp <- function(x,u) exp(-(x-u)^2/2)
x <- seq(0,6,length=15) ## The gradient
u <- seq(-2,8,len=23) ## The optima
pack <- outer(x,u,gaussresp)
matplot(x, pack, type="l", main="Species packing")
opar <- par(mfrow=c(2,2))
plot(scores(prcomp(pack)), asp=1, type="b", main="PCA")
plot(scores(decorana(pack, ira=1)), asp=1, type="b", main="CA")
plot(scores(decorana(pack)), asp=1, type="b", main="DCA")
plot(scores(cca(pack ~ x), dis="sites"), asp=1, type="b", main="CCA")
### Let's add some noise:
noisy <- (0.5 + runif(length(pack)))*pack
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par(mfrow=c(2,1))
matplot(x, pack, type="l", main="Ideal model")
matplot(x, noisy, type="l", main="Noisy model")
par(mfrow=c(2,2))
plot(scores(prcomp(noisy)), type="b", main="PCA", asp=1)
plot(scores(decorana(noisy, ira=1)), type="b", main="CA", asp=1)
plot(scores(decorana(noisy)), type="b", main="DCA", asp=1)
plot(scores(cca(noisy ~ x), dis="sites"), asp=1, type="b", main="CCA")
par(opar)

decostand Standardizaton Methods for Community Ecology

Description

The function provides some popular (and effective) standardization methods for community ecolo-
gists.

Usage

decostand(x, method, MARGIN, range.global, na.rm = FALSE)
wisconsin(x)

Arguments

x Community data matrix.

method Standardization method.

MARGIN Margin, if default is not acceptable.

range.global Matrix from which the range is found inmethod = "range" . This allows
using same ranges across subsets of data. The dimensions ofMARGINmust
match withx .

na.rm Ignore missing values in row or column standardizations.

Details

The function offers following standardization methods for community data:

• total : divide by margin total (defaultMARGIN = 1).

• max: divide by margin maximum (defaultMARGIN = 2).

• freq : divide by margin maximum and multiply by number of non-zero items, so that the
average of non-zero entries is one (Oksanen 1983; defaultMARGIN = 2).

• normalize : make margin sum of squares equal to one (defaultMARGIN = 1).

• range : standardize values into range 0 . . . 1 (defaultMARGIN = 2). If all values are con-
stant, they will be transformed to 0.

• standardize : scale into zero mean and unit variance (defaultMARGIN = 2).

• pa : scale into presence/absence scale (0/1).
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• chi.square : divide by row sums and square root of column sums, and adjust for square root
of matrix total (Legendre & Gallagher 2001). When used with Euclidean distance, the matrix
should be similar to the the Chi-square distance used in correspondence analysis. However,
the results fromcmdscale would still differ, since CA is a weighted ordination method
(defaultMARGIN = 1).

• hellinger : square root ofmethod = "total" (Legendre & Gallagher 2001).

Standardization, as contrasted to transformation, means that the entries are transformed relative to
other entries.

All methods have a default margin.MARGIN=1means rows (sites in a normal data set) and
MARGIN=2means columns (species in a normal data set).

Commandwisconsin is a shortcut to common Wisconsin double standardization where species
(MARGIN=2) are first standardized by maxima (max) and then sites (MARGIN=1) by site totals
(tot ).

Most standardization methods will give non-sense results with negative data entries that normally
should not occur in the community data. If there are empty sites or species (or constant with
method = "range" ), many standardization will change these intoNaN.

Value

Returns the standardized data frame.

Note

Common transformations can be made with standardR functions.

Author(s)

Jari Oksanen

References

Legendre, P. & Gallagher, E.D. (2001) Ecologically meaningful transformations for ordination of
species data.Oecologia129: 271–280.

Oksanen, J. (1983) Ordination of boreal heath-like vegetation with principal component analysis,
correspondence analysis and multidimensional scaling.Vegetatio52, 181–189.

Examples

data(varespec)
sptrans <- decostand(varespec, "max")
apply(sptrans, 2, max)
sptrans <- wisconsin(varespec)
# Chi-square: Similar but not identical to Correspondence Analysis.
sptrans <- decostand(varespec, "chi.square")
plot(procrustes(rda(sptrans), cca(varespec)))
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deviance.cca Statistics Resembling Deviance and AIC for Constrained Ordination

Description

The functions extract statistics that resemble deviance and AIC from the result of constrained cor-
respondence analysiscca or redundancy analysisrda . These functions are rarely needed directly,
but they are called bystep in automatic model building. Actually,cca andrda do not haveAIC
and these functions are certainly wrong.

Usage

## S3 method for class 'cca':
deviance(object, ...)
## S3 method for class 'cca':
extractAIC(fit, scale = 0, k = 2, ...)

Arguments

object the result of a constrained ordination (cca or rda ).

fit fitted model from constrained ordination.

scale optional numeric specifying the scale parameter of the model, seescale in
step .

k numeric specifying the "weight" of theequivalent degrees of freedom(=:edf )
part in the AIC formula.

... further arguments.

Details

The functions find statistics that resembledeviance andAIC in constrained ordination. Actually,
constrained ordination methods do not have log-Likelihood, which means that they cannot have AIC
and deviance. Therefore you should not use these functions, and if you use them, you should not
trust them. If you use these functions, it remains as your responsibility to check the adequacy of the
result.

The deviance ofcca is equal to Chi-square of the residual data matrix after fitting the constraints.
The deviance ofrda is defined as the residual sum of squares. The deviance function ofrda is also
used forcapscale . FunctionextractAIC mimicsextractAIC.lm in translating deviance
to AIC.

There is little need to call these functions directly. However, they are called implicitly instep
function used in automatic selection of constraining variables. You should check the resulting model
with some other criteria, because the statistics used here are unfounded. In particular, the penalty
k is not properly defined, and the defaultk = 2 is not justified theoretically. If you have only
continuous covariates, thestep function will base the model building on magnitude of eigenvalues,
and the value ofk only influences the stopping point (but variable with highest eigenvalues is not
necessarily the most significant one in permutation tests inanova.cca ). If you also have multi-
class factors, the value ofk will have a capricious effect in model building.

Value

Thedeviance functions return “deviance”, andextractAIC returns effective degrees of free-
dom and “AIC”.
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Note

These functions are unfounded and untested and they should not be used directly or implicitly.
Moreover, usual caveats in usingstep are very valid.

Author(s)

Jari Oksanen

References

Godínez-Domínguez, E. & Freire, J. (2003) Information-theoretic approach for selection of spatial
and temporal models of community organization.Marine Ecology Progress Series253, 17–24.

See Also

cca , rda , anova.cca , step , extractAIC .

Examples

# The deviance of correspondence analysis equals Chi-square
data(dune)
data(dune.env)
chisq.test(dune)
deviance(cca(dune))
# Backward elimination from a complete model "dune ~ ."
ord <- cca(dune ~ ., dune.env)
ord
step(ord)
# Stepwise selection (forward from an empty model "dune ~ 1")
step(cca(dune ~ 1, dune.env), scope = formula(ord))
# ANOVA for the added variable
anova(cca(dune ~ Moisture, dune.env))
# ANOVA for the next candidate variable that was not added
anova(cca(dune ~ Condition(Moisture) + Management, dune.env), perm.max=1000)

distconnected Connectedness and Minimum Spanning Tree for Dissimilarities

Description

Functiondistconnected finds groups that are connected disregarding dissimilarities that are
at or above a threshold orNA. The function can be used to find groups that can be ordinated to-
gether or transformed bystepacross . Functionno.shared returns a logical dissimilarity
object, whereTRUEmeans that sites have no species in common. This is a minimal structure for
distconnected or can be used to set missing values to dissimilarities. Functionspantree
finds a minimum spanning tree connecting all points, but disregarding dissimilarities that are at or
above the threshold orNA.

Usage

distconnected(dis, toolong = 1, trace = TRUE)
no.shared(x)
spantree(dis, toolong = 0)
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Arguments

dis Dissimilarity data inheriting from classdist or a an object, such as a matrix,
that can be converted to a dissimilarity matrix. Functionsvegdist anddist
are some functions producing suitable dissimilarity data.

toolong Shortest dissimilarity regarded asNA. The function uses a fuzz factor, so that
dissimilarities close to the limit will be madeNA, too. If toolong = 0 (or
negative), no dissimmilarity is regarded as too long.

trace Summarize results ofdistconnected

x Community data.

Details

Data sets are disconnected if they have sample plots or groups of sample plots which share no
species with other sites or groups of sites. Such data sets cannot be sensibly ordinated by any
unconstrained method, because these subsets cannot be related to each other. For instance, corre-
spondence analysis will polarize these subsets with eigenvalue 1. Neither can such dissimilarities
be transformed withstepacross , because there is no path between all points, and result will
containNAs. Functiondistconnected will find such subsets in dissimilarity matrices. The
function will return a grouping vector that can be used for subsetting the data. If data are connected,
the result vector will be all1s. The connectedness between two points can be defined either by a
thresholdtoolong or using input dissimilarities withNAs.

Functionno.shared returns adist structure having valueTRUEwhen two sites have nothing in
common, and valueFALSEwhen they have at least one shared species. This is a minimal structure
that can be analysed withdistconnected . The function can be used to select dissimilarities
with no shared species in indices which do not have a fixed upper limit.

Functionspantree finds a minimum spanning tree for dissimilarities (there may be several min-
imum spanning trees, but the function finds only one). Dissimilarities at or above the threshold
toolong andNAs are disregarded, and the spanning tree is found through other dissimilarities. If
the data are disconnected, the function will return a disconnected tree (or a forest), and the corre-
sponding link isNA. The results ofspantree can be overlaid onto an ordination diagram using
functionordispantree .

Functiondistconnected uses depth-first search (Sedgewick 1990). Functionspantree uses
Prim’s method implemented as priority-first search for dense graphs (Sedgewick 1990).

Value

Functiondistconnected returns a vector for observations using integers to identify connected
groups. If the data are connected, values will be all1. Functionno.shared returns an object of
classdist . Functionspantree returns a list with two vectors, each of lengthn−1. The number
of links in a tree is one less the number of observations, and the first item is omitted. The items are

kid The child node of the parent, starting from parent number two. If there is no link
from the parent, value will beNAand tree is disconnected at the node.

dist Corresponding distance. Ifkid = NA , thendist = 0 .

Note

In principle, minimum spanning tree is equivalent to single linkage clustering that can be performed
usinghclust or agnes . However, these functions combine clusters to each other and the infor-
mation of the actually connected points (the “single link”) cannot be recovered from the result. The
graphical output of a single linkage clustering plotted withordicluster will look very different
from an equivalent spanning tree plotted withordispantree .
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Author(s)

Jari Oksanen

References

Sedgewick, R. (1990).Algorithms in C. Addison Wesley.

See Also

vegdist or dist for getting dissimilarities,stepacross for a case where you may need
distconnected , ordispantree for displaying results ofspantree , andhclust oragnes
for single linkage clustering.

Examples

## There are no disconnected data in vegan, and the following uses an
## extremely low threshold limit for connectedness. This is for
## illustration only, and not a recommended practice.
data(dune)
dis <- vegdist(dune)
ord <- cmdscale(dis) ## metric MDS
gr <- distconnected(dis, toolong=0.4)
tr <- spantree(dis, toolong=0.4)
ordiplot(ord, type="n")
ordispantree(ord, tr, col="red", lwd=2)
points(ord, cex=1.3, pch=21, col=1, bg = gr)
# Make sites with no shared species as NA in Manhattan dissimilarities
dis <- vegdist(dune, "manhattan")
is.na(dis) <- no.shared(dune)

diversity Ecological Diversity Indices and Rarefaction Species Richness

Description

Shannon, Simpson, Rényi, Hill and Fisher diversity indices and rarefied species richness for com-
munity ecologists.

Usage

diversity(x, index = "shannon", MARGIN = 1, base = exp(1))
rarefy(x, sample, se = FALSE, MARGIN = 1)
renyi(x, scales=c(0,0.25,0.5,1,2,4,8,16,32,64,Inf), hill = FALSE)
fisher.alpha(x, MARGIN = 1, se = FALSE, ...)
specnumber(x, MARGIN = 1)

Arguments

x Community data matrix.

index Diversity index, one ofshannon , simpson or invsimpson .

MARGIN Margin for which the index is computed.
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base The logarithmbase used inshannon .

sample Subsample size for rarefying community.

se Estimate standard errors.

scales Scales of Rényi diversity.

hill Calculate Hill numbers.

... Parameters passed tonlm

Details

Shannon or Shannon–Weaver (or Shannon–Wiener) index is defined asH ′ = −
∑

i pi logb pi,
wherepi is the proportional abundance of speciesi andb is the base of the logarithm. It is most
popular to use natural logarithms, but some argue for baseb = 2 (which makes sense, but no real
difference).

Both variants of Simpson’s index are based onD =
∑

p2
i . Choicesimpson returns1 − D and

invsimpson returns1/D.

Shannon and Simpson indices are both special cases of Rényi diversity

Ha =
1

1− a
log

∑
pa

i

wherea is a scale parameter, and Hill (1975) suggested to use so-called “Hill numbers” defined
asNa = exp(Ha). Some Hill numbers are the number of species witha = 0, exp(H ′) or the
exponent of Shannon diversity witha = 1, inverse Simpson witha = 2 and1/ max(pi) with
a = ∞. According to the theory of diversity ordering, one community can be regarded as more
diverse than another only if its Rényi diversities are all higher (Tóthmérész 1995).

Functionrarefy gives the expected species richness in random subsamples of sizesample from
the community. The size ofsample should be smaller than total community size, but the function
will silently work for largersample as well and return non-rarefied species richness (and standard
error = 0). Rarefaction can be performed only with genuine counts of individuals. The function
rarefy is based on Hurlbert’s (1971) formulation, and the standard errors on Heck et al. (1975).

Functionfisher.alpha estimates theα parameter of Fisher’s logarithmic series (seefisherfit ).
The estimation is possible only for genuine counts of individuals. The function can optionally re-
turn standard errors ofα. These should be regarded only as rough indicators of the accuracy: the
confidence limits ofα are strongly non-symmetric and standard errors cannot be used in Normal
inference.

Functionspecnumber finds the number of species. WithMARGIN = 2, it finds frequencies of
species. The function is extremely simple, and shortcuts are easy in plainR.

Better stories can be told about Simpson’s index than about Shannon’s index, and still more grandiose
stories about rarefaction (Hurlbert 1971). However, these indices are all very closely related (Hill
1973), and there is no reason to despise one more than others (but if you are a graduate student,
don’t drag me in, but obey your Professor’s orders). In particular, exponent of the Shannon index
is linearly related to inverse Simpson (Hill 1973) although the former may be more sensitive to rare
species. Moreover, inverse Simpson is asymptotically equal to rarefied species richness in sample
of two individuals, and Fisher’sα is very similar to inverse Simpson.

Value

Vector of diversity indices or rarefied species richness values. With optionse = TRUE, func-
tion rarefy returns a 2-row matrix with rarefied richness (S) and its standard error (se ). Function
renyi returns a data frame of selected indices. With optionse = TRUE, functionfisher.alpha
returns a data frame with items forα (alpha ), its approximate standard errors (se ), residual de-
grees of freedom (df.residual ), and thecode returned bynlm on the success of estimation.
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Author(s)

Jari Oksanen, Roeland Kindt〈r.kindt@cgiar.org〉 (renyi ) and Bob O’Hara〈bob.ohara@helsinki.fi〉
(fisher.alpha ).

References

Fisher, R.A., Corbet, A.S. & Williams, C.B. (1943). The relation between the number of species
and the number of individuals in a random sample of animal population.Journal of Animal Ecology
12, 42–58.

Heck, K.L., van Belle, G. & Simberloff, D. (1975). Explicit calculation of the rarefaction diversity
measurement and the determination of sufficient sample size.Ecology56, 1459–1461.

Hill, M.O. (1973). Diversity and evenness: a unifying notation and its consequences.Ecology54,
427–473.

Hurlbert, S.H. (1971). The nonconcept of species diversity: a critique and alternative parameters.
Ecological Monographs54, 187–211.

Tóthmérész, B. (1995). Comparison of different methods for diversity ordering.Journal of Vegeta-
tion Science6, 283–290.

Examples

data(BCI)
H <- diversity(BCI)
simp <- diversity(BCI, "simpson")
invsimp <- diversity(BCI, "inv")
r.2 <- rarefy(BCI, 2)
alpha <- fisher.alpha(BCI)
pairs(cbind(H, simp, invsimp, r.2, alpha), pch="+", col="blue")
## Species richness (S) and Pielou's evenness (J):
S <- specnumber(BCI) ## rowSums(BCI > 0) does the same...
J <- H/log(S)

dune Vegetation and Environment in Dutch Dune Meadows.

Description

The dune meadow vegetation datadune has cover class values of 30 species on 20 sites. The
corresponding environmental data framedune.env has following entries:

Usage

data(dune)
data(dune.env)

Format

A1 a numeric vector of thickness of A1 horizon.

Moisture an ordered factor with levels

Moisture 1 < 2 < 4 < 5

Management a factor with levels
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Management BF: Biological Farming

Management HF: Hobby Farming

Management NM: Nature Conservation Management

Management SF: Standard Farming

Use an ordered factor of landuse with levels

Use Hayfield < Haypastu < Pasture

Manure an ordered factor with levels

Manure 0 < 1 < 2 < 3 < 4

Source

Jongman, R.H.G, ter Braak, C.J.F & van Tongeren, O.F.R. (1987).Data Analysis in Community
and Landscape Ecology. Pudog, Wageningen.

Examples

data(dune)

envfit Fits an Environmental Vector or Factor onto an Ordination

Description

The function fits environmental vectors or factors onto an ordination. The projection of points onto
vectors have maximum correlations with corresponding environmental variables, and the factors
show the averages of factor levels.

Usage

## Default S3 method:
envfit(X, P, permutations = 0, strata, choices=c(1,2), ...)
## S3 method for class 'formula':
envfit(formula, data, ...)
## S3 method for class 'envfit':
plot(x, choices = c(1,2), arrow.mul, at = c(0,0), axis = FALSE,

p.max = NULL, col = "blue", add = TRUE, ...)
## S3 method for class 'envfit':
scores(x, display, choices, ...)
vectorfit(X, P, permutations = 0, strata, choices=c(1,2),

display = c("sites", "lc"), w = weights(X), ...)
factorfit(X, P, permutations = 0, strata, choices=c(1,2),

display = c("sites", "lc"), w = weights(X), ...)

Arguments

X Ordination configuration.

P Matrix or vector of environmental variable(s).

permutations Number of permutations for assessing significance of vectors or factors.
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formula, data
Model formula and data.

x A result object fromenvfit .

choices Axes to plotted.

arrow.mul Multiplier for vector lengths. The arrows are automatically scaled similarly as
in plot.cca if this is not given andadd = TRUE.

at The origin of fitted arrows in the plot. If you plot arrows in other places then
origin, you probably have to specifyarrrow.mul .

axis Plot axis showing the scaling of fitted arrows.

p.max Maximum estimatedP value for displayed variables. You must calculateP
values with settingpermutations to use this option.

col Colour in plotting.

add Results added to an existing ordination plot.

strata An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata.

display In fitting functions these are ordinary site scores or linear combination scores
("lc" ) in constrained ordination (cca , rda , capscale ). In scores func-
tion they are either"vectors" or "factors" (with synonyms"bp" or
"cn" , resp.).

w Weights used in fitting (concerns mainlycca and decorana results which
have nonconstant weights).

... Parameters passed toscores .

Details

Functionenvfit finds vectors or factor averages of environmental variables. Functionplot.envfit
adds these in an ordination diagram. IfX is a data.frame , envfit usesfactorfit for
factor variables andvectorfit for other variables. IfX is a matrix or a vector,envfit uses
only vectorfit . Alternatively, the model can be defined a simplified modelformula , where
the left hand side must be an ordination result object or a matrix of ordination scores, and right
hand side lists the environmental variables. The formula interface can be used for easier selection
and/or transformation of environmental variables. Only the main effects will be analysed even if
interaction terms were defined in the formula.

Functionsvectorfit andfactorfit can be called directly. Functionvectorfit finds di-
rections in the ordination space towards which the environmental vectors change most rapidly and
to which they have maximal correlations with the ordination configuration. Functionfactorfit
finds averages of ordination scores for factor levels. Functionfactorfit treats ordered and un-
ordered factors similarly.

If permutations > 0, the ‘significance’ of fitted vectors or factors is assessed using permutation
of environmental variables. The goodness of fit statistic is squared correlation coefficient (r2). For
factors this is defined asr2 = 1− ssw/sst, wheressw andsst are within-group and total sums of
squares.

User can supply a vector of prior weightsw. If the ordination object has weights, these will be used.
In practise this means that the row totals are used as weights withcca or decorana results. This
means that sites with lower totals will have lower weights. If you do not like this, but want to give
equal weights to all sites, you should setw = NULL. The weighted fitting gives similar results to
biplot arrows and class centroids incca . For complete similarity between fitted vectors and biplot
arrows, you should setdisplay = "lc" (and possiblyscaling = 2 ).

The results can be accessed withscores.envfit function which returns either the fitted vectors
scaled by correlation coefficient or the centroids of the fitted environmental variables.
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Value

Functionsvectorfit and factorfit return lists of classesvectorfit and factorfit
which have aprint method. The result object have the following items:

arrows Arrow endpoints fromvectorfit . The arrows are scaled to unit length.

centroids Class centroids fromfactorfit .

r Goodness of fit statistic: Squared correlation coefficient

permutations Number of permutations.

pvals Empirical P-values for each variable.

Functionenvfit returns a list of classenvfit with results ofvectorfit andenvfit as
items.

Functionplot.envfit scales the vectors by correlation.

Note

Fitted vectors have become the method of choice in displaying environmental variables in ordina-
tion. Indeed, they are the optimal way of presenting environmental variables in Constrained Corre-
spondence Analysiscca , since there they are the linear constraints. In unconstrained ordination the
relation between external variables and ordination configuration may be less linear, and therefore
other methods than arrows may be more useful. The simplest is to adjust the plotting symbol sizes
(cex , symbols ) by environmental variables. Fancier methods involve smoothing and regression
methods that abound inR, andordisurf provides a wrapper for some.

Author(s)

Jari Oksanen. The permutation test derives from the code suggested by Michael Scroggie.

See Also

A better alternative to vectors may beordisurf .

Examples

data(varespec)
data(varechem)
library(MASS)
ord <- metaMDS(varespec)
(fit <- envfit(ord, varechem, perm = 1000))
scores(fit, "vectors")
plot(ord)
plot(fit)
plot(fit, p.max = 0.05, col = "red")
## Adding fitted arrows to CCA. We use "lc" scores, and hope
## that arrows are scaled similarly in cca and envfit plots
ord <- cca(varespec ~ Al + P + K, varechem)
plot(ord, type="p")
fit <- envfit(ord, varechem, perm = 1000, display = "lc")
plot(fit, p.max = 0.05, col = "red")
## Class variables, formula interface, and displaying the
## inter-class variability with `ordispider'
data(dune)
data(dune.env)
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attach(dune.env)
ord <- cca(dune)
fit <- envfit(ord ~ Moisture + A1, dune.env)
plot(ord, type = "n")
ordispider(ord, Moisture, col="skyblue")
points(ord, display = "sites", col = as.numeric(Moisture), pch=16)
plot(fit, cex=1.2, axis=TRUE)

fisherfit Fit Fisher’s Logseries and Preston’s Lognormal Model to Abundance
Data

Description

Functionfisherfit fits Fisher’s logseries to abundance data. Functionprestonfit groups
species frequencies into doubling octave classes and fits Preston’s lognormal model, and function
prestondistr fits the truncated lognormal model without pooling the data into octaves.

Usage

fisherfit(x, ...)
## S3 method for class 'fisherfit':
confint(object, parm, level = 0.95, ...)
## S3 method for class 'fisherfit':
profile(fitted, alpha = 0.01, maxsteps = 20, del = zmax/5,

...)
prestonfit(x, ...)
prestondistr(x, truncate = -1, ...)
## S3 method for class 'prestonfit':
plot(x, xlab = "Frequency", ylab = "Species", bar.col = "skyblue",

line.col = "red", lwd = 2, ...)
## S3 method for class 'prestonfit':
lines(x, line.col = "red", lwd = 2, ...)
veiledspec(x, ...)
as.fisher(x, ...)

Arguments

x Community data vector for fitting functions or their result object forplot func-
tions.

object, fitted
Fitted model.

parm Not used.

level The confidence level required.

alpha The extend of profiling as significance.

maxsteps Maximum number of steps in profiling.

del Step length.

truncate Truncation point for log-Normal model, in log2 units. Default value−1 cor-
responds to the left border of zero Octave. The choice strongly influences the
fitting results.
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xlab, ylab Labels forx andy axes.

bar.col Colour of data bars.

line.col Colour of fitted line.

lwd Width of fitted line.

... Other parameters passed to functions.

Details

In Fisher’s logarithmic series the expected number of speciesf with n observed individuals is
fn = αxn/n (Fisher et al. 1943). The estimation follows Kempton & Taylor (1974) and uses
functionnlm . The estimation is possible only for genuine counts of individuals. The parameterα
is used as a diversity index, andα and its standard error can be estimated with a separate function
fisher.alpha . The parameterx is taken as a nuisance parameter which is not estimated sepa-
rately but taken to beN/(N + α). Helper functionas.fisher transforms abundance data into
Fisher frequency table.

Functionfisherfit estimates the standard error ofα. However, the confidence limits cannot
be directly estimated from the standard error, but you should use functionconfint based on
profile likelihood. Functionconfint uses functionconfint.glm of the MASS package, us-
ing profile.fisherfit for the profile likelihood. Functionprofile.fisherfit follows
profile.glm and finds theτ parameter or signed square root of two times log-Likelihood profile.
The profile can be inspected with aplot function which shows theτ and a dotted line correspond-
ing to the Normal assumption: if standard errors can be directly used in Normal inference these two
lines are similar.

Preston (1948) was not satisfied with Fisher’s model which seemed to imply infinite species rich-
ness, and postulated that rare species is a diminishing class and most species are in the middle of
frequency scale. This was achieved by collapsing higher frequency classes into wider and wider
“octaves” of doubling class limits: 1, 2, 3–4, 5–8, 9–16 etc. occurrences. Any logseries data will
look like lognormal when plotted this way. The expected frequencyf at abundance octaveo is de-
fined byfo = S0 exp(−(log2(o)−µ)2/2/σ2), whereµ is the location of the mode andσ the width,
both inlog2 scale, andS0 is the expected number of species at mode. The lognormal model is usu-
ally truncated on the left so that some rare species are not observed. Functionprestonfit fits the
truncated lognormal model as a second degree log-polynomial to the octave pooled data using Pois-
son error. Functionprestondistr fits left-truncated Normal distribution tolog2 transformed
non-pooled observations with direct maximization of log-likelihood. Functionprestondistr
is modelled after functionfitdistr which can be used for alternative distribution models. The
functions have commonprint , plot andlines methods. Thelines function adds the fitted
curve to the octave range with line segments showing the location of the mode and the width (sd)
of the response.

The total extrapolated richness from a fitted Preston model can be found with functionveiledspec .
The function accepts results both fromprestonfit and fromprestondistr . If veiledspec
is called with a species count vector, it will internally useprestonfit . Functionspecpool
provides alternative ways of estimating the number of unseen species. In fact, Preston’s lognormal
model seems to be truncated at both ends, and this may be the main reason why its result differ
from lognormal models fitted in Rank–Abundance diagrams with functionsrad.lognormal or
rad.veil .

Value

The functionprestonfit returns an object with fittedcoefficients , and with observed
(freq ) and fitted (fitted ) frequencies, and a string describing the fittingmethod . Function



32 fisherfit

prestondistr omits the entryfitted . The functionfisherfit returns the result ofnlm ,
where itemestimate is α. The result object is amended with the following items:

df.residuals Residual degrees of freedom.

nuisance Parameterx.

fisher Observed data fromas.fisher .

Note

It seems that Preston regarded frequencies 1, 2, 4,etc.. as “tied” between octaves. This means
that only half of the species with frequency 1 were shown in the lowest octave, and the rest were
transferred to the second octave. Half of the species from the second octave were transferred to
the higher one as well, but this is usually not as large number of species. This practise makes data
look more lognormal by reducing the usually high lowest octaves, but is too unfair to be followed.
Therefore the octaves used in this function include the upper limit. If you do not accept this, you
must change the function yourself.

Author(s)

Bob O’Hara〈bob.ohara@helsinki.fi〉 (fisherfit ) and Jari Oksanen.

References

Fisher, R.A., Corbet, A.S. & Williams, C.B. (1943). The relation between the number of species
and the number of individuals in a random sample of animal population.Journal of Animal Ecology
12: 42-58.

Kempton, R.A. & Taylor, L.R. (1974). Log-series and log-normal parameters as diversity discrimi-
nators for Lepidoptera.Journal of Animal Ecology43: 381-399.

Preston, F.W. (1948) The commonness and rarity of species.Ecology29, 254–283.

See Also

diversity , fisher.alpha , radfit , specpool . Functionfitdistr of MASS package
was used as the model forprestondistr . Functiondensity can be used for smoothed “non-
parametric” estimation of responses, andqqplot is an alternative, traditional and more effective
way of studying concordance of observed abundances to any distribution model.

Examples

data(BCI)
mod <- fisherfit(BCI[5,])
mod
plot(profile(mod))
confint(mod)
# prestonfit seems to need large samples
mod.oct <- prestonfit(colSums(BCI))
mod.ll <- prestondistr(colSums(BCI))
mod.oct
mod.ll
plot(mod.oct)
lines(mod.ll, line.col="blue3") # Different
## Smoothed density
den <- density(log2(colSums(BCI)))
lines(den$x, ncol(BCI)*den$y, lwd=2) # Fairly similar to mod.oct
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## Extrapolated richness
veiledspec(mod.oct)
veiledspec(mod.ll)

goodness.cca Diagnostic Tools for [Constrained] Ordination (CCA, RDA, DCA, CA,
PCA)

Description

Functionsgoodness and inertcomp can be used to assess the goodness of fit for individual
sites or species. Functionvif.cca andalias.cca can be used to analyse linear dependencies
among constraints and conditions. In addition, there are some other diagnostic tools (see ’Details’).

Usage

## S3 method for class 'cca':
goodness(object, display = c("species", "sites"), choices,

model = c("CCA", "CA"), statistic = c("explained", "distance"),
summarize = FALSE, ...)

inertcomp(object, display = c("species", "sites"),
statistic = c("explained", "distance"), proportional = FALSE)

spenvcor(object)
vif.cca(object)
## S3 method for class 'cca':
alias(object, ...)

Arguments

object A result object fromcca , rda , capscale or decorana .

display Display"species" or "sites" .

choices Axes shown. Default is to show all axes of the"model" .

model Show constrained ("CCA" ) or unconstrained ("CA" ) results.

statistic Stastic used:"explained" gives the cumulative percentage accounted for,
"distance" shows the residual distances.

summarize Show only the accumulated total.

proportional Give the inertia components as proportional for the corresponding total.

... Other parameters to the functions.

Details

Functiongoodness gives the diagnostic statistics for species or sites. The alternative statistics
are the cumulative proportion of inertia accounted for by the axes, or the residual distance left
unaccounted for. The conditional (“partialled out”) constraints are always regarded as explained
and included in the statistics.

Function inertcomp decomposes the inertia into partial, constrained and unconstrained com-
ponents for each site or species. Instead of inertia, the function can give the total dispersion or
distances from the centroid for each component.
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Functionspenvcor finds the so-called “species – environment correlation” or (weighted) cor-
relation of site weighted average scores and linear combination scores. This is a bad measure of
goodness of ordination, because it is sensitive to extreme scores (like correlations are), and very
sensitive to overfitting or using too many constraints. Better models often have poorer correlations.
Functionordispider can show the same graphically.

Functionvif.cca gives the variance inflation factors for each constraint or contrast in factor
constraints. In partial ordination, conditioning variables are analysed together with constraints.
Variance inflation is a diagnostic tool to identify useless constraints. A common rule is that values
over 10 indicate redundant constraints. If later constraints are complete linear combinations of
conditions or previous constraints, they will be completely removed from the estimation, and no
biplot scores or centroids are calculated for these aliased constraints. A note will be printed with
default output if there are aliased constraints. Functionalias will give the linear coefficients
defining the aliased constraints.

Value

The functions return matrices or vectors as is appropriate.

Note

It is a common practise to usegoodness statistics to remove species from ordination plots, but
this may not be a good idea, as the total inertia is not a meaningful concept incca , in particular for
rare species.

Functionvif is defined as generic in packagecar (vif ), but if you have not loaded that package
you must specify the call asvif.cca . Variance inflation factor is useful diagnostic tool for de-
tecting nearly collinear constraints, but these are not a problem with algorithm used in this package
to fit a constrained ordination.

Author(s)

Jari Oksanen. Thevif.cca relies heavily on the code by W. N. Venables.alias.cca is a
simplified version ofalias.lm .

References

Greenacre, M. J. (1984). Theory and applications of correspondence analysis. Academic Press,
London.

Gross, J. (2003). Variance inflation factors.R News3(1), 13–15.

See Also

cca , rda , capscale , decorana , vif .

Examples

data(dune)
data(dune.env)
mod <- cca(dune ~ A1 + Management + Condition(Moisture), data=dune.env)
goodness(mod)
goodness(mod, summ = TRUE)
# Inertia components
inertcomp(mod, prop = TRUE)
inertcomp(mod, stat="d")
# vif.cca
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vif.cca(mod)
# Aliased constraints
mod <- cca(dune ~ ., dune.env)
mod
vif.cca(mod)
alias(mod)
with(dune.env, table(Management, Manure))

goodness.metaMDS Goodness of Fit and Shepard Plot for Nonmetric Multidimensional
Scaling

Description

Functiongoodness.metaMDS find goodness of fit measure for points in nonmetric multidimen-
sional scaling, and functionstressplot makes aShepard diagram.

Usage

## S3 method for class 'metaMDS':
goodness(object, dis, ...)
stressplot(object, dis, pch, p.col = "blue", l.col = "red", lwd = 2,

...)

Arguments

object A result object frommetaMDSor isoMDS .

dis Dissimilarities. Normally this should not used withmetaMDS, but should be
always used withisoMDS .

pch Plotting character for points. Default is dependent on the number of points.

p.col, l.col Point and line colours.

lwd Line width.

... Other parameters to functions, e.g. graphical parameters.

Details

Functiongoodness.metaMDS finds a goodness of fit statistic for observations (points). This is
defined so that sum of squared values is equal to squared stress. Large values indicate poor fit.

Functionstressplot is a wrapper toShepard function inMASS package. It plots ordination
distances against original dissimilarities, and draws a step line of the nonlinear fit. In addition,
it adds to the graph two correlation like ststistics on the goodness of fit. The correlation based
on stressS is defined as

√
1− S2. The “linear fit” is the correlation between fitted values and

ordination distances.

Both functions can be used both withmetaMDSand with isoMDS . With metaMDS, the func-
tions try to reconstruct the dissimilarities usingmetaMDSredist , and dissimilarities should not
be given. WithisoMDS the dissimilarities must be given. In either case, the functions inspect that
dissimilarities are consistent with current ordination, and refuse to analyse inconsistent dissimilari-
ties. Functiongoodness.metaMDS is generic invegan , but you must spell its name completely
with isoMDS which has no class.
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Value

Functiongoodness returns a vector of values. Functionstressplot returns invisibly aShepard
object.

Author(s)

Jari Oksanen.

See Also

metaMDS, isoMDS , Shepard .

Examples

data(varespec)
mod <- metaMDS(varespec)
stressplot(mod)
gof <- goodness(mod)
gof
plot(mod, display = "sites", type = "n")
points(mod, display = "sites", cex = gof/2)

humpfit No-interaction Model for Hump-backed Species Richness vs. Biomass

Description

Functionhumpfit fits a no-interaction model for species richness vs. biomass data (Oksanen
1996). This is a null model that produces a hump-backed response as an artifact of plant size and
density.

Usage

humpfit(mass, spno, family = poisson, start)
## S3 method for class 'humpfit':
summary(object, ...)
## S3 method for class 'humpfit':
predict(object, newdata = NULL, ...)
## S3 method for class 'humpfit':
plot(x, xlab = "Biomass", ylab = "Species Richness", lwd = 2,

l.col = "blue", p.col = 1, type = "b", ...)
## S3 method for class 'humpfit':
points(x, ...)
## S3 method for class 'humpfit':
lines(x, segments=101, ...)
## S3 method for class 'humpfit':
profile(fitted, parm = 1:3, alpha = 0.01, maxsteps = 20, del = zmax/5, ...)
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Arguments

mass Biomass.

spno Species richness.

start Vector of starting values for all three parameters.

family Family of error distribution. Anyfamily can be used, but the link function is
always Fisher’s diversity model, and otherlink functions are silently ignored.

x, object, fitted
Result object ofhumpfit

newdata Values ofmass used inpredict . The original data values are used if missing.

xlab,ylab Axis labels inplot

lwd Line width

l.col, p.col Line and point colour inplot

type Type ofplot : "p" for observed points,"l" for fitted lines,"b" for both, and
"n" for only setting axes.

segments Number of segments used for fitted lines.

parm Profiled parameters.
alpha, maxsteps, del

Parameters for profiling range and density.

... Other parameters to functions.

Details

The no-interaction model assumes that the humped species richness pattern along biomass gradient
is an artifact of plant size and density (Oksanen 1996). For low-biomass sites, it assumes that
plants have a fixed size, and biomass increases with increasing number of plants. When the sites
becomes crowded, the number of plants and species richness reaches the maximum. Higher biomass
is reached by increasing the plant size, and then the number of plants and species richness will
decrease. At biomasses below the hump, plant number and biomass are linearly related, and above
the hump, plant number is proportional to inverse squared biomass. The number of plants is related
to the number of species by the relationship (link function) from Fisher’s log-series (Fisher et al.
1943).

The parameters of the model are:

1. hump: the location of the hump on the biomass gradient.

2. scale : an arbitrary multiplier to translate the biomass into virtual number of plants.

3. alpha : Fisher’sα to translate the virtual number of plants into number of species.

The parametersscale andalpha are intermingled and this function should not be used for es-
timating Fisher’sα. Probably the only meaningful and interesting parameter is the location of the
hump.

Function may be very difficult to fit and easily gets trapped into local solutions, or fails with non-
Poisson families, and functionprofile should be used to inspect the fitted models. If you have
loadedpackage MASS, you can use functionsplot.profile.glm , pairs.profile.glm
for graphical inspection of the profiles, andconfint.profile.glm for the profile based con-
fidence intervals.

The original model intended to show that there is no need to speculate about ‘competition’ and
‘stress’ (Al-Mufti et al. 1977), but humped response can be produced as an artifact of using fixed
plot size for varying plant sizes and densities.
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Value

The function returns an object of class"humpfit" inheriting from class"glm" . The result
object has specificsummary , predict , plot , points and lines methods. In addition, it
can be accessed by the following methods forglm objects: AIC , extractAIC , deviance ,
coef , residuals.glm (excepttype = "partial" ), fitted , and perhaps some others. In
addition, functionellipse.glm (packageellipse) can be used to draw approximate confidence
ellipses for pairs of parameters, if the normal assumptions look appropriate.

Note

The function is a replacement for the originalGLIM4 function at the archive of Journal of Ecol-
ogy. There the function was represented as a mixedglm with one non-linear parameter (hump)
and a special one-parameter link function from Fisher’s log-series. The current function directly
applies non-linear maximum likelihood fitting using functionnlm . Some expected problems with
the current approach are:

• The function is discontinuous athump and may be difficult to optimize in some cases (the
lines will always join, but the derivative jumps).

• The function does not try very hard to find sensible starting values and can fail. The user may
supply starting values in argumentstart if fitting fails.

• The estimation is unconstrained, but bothscale andalpha should always be positive. Per-
haps they should be fitted as logarithmic. FittingGammafamily models might become
easier, too.

Author(s)

Jari Oksanen

References

Al-Mufti, M.M., Sykes, C.L, Furness, S.B., Grime, J.P & Band, S.R. (1977) A quantitative analysis
of shoot phenology and dominance in herbaceous vegetation.Journal of Ecology65,759–791.

Fisher, R.A., Corbet, A.S. & Williams, C.B. (1943) The relation between the number of species
and the number of individuals in a random sample of of an animal population.Journal of Animal
Ecology12, 42–58.

Oksanen, J. (1996) Is the humped relationship between species richness and biomass an artefact
due to plot size?Journal of Ecology84, 293–295.

See Also

fisherfit , profile.glm , confint.glm .

Examples

##
## Data approximated from Al-Mufti et al. (1977)
##
mass <- c(140,230,310,310,400,510,610,670,860,900,1050,1160,1900,2480)
spno <- c(1, 4, 3, 9, 18, 30, 20, 14, 3, 2, 3, 2, 5, 2)
sol <- humpfit(mass, spno)
summary(sol) # Almost infinite alpha...
plot(sol)
# confint is in MASS, and impicitly calls profile.humpfit.
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# Parameter 3 (alpha) is too extreme for profile and confint, and we
# must use only "hump" and "scale".
library(MASS)
plot(profile(sol, parm=1:2))
confint(sol, parm=c(1,2))

linestack Plots One-dimensional Labelled Diagrams without Overwriting La-
bels

Description

Function linestack plots vertical one-dimensional plots for numeric vectors. The plots are
always labelled, but the the labels are moved vertically to avoid overwriting.

Usage

linestack(x, cex = 0.8, label = "right", hoff = 2, air = 1.1, at = 0,
add = FALSE, axis = FALSE, ...)

Arguments

x Numeric vector to be plotted.

cex Size of the labels.

label Put labels to the"right" or "left" of the axis.

hoff Distance from the vertical axis to the label in units of the width of letter “m”.

air Multiplier to string height to leave empty space between labels.

at Position of plot in horizontal axis.

add Add to an existing plot.

axis Add axis to the plot.

... Other graphical parameters to labels.

Value

The function draws a plot and returns nothing useful.

Note

The function always draws labelled diagrams. If you want to have unlabelled diagrams, you can
use, e.g.,plot , stripchart or rug .

Author(s)

Jari Oksanen

Examples

## First DCA axis
data(dune)
ord <- decorana(dune)
linestack(scores(ord, choices=1, display="sp"))
linestack(scores(ord, choices=1, display="si"), label="left", add=TRUE)
title(main="DCA axis 1")
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make.cepnames Abbreviates a Botanical or Zoological Latin Name into an Eight-
character Name

Description

A standard CEP name has four first letters of the generic name and four first letters of the spe-
cific epithet of a Latin name. The last epithet, that may be a subspecific name, is used in the
current function. If the name has only one component, it is abbreaviated to eight characters (see
abbreviate ).. The returned names are made unique with functionmake.unique which adds
numbers to the end of CEP names if needed.

Usage

make.cepnames(names)

Arguments

names The names to be formatted into CEP names.

Details

Cornell Ecology Programs (CEP) used eight-letter abbreviations for species and site names. In
species, the names were formed by taking four first letters of the generic name and four first letters
of the specific or subspecific epithet. The CEP names were originally used, because oldFORTRAN
IV did not haveCHARACTERdata type, but text variables had to be stored into numerical variables,
which in popular computers could hold four characters. In modern times, there is no reason for this
limitation, but ecologists are used to these names, and they may be practical to avoid congestion in
ordination plots.

Value

Function returns CEP names.

Note

The function is simpleminded and rigid. You must write a better one if you need.

Author(s)

Jari Oksanen

See Also

make.names , strsplit , substring , paste , abbreviate .

Examples

make.cepnames(c("Aa maderoi", "Poa sp.", "Cladina rangiferina",
"Cladonia cornuta", "Cladonia cornuta var. groenlandica",
"Cladonia rangiformis", "Bryoerythrophyllum"))
data(BCI)
colnames(BCI) <- make.cepnames(colnames(BCI))
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mantel Mantel and Partial Mantel Tests for Dissimilarity Matrices

Description

Functionmantel finds the Mantel statistic as a matrix correlation between two dissimilarity matri-
ces, and functionmantel.partial finds the partial Mantel statistic as the partial matrix correla-
tion between three dissimilarity matricies. The significance of the statistic is evaluated by permuting
rows and columns of the first dissimilarity matrix.

Usage

mantel(xdis, ydis, method="pearson", permutations=1000, strata)
mantel.partial(xdis, ydis, zdis, method = "pearson", permutations = 1000,

strata)

Arguments

xdis, ydis, zdis
Dissimilarity matrices or adist objects.

method Correlation method, as accepted bycor : "pearson" , "spearman" or "kendall" .

permutations Number of permutations in assessing significance.

strata An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata.

Details

Mantel statistic is simply a correlation between entries of two dissimilarity matrices (some use cross
products, but these are linearly related). However, the significance cannot be directly assessed,
because there areN(N − 1)/2 entries for justN observations. Mantel developed asymptotic test,
but here we use permutations ofN rows and columns of dissimilarity matrix.

Partial Mantel statistic uses partial correlation conditioned on the third matrix. Only the first matrix
is permuted so that the correlation structure between second and first matrices is kept constant. Al-
thoughmantel.partial silently accepts other methods than"pearson" , partial correlations
will probably be wrong with other methods.

The function usescor , which should accept alternativespearson for product moment correla-
tions andspearman or kendall for rank correlations.

Value

The function returns a list of classmantel with following components:

Call Function call.

method Correlation method used, as returned bycor.test .

statistic The Mantel statistic.

signif Empirical significance level from permutations.

perm A vector of permuted values.

permutations Number of permutations.



42 metaMDS

Note

Legendre & Legendre (1998) say that partial Mantel correlations often are difficult to interpet.

Author(s)

Jari Oksanen

References

The test is due to Mantel, of course, but the current implementation is based on Legendre and
Legendre.

Legendre, P. and Legendre, L. (1998)Numerical Ecology. 2nd English Edition. Elsevier.

See Also

cor for correlation coefficients,protest (“Procrustes test”) for an alternative with ordination
diagrams, andanosim for comparing dissimilarities against classification. For dissimilarity matri-
ces, seevegdist or dist . Seebioenv for selecting environmental variables.

Examples

## Is vegetation related to environment?
data(varespec)
data(varechem)
veg.dist <- vegdist(varespec) # Bray-Curtis
env.dist <- vegdist(scale(varechem), "euclid")
mantel(veg.dist, env.dist)
mantel(veg.dist, env.dist, method="spear")

metaMDS Nonmetric Multidimensional Scaling with Stable Solution from Ran-
dom Starts, Axis Scaling and Species Scores

Description

FunctionmetaMDSusesisoMDS to perform Nonmetric Multidimensional Scaling (NMDS), but
tries to find a stable solution using several random starts (functioninitMDS ). In addition, it
standardizes the scaling in the result, so that the configurations are easier to interpret (function
postMDS), and adds species scores to the site ordination (functionwascores ).

Usage

metaMDS(comm, distance = "bray", k = 2, trymax = 20, autotransform =TRUE,
noshare = 0.1, expand = TRUE, trace = 1, plot = FALSE,
previous.best, ...)

## S3 method for class 'metaMDS':
plot(x, display = c("sites", "species"), choices = c(1, 2),

type = "p", shrink = FALSE, ...)
## S3 method for class 'metaMDS':
points(x, display = c("sites", "species"),

choices = c(1,2), shrink = FALSE, select, ...)
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## S3 method for class 'metaMDS':
text(x, display = c("sites", "species"), labels,

choices = c(1,2), shrink = FALSE, select, ...)
## S3 method for class 'metaMDS':
scores(x, display = c("sites", "species"), shrink = FALSE,

choices, ...)
metaMDSdist(comm, distance = "bray", autotransform = TRUE, noshare = 0.1,

trace = 1, commname, ...)
metaMDSiter(dist, k = 2, trymax = 20, trace = 1, plot = FALSE, previous.best,

...)
initMDS(x, k=2)
postMDS(X, dist, pc=TRUE, center=TRUE, halfchange=TRUE, threshold=0.8,

nthreshold=10, plot=FALSE)
metaMDSredist(object, ...)

Arguments

comm Community data.

distance Dissimilarity index used invegdist .

k Number of dimensions inisoMDS .

trymax Maximum number of random starts in search of stable solution.
autotransform

Use simple heuristics for possible data transformation (see below).

noshare Proportion of site pairs with no shared species to triggerstepacross to find
flexible shortest paths among dissimilarities.

expand Expand weighted averages of species inwascores .

trace Trace the function;trace = 2 or higher will be more voluminous.

plot Graphical tracing: plot interim results. You may want to setpar(ask =
TRUE) with this option.

previous.best
Start searches from a previous solutions. Otherwise useisoMDS default for the
starting solution.

x Dissimilarity matrix forisoMDS or plot object.

choices Axes shown.

type Plot type:"p" for points,"t" for text, and"n" for axes only.

display Display"sites" or "species" .

shrink Shrink back species scores if they were expanded originally.

labels Optional test to be used instead of row names.

select Items to be displayed. This can either be a logical vector which isTRUEfor
displayed items or a vector of indices of displayed items.

X Configuration from multidimensional scaling.

commname The name ofcomm: should not be given if the function is called directly.

dist Dissimilarity matrix used in multidimensional scaling.

pc Rotate to principal components.

center Centre the configuration.

halfchange Scale axes to half-change units.
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threshold Largest dissimilarity used in half-change scaling.

nthreshold Minimum number of points in half-change scaling.

object A result object frommetaMDS.

... Other parameters passed to functions.

Details

Non-metric Multidimensional Scaling (NMDS) is commonly regarded as the most robust uncon-
strained ordination method in community ecology (Minchin 1987). FunctionsinitMDS andpostMDS
together with some other functions are intended to help run NMDS witisoMDS like recommended
by Minchin (1987). FunctionmetaMDScombines all recommendations into one command for a
shotgun style analysis. The steps inmetaMDSare:

1. Transformation: If the data values are larger than common class scales, the function performs a
Wisconsin double standardization usingwisconsin . If the values look very large, the func-
tion also performssqrt transformation. Both of these standardization are generally found to
improve the results. However, the limits are completely arbitrary (at present, data maximum
50 triggerssqrt and >9 triggerswisconsin ). If you want to have a full control of the
analysis, you should setautotransform = FALSE and make explicit standardization in
the command.

2. Choice of dissimilarity: For a good result, you should use dissimilarity indices that have a
good rank order relation to ordering sites along gradients (Faith et al. 1987). The default is
Bray dissimilarity, because it often is the test winner. However, any other dissimilarity index
in vegdist can be used. Functionrankindex can be used for finding the test winner for
you data and gradients.

3. Step-across dissimilarities: Ordination may be very difficult if a large proportion of sites have
no shared species. In this case, the results may be improved withstepacross dissimi-
larities, or flexible shortest paths among all sites. Thestepacross is triggered by option
noshare . If you do not like manipulation of original distances, you should setnoshare =
1.

4. NMDS with random starts: NMDS easily gets trapped into local optima, and you must start
NMDS several times from random start to be confident that you have found the global solution.
The default inisoMDS is to start from metric scaling (withcmdscale ) which typically is
close to a local optimum. The strategy inmetaMDSis to first run a defaultisoMDS , or use
the previous.best solution if supplied, and take its solution as the standard (Run 0).
ThenmetaMDSstartsisoMDS from several random starts (maximum number is given by
trymax ). If a solution is better (has a lower stress) than the previous standard, it is taken
as the new standard. If the solution is better or close to a standard,metaMDScompares two
solutions using Procrustes analysis using functionprocrustes with option symmetric
= TRUE. If the two solutions are very similar in their Procrustesrmse and the largest residual
is very small, the solutions are regarded as convergent and the best one is saved. Please note
that the conditions are stringent, and you may have found good and relatively stable solutions
although the function is not yet satisfied. Settingtrace = TRUE will monitor the final
stresses, andplot = TRUE will display Procrustes overlay plots from each comparison.

5. Scaling of the results:metaMDSwill run postMDS for the final result. FunctionpostMDS
provides the following ways of “fixing” the indeterminacy of scaling and orientation of axes
in NMDS: Centring moves the origin to the average of the axes. Principal components rotate
the configuration so that the variance of points is maximized on first dimension. Half-change
scaling scales the configuration so that one unit means halving of community similarity from
replicate similarity. Half-change scaling is based on closer dissimilarities where the relation



metaMDS 45

between ordination distance and community dissimilarity is rather linear; the limit is con-
trolled by parameterthreshold . If there are enough points below this threshold (controlled
by the the parameternthreshold ), dissimilarities are regressed on distances. The intercept
of this regression is taken as the replicate dissimilarity, and half-change is the distance where
similarity halves according to linear regression. Obviously the method is applicable only for
dissimilarity indices scaled to0 . . . 1, such as Kulczynski, Bray-Curtis and Canberra indices.

6. Species scores: Function adds the species scores to the final solution as weighted averages us-
ing functionwascores with given value of parameterexpand . The expansion of weighted
averages can be undone withshrink = TRUE in plot or scores functions.

Value

FunctionmetaMDSreturns an object of classmetaMDS. The final site ordination is stored in the
item points , and species ordination in the itemspecies . The other items store the infor-
mation on the steps taken by the function. The object hasprint , plot , points and text
methods. FunctionsmetaMDSdist andmetaMDSredist returnvegdist objects. Function
initMDS returns a random configuration which is intended to be used withinisoMDS only. Func-
tionsmetaMDSiter andpostMDS returns the result ofisoMDS with updated configuration.

Note

FunctionmetaMDSis a simple wrapper forisoMDS and some support functions. You can also call
parts of the function separately for better control of results. Data transformation, dissmilarities and
possiblestepacross are made in functionmetaMDSdist which returns a dissimilarity result.
Iterative search (with starting values frominitMDS ) is made inmetaMDSiter . Processing of
result configuration is done inpostMDS , and species scores added bywascores . If you want to
be more certain of reaching a global solution, you can compare results from several independent
runs. You can also continue analysis from previous results or from your own configuration. Func-
tion does not save the used dissimilarity matrix, butmetaMDSredist tries to reconstruct the used
dissimilarities with original data transformation and possiblestepacross .

Author(s)

Jari Oksanen

References

Faith, D. P, Minchin, P. R. and Belbin, L. (1987). Compositional dissimilarity as a robust measure
of ecological distance.Vegetatio69, 57–68.

Minchin, P.R. (1987) An evaluation of relative robustness of techniques for ecological ordinations.
Vegetatio71, 145-156.

See Also

isoMDS , decostand , wisconsin , vegdist , rankindex , stepacross , procrustes ,
wascores , ordiplot .

Examples

## The recommended way of running NMDS (Minchin 1987)
##
data(dune)
library(MASS) ## isoMDS
# NMDS
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sol <- metaMDS(dune)
sol
plot(sol, type="t")

ordihull Add Graphical Items to Ordination Diagrams

Description

Functions to add convex hulls, arrows, line segments, regular grids of points, ‘spider’ graphs, el-
lipses, cluster dendrogram or spanning trees to ordination diagrams. The ordination diagrams can
be produced byvegan plot.cca , plot.decorana or ordiplot .

Usage

ordihull(ord, groups, display = "sites", draw = c("lines","polygon"),
show.groups, ...)

ordiarrows(ord, groups, levels, replicates, display = "sites",
show.groups, ...)

ordisegments(ord, groups, levels, replicates, display = "sites",
show.groups, ...)

ordigrid(ord, levels, replicates, display = "sites", ...)
ordispider(ord, groups, display="sites", w = weights(ord, display),

show.groups, ...)
ordiellipse(ord, groups, display="sites", kind = c("sd","se"), conf,

draw = c("lines","polygon"), w = weights(ord, display),
show.groups, ...)

ordicluster(ord, cluster, prune = 0, display = "sites",
w = weights(ord, display), ...)

ordispantree(ord, tree, display = "sites", ...)

Arguments

ord An ordination object or anordiplot object.

groups Factor giving the groups for which the graphical item is drawn.
levels, replicates

Alternatively, regular groups can be defined with argumentslevels andreplicates ,
wherelevels gives the number of groups, andreplicates the number of
successive items at the same group.

display Item to displayed.

draw Use eitherlines or polygon to draw the line. Graphical parameters are
passed to both. The main difference is thatpolygon s may be filled and non-
transparent.

show.groups Show only given groups. This can be a vector, orTRUEif you want to show
items for which condition isTRUE. This argument makes it possible to use dif-
ferent colours and line types for groups. The default is to show all groups.

w Weights used to find the average within group. Weights are used automatically
for cca anddecorana results, unless undone by the user.w=NULLsets equal
weights to all points.
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kind Whether standard deviations of points (sd ) or standard deviations of their (weighted)
averages (se ) are used.

conf Confidence limit for ellipses, e.g. 0.95. If given, the correspondingsd or se is
multiplied with the corresponding value found from the Chi-squared distribution
with 2df.

cluster Result of hierarchic cluster analysis, such ashclust or agnes .

prune Number of upper level hierarchies removed from the dendrogram. Ifprune
> 0, dendrogram will be disconnected.

tree Structure defining a spanning tree. This can be a result ofspantree or a vector
giving the child node of each parent omitting the first point. ValuesNAmeans
that there is no link from the corresponding parent.

... Parameters passed to graphical functions such aslines , segments , arrows ,
polygon or toscores to select axes and scaling etc.

Details

Functionordihull drawslines or polygon s for the convex hulls found by functionchull
encircling the items in the groups.

Functionordiarrows drawsarrows and ordisegments draws linesegments between
successive items in the groups. Functionordigrid draws linesegments both within the groups
and for the corresponding items among the groups.

Functionordispider draws a ‘spider’ diagram where each point is connected to the group cen-
troid with segments . Weighted centroids are used in the correspondence analysis methodscca
anddecorana or if the user gives the weights in the call. Ifordispider is called withcca or
rda result withoutgroups argument, the function connects each ‘WA’ scores to the correspoding
‘LC’ score.

Functionordiellipse drawslines or polygon s for dispersionellipse using either stan-
dard deviation of point scores or standard error of the (weighted) average of scores, and the (weighted)
correlation defines the direction of the principal axis of the ellipse. The function requires package
ellipse. An ellipsoid hull can be drawn with functionellipsoidhull of packagecluster.

Functionordicluster overlays a cluster dendrogram onto ordination. It needs the result from
a hierarchic clustering such ashclust or agnes , or other with a similar structure. Function
ordicluster connects cluster centroids to each other with linesegments . Function uses cen-
troids of all points in the clusters, and is therefore similar to average linkage methods.

Functionordispantree overlays a (minimum) spanning tree onto ordination. It needs a result
from spantree or a vector listing children of each parent, starting from second (i.e., omitting the
first: the number of links is one less number of points). Missing links are denoted asNA. For an
example, seespantree .

Note

These functions add graphical items to ordination graph: You must draw a graph first.

Author(s)

Jari Oksanen
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See Also

The function pass parameters to basic graphical functions, and you may wish to change the default
values inarrows , lines , segments andpolygon . You can pass parameters toscores as
well. Other underlying functions arechull andellipse .

Examples

data(dune)
data(dune.env)
mod <- cca(dune ~ Moisture, dune.env)
attach(dune.env)
plot(mod, type="n")
ordihull(mod, Moisture)
ordispider(mod, col="red")
plot(mod, type = "p", display="sites")
ordicluster(mod, hclust(vegdist(dune)), prune=3, col = "blue")
# The following is not executed automatically because it needs
# a non-standard library `ellipse'.
## Not run:
ordiellipse(mod, Moisture, kind="se", level=0.95, lwd=2, col="blue")
## End(Not run)

ordiplot Alternative plot and identify Functions for Ordination

Description

Ordination plot function especially for congested plots. Functionordiplot always plots only
unlabelled points, butidentify.ordiplot can be used to add labels to selected site, species or
constraint points. Functionidentify.ordiplot can be used to identify points fromplot.cca ,
plot.decorana , plot.procrustes andplot.rad as well.

Usage

ordiplot(ord, choices = c(1, 2), type="points", display, xlim, ylim, ...)
## S3 method for class 'ordiplot':
identify(x, what, labels, ...)
## S3 method for class 'ordiplot':
points(x, what, select, ...)
## S3 method for class 'ordiplot':
text(x, what, labels, select, ...)

Arguments

ord A result from an ordination.

choices Axes shown.

type The type of graph which may be"points" , "text" or "none" for any
ordination method.

display Display only "sites" or "species". The default for most methods is to display
both, but forcca , rda andcapscale it is the same as inplot.cca .

xlim, ylim the x and y limits (min,max) of the plot.
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... Other graphical parameters.

x A result object fromordiplot .

what Items identified in the ordination plot. The types depend on the kind of plot used.
Most methods knowsites andspecies , functionscca andrda know in
addition constraints (for ‘LC’ scores), centroids and biplot , and
plot.procrustes ordination plot hasheads andpoints .

labels Optional text used for labels. Row names will be used if this is missing.

select Items to be displayed. This can either be a logical vector which isTRUEfor
displayed items or a vector of indices of displayed items.

Details

Functionordiplot draws an ordination diagram using black circles for sites and red crosses for
species. It returns invisibly an object of classordiplot which can be used byidentify.ordiplot
to label selected sites or species, or constraints incca andrda .

The function can handle output from several alternative ordination methods. Forcca , rda and
decorana it uses theirplot method with optiontype = "points" . In addition, theplot
functions of these methods return invisibly anordiplot object which can be used byidentify.ordiplot
to label points. For other ordinations it relies onscores to extract the scores.

For full user control of plots, it is best to callordiplot with type = "none" and save the
result, and then add sites and species usingpoints.ordiplot or text.ordiplot which
both pass all their arguments to the corresponding default graphical functions.

Value

Functionordiplot returns invisibly an object of classordiplot with itemssites , species
andconstraints (if these are available in the ordination object). Functionidentify.ordiplot
uses this object to label the point.

Note

The purpose of these functions is to provide similar functionality as theplot , plotid and
specid methods in librarylabdsv . The functions are somewhat limited in parametrization,
but you can call directly the standardidentify andplot functions for a better user control.

Author(s)

Jari Oksanen

See Also

identify for basic operations,plot.cca , plot.decorana , plot.procrustes which
also produce objects foridentify.ordiplot and scores for extracting scores from non-
vegan ordinations.

Examples

# Draw a cute NMDS plot from a non-vegan ordinatin (isoMDS).
# Function metaMDS would be an easier alternative.
data(dune)
dune.dis <- vegdist(wisconsin(dune))
library(MASS)
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dune.mds <- isoMDS(dune.dis)
dune.mds <- postMDS(dune.mds, dune.dis)
dune.mds$species <- wascores(dune.mds$points, dune, expand = TRUE)
fig <- ordiplot(dune.mds, type = "none")
points(fig, "sites", pch=21, col="red", bg="yellow")
text(fig, "species", col="blue", cex=0.9)
# Default plot of the previous using identify to label selected points
## Not run:
fig <- ordiplot(dune.mds)
identify(fig, "spec")
## End(Not run)

ordiplot3d Three-Dimensional and Dynamic Ordination Graphics

Description

Functionordiplot3d displays three-dimensional ordination graphics usingscatterplot3d .
Functionordirgl displays three-dimensional dynamic ordination graphs which can be rotated
and zoomed into usingrgl package. Both work with all ordination results formvegan and all
ordination results known byscores function.

Usage

ordiplot3d(object, display = "sites", choices = 1:3, ax.col = 2,
arr.len = 0.1, arr.col = 4, envfit, xlab, ylab, zlab, ...)

ordirgl(object, display = "sites", choices = 1:3, type = "p",
ax.col = "red", arr.col = "yellow", text, envfit, ...)

orglpoints(object, display = "sites", choices = 1:3, ...)
orgltext(object, text, display = "sites", choices = 1:3, justify = "center",

adj = 0.5, ...)
orglsegments(object, groups, display = "sites", choices = 1:3, ...)
orglspider(object, groups, display = "sites", w = weights(object, display),

choices = 1:3, ...)

Arguments

object An ordination result or any object known byscores .

display Display "sites" or "species" or other ordination object recognized by
scores .

choices Selected three axes.

arr.len ’Length’ (width) of arrow head passed toarrows function.

arr.col Colour of biplotarrows and centroids of environmental variables.

type The type of plots:"p" for points or"t" for text labels.

ax.col Axis colour (concerns only the crossed axes through the origin).

text Text to override the default withtype = "t" .

envfit Fitted environmental variables fromenvfit displayed in the graph.
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xlab, ylab, zlab
Axis labels passed toscatterplot3d . If missing, labels are taken from the
ordination result. Set toNAto supress labels.

justify, adj Text justification passed torgl.texts . One of these is used depending on the
versionofrgl installed.

groups Factor giving the groups for which the graphical item is drawn.

w Weights used to find the average within group. Weights are used automatically
for cca anddecorana results, unless undone by the user.w=NULLsets equal
weights to all points.

... Other parameters passed to graphical functions.

Details

Both function display three-dimensional ordination graphics. Functionordiplot3d plots static
scatter diagrams usingscatterplot3d . Functionordirgl plots dynamic graphics using
OpenGL inrgl . Both functions use most default settings of underlying graphical functions, and
you must consult their help pages to change graphics to suit your taste (seescatterplot3d ,
rgl , rgl.points ,rgl.texts ). Both functions will display only one selected set ofscores ,
typically either"sites" or "species" , but for instancecca also has"lc" scores. In con-
strained ordination (cca , rda , capscale ), biplot arrows and centroids are always displayed sim-
ilarly as in two-dimensional plotting functionplot.cca . Alternatively, it is possible to display
fitted environmental vectors or class centroids fromenvfit in both graphs. These are displayed
similarly as the results of constrained ordination, and they can be shown only for non-constrained
ordination. The user must remember to specify at least three axes inenvfit if the results are used
with these functions.

Functionordiplot3d plots only points. However, it returns invisibly an object inheriting from
ordiplot so that you can useidentify.ordiplot to identify "points" or "arrows" .
The underlyingscatterplot3d function acceptstype = "n" so that only the axes, biplot
arrows and centroids of environmental variables will be plotted, and the ordination scores can be
added withtext.ordiplot or points.ordiplot . Further, you can use any functions from
theordihull family with the invisble result ofordiplot3d , but you must remember to specify
the display as"points" or "arrows" . To change the viewing angle, orientation etc. you
must seescatterplot3d .

Function ordigl makes a dynamic three-dimensional graph that can be rotated with mouse,
and zoomed into with mouse buttons or wheel (but Mac users with one-button mouse should see
rgl.viewpoint ), or try ctrl-button. MacOS X users must startX11 before callingrgl com-
mands. Functionordirgl uses default settings, and you should consult the underlying func-
tionsrgl.points , rgl.texts to see how to control the graphics. Functionordirgl always
cleans its graphic window before drawing. Functionsorglpoints adds points andorgltext
adds text to existingordirgl windows. In addition, functionorglsegments combines points
within "groups" with line segments similarly asordisegments . Functionorglspider
works similarly asordispider : it connects points to their weighted centroid within"groups" ,
and in constrained ordination it can connect"wa" or weighted averages scores to corresponding
"lc" or linear combination scores if"groups" is missing. In addition, basicrgl functions
rgl.points , rgl.texts , rgl.lines and many others can be used.

Value

Functionordiplot3d returns invisibly an object of class"ordiplot3d" inheriting fromordiplot .
The return object will contain the coordinates projected onto two dimensions for"points" , and
possibly for the heads of"arrows" and"centroids" of environmental variables. Functions
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like identify.ordiplot , points.ordiplot , text.ordiplot can use this result, as
well as ordihull and other functions documented with the latter. In addition, the result will
contain the object returned byscatterplot3d , including functionxyz.converter which
projects three-dimensional coordinates onto the plane used in the current plot. Functionordirgl
returns nothing.

Warning

Functionordirgl uses OpenGL packagergl which may not be functional in all platforms, and
can crash R in some: usesave.image before tryingordirgl . Mac users must startX11 (and
first installX11 and some other libraries) before being able to usergl . It seems thatrgl.texts
does not always position the text like supposed, and it may be safe to verify text location with
corresponding points.

Note

The user interface ofrgl changed in version 0.65, but theordirgl functions do not yet fully use
the new capablities. However, they should work both in old and new versions ofrgl .

Author(s)

Jari Oksanen

See Also

scatterplot3d , rgl , rgl.points , rgl.texts , rgl.viewpoint , ordiplot , identify.ordiplot ,
text.ordiplot , points.ordiplot , ordihull , plot.cca , envfit .

Examples

## Examples are not run, because they need non-standard packages
## 'scatterplot3d' and 'rgl' (and the latter needs user interaction).
#####
#### Default 'ordiplot3d'
## Not run:
data(dune)
data(dune.env)
ord <- cca(dune ~ A1 + Moisture, dune.env)
ordiplot3d(ord)
#### A boxed 'pin' version
ordiplot3d(ord, type = "h")
#### More user control
pl <- ordiplot3d(ord, angle=15, type="n")
points(pl, "points", pch=16, col="red", cex = 0.7)
#### identify(pl, "arrows", col="blue") would put labels in better positions
text(pl, "arrows", col="blue", pos=3)
text(pl, "centroids", col="blue", pos=1, cex = 1.2)
#### ordirgl
ordirgl(ord, size=2)
ordirgl(ord, display = "species", type = "t")
rgl.quit()
## End(Not run)
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ordisurf Smooths Variables and Plots Contours on Ordination.

Description

Functionordisurf fits a smooth surface for given variable and plots the result on ordination
diagram.

Usage

ordisurf(x, y, choices=c(1, 2), knots=10, family="gaussian", col="red",
thinplate = TRUE, add = FALSE, display = "sites",
w = weights(x), ...)

Arguments

x Ordination configuration, either a matrix or a result known byscores .

y Variable to be plotted.

choices Ordination axes.

knots Number of initial knots ingam (one more than degrees of freedom).

family Error distribution ingam.

col Colour of contours.

thinplate Use thinplate splines ingam.

add Add contours on an existing diagram or draw a new plot.

display Type of scores known byscores : typically "sites" for ordinary site scores or
"lc" for linear combination scores.

w Prior weights on the data. Concerns mainlycca anddecorana results which
have nonconstant weights.

... Other graphical parameters.

Details

Functionordisurf fits a smooth surface using thinplate spline fitting ingam, and interpolates the
fitted values into a regular grid usinginterp . Finally, it plots the results either over an existing
ordination diagram or draws a new plot with sample plots and fitted contours. The function uses
scores to extract ordination scores, andx can be any result object known by that function.

User can supply a vector of prior weightsw. If the ordination object has weights, these will be used.
In practise this means that the row totals are used as weights withcca or decorana results. This
means that sites with lower totals will have lower weights. If you do not like this, but want to give
equal weights to all sites, you should setw = NULL. The behaviour is consistent withenvfit .
For complete accordance with constrainedcca , you should setdisplay = "lc" (and possibly
scaling = 2 ).

Value

Function is usually called for its side effect of drawing the contour plot, but it returns the result
object ofgam.
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Note

The function requires librariesmgcv (gam) andakima (interp ). In fact, it is a very primitive
wrapper for these.

The default is to use thinplate splines. These make sense in ordination as they have equal smoothing
in all directions and are rotation invariant. However, they seem to fail badly in some case, and then
separate spline smoothing may be used.

Author(s)

Dave Roberts and Jari Oksanen

See Also

For basic routinesgam, interp andscores . Functionenvfit provides a poorer but more
traditional and compact alternative.

Examples

## The examples are not run by `example(ordisurf)' because they need
## libraries `mgcv' and `akima' which may not exist in every system.
## Not run:
data(varespec)
data(varechem)
library(MASS)
vare.dist <- vegdist(varespec)
vare.mds <- isoMDS(vare.dist)
attach(varespec)
attach(varechem)
ordisurf(vare.mds, Baresoil, xlab="Dim1", ylab="Dim2")
## Total cover of reindeer lichens
ordisurf(vare.mds, Cla.ste+Cla.arb+Cla.ran, xlab="Dim1", ylab="Dim2")
## End(Not run)

orditorp Add Text or Points to Ordination Plots

Description

The function addstext or points to ordination plots. Text will be used if this can be done
without overwriting other text labels, and points will be used otherwise. The function can help in
reducing clutter in ordination graphics, but manual editing may still be necessary.

Usage

orditorp(x, display, labels, choices = c(1, 2), priority, tcex = 0.7,
pcex, tcol = par("col"), pcol, pch = par("pch"), air = 1, ...)
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Arguments

x A result object from ordination or anordiplot result.

display Items to be displayed in the plot. Only one alternative is allowed. Typically this
is "sites" or "species" .

labels Optional text used for labels. Row names will be used if this is missing.

choices Axes shown.

priority Text will be used for items with higher priority if labels overlap. This should be
vector of the same length as the number of items plotted.

tcex, pcex Text and point sizes, seeplot.default ..

tcol, pcol Text and point colours, seeplot.default .

pch Plotting character, seepoints .

air Amount of empty space between text labels. Values <1 allow overlapping text.

... Other arguments totext andpoints .

Details

Functionorditorp will add either text or points to an existing plot. The items with highpriority
will be added first andtext will be used if this can be done without overwriting previous labels,and
points will be used otherwise. Ifpriority is missing, labels will be added from the outskirts to
the centre. Functionorditorp can be used with most ordination results, or plotting results from
ordiplot or ordination plot functions (plot.cca , plot.decorana , plot.metaMDS ).

Value

The function returns invisibly a logical vector whereTRUEmeans that item was labelled with text
andFALSEmeans that it was marked with a point. The returned vector can be used as theselect
argument in ordinationtext andpoints functions.

Author(s)

Jari Oksanen

Examples

## A cluttered ordination plot :
data(BCI)
mod <- cca(BCI)
plot(mod, dis="sp", type="t")
# Now with orditorp and abbreviated species names
cnam <- make.cepnames(names(BCI))
plot(mod, dis="sp", type="n")
stems <- colSums(BCI)
orditorp(mod, "sp", label = cnam, priority=stems, pch="+", pcol="grey")
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plot.cca Plot or Extract Results of Constrained Correspondence Analysis or
Redundancy Analysis

Description

Functions to plot or extract results of constrained correspondence analysis (cca ), redundancy anal-
ysis (rda ) or constrained analysis of principal coordinates (capscale ).

Usage

## S3 method for class 'cca':
plot(x, choices = c(1, 2), display = c("sp", "wa", "cn"),

scaling = 2, type, xlim, ylim, ...)
## S3 method for class 'cca':
text(x, display = "sites", labels, choices = c(1, 2), scaling = 2,

arrow.mul, head.arrow = 0.05, select, ...)
## S3 method for class 'cca':
points(x, display = "sites", choices = c(1, 2), scaling = 2,

arrow.mul, head.arrow = 0.05, select, ...)
## S3 method for class 'cca':
scores(x, choices=c(1,2), display=c("sp","wa","cn"),scaling=2, ...)

Arguments

x A cca result object.

choices Axes shown.

display Scores shown. These must some of the alternativessp for species scores,wa
for site scores,lc for linear constraints or “LC scores”, orbp for biplot arrows
or cn for centroids of factor constraints instead of an arrow.

type Type of plot: partial match totext for text labels,points for points, and
none for setting frames only. If omitted,text is selected for smaller data sets,
andpoints for larger.

scaling Scaling for species and site scores. Either species (2) or site (1) scores are scaled
by eigenvalues, and the other set of scores is left unscaled, or with3 both are
scaled symmetrically by square root of eigenvalues.

xlim, ylim the x and y limits (min,max) of the plot.

labels Optional text to be used instead of row names.

arrow.mul Factor to expand arrows in the graph. Arrows will be scaled automatically to fit
the graph if this is missing.

head.arrow Default length of arrow heads.

select Items to be displayed. This can either be a logical vector which isTRUEfor
displayed items or a vector of indices of displayed items.

... Other parameters for plotting functions.
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Details

Sameplot function will be used forcca and rda . This produces a quick, standard plot with
currentscaling .

Theplot function sets colours (col ), plotting characters (pch ) and character sizes (cex ) to cer-
tain standard values. For a fuller control of produced plot, it is best to callplot with type="none"
first, and then add each plotting item separately usingtext.cca or points.cca functions.
These use the default settings of standardtext andpoints functions and accept all their param-
eters, allowing thus a full user control of produced plots.

Environmental variables receive a special treatment. Withdisplay="bp" , arrows will be drawn.
These are labelled withtext and unlabelled withpoints . The basicplot function uses a simple
(but not very clever) heuristics for adjusting arrow lengths to plots, but withpoints.cca and
text.cca the user must give the expansion factor inmul.arrow . The behaviour is still more
peculiar withdisplay="cn" which requests centroids of levels offactor variables (these are
available only if there were factors and a formula interface was used incca or rda ). With this
option, biplot arrows are plotted in addition to centroids in cases which do not have a centroid:
Continuous variables are presented with arrows and ordered factors with arrows and centroids.

If you want to have still a better control of plots, it is better to produce them using primitive
plot commands.. Functionscores helps in extracting the needed components with the selected
scaling .

Value

Theplot function returns invisibly a plotting structure which can be used by functionidentify.ordiplot
to identify the points or other functions in theordiplot family.

Note

Optiondisplay="cn" (centroids and biplot arrows) may become the default instead of the cur-
rentdisplay="bp" in the future version.

Author(s)

Jari Oksanen

See Also

cca , rda andcapscale for getting something to plot,ordiplot for an alternative plotting
routine and more support functions, andtext , points andarrows for the basic routines.

Examples

data(dune)
data(dune.env)
mod <- cca(dune ~ A1 + Moisture + Management, dune.env)
plot(mod, type="n")
text(mod, dis="cn")
points(mod, pch=21, col="red", bg="yellow", cex=1.2)
text(mod, "species", col="blue", cex=0.8)
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predict.cca Prediction Tools for [Constrained] Ordination (CCA, RDA, DCA, CA,
PCA)

Description

Functionpredict can be used to find site and species scores with new data sets.

Usage

## S3 method for class 'cca':
fitted(object, model = c("CCA", "CA"), ...)
## S3 method for class 'cca':
predict(object, newdata, type = c("response", "wa", "sp", "lc"),

rank = "full", model = c("CCA", "CA"), scaling = FALSE, ...)
calibrate.cca(object, newdata, rank = "full", ...)
## S3 method for class 'cca':
coef(object, ...)
## S3 method for class 'decorana':
predict(object, newdata, type = c("response", "sites", "species"),

rank = 4, ...)

Arguments

object A result object fromcca , rda , capscale or decorana .

model Show constrained ("CCA" ) or unconstrained ("CA" ) results.

newdata New data frame to be used in prediction of species and site scores or for calibra-
tion. Usually this a new community data frame, but forpredict.cca type
= "lc" it must be an environment data frame, and fortype = "response"
this is ignored.

type The type of prediction:"response" gives an approximation of the original
data matrix,"wa" the site scores as weighted averages of the community data,
"lc" the site scores as linear combinations of environmental data, and"sp"
the species scores. Inpredict.decorana the alternatives are scores for
"sites" or "species" .

rank The rank or the number of axes used in the approximation. The default is to use
all axes (full rank) of the"model" or all available four axes inpredict.decorana .

scaling Scaling or predicted scores with the same meaning as incca , rda andcapscale .

... Other parameters to the functions.

Details

Functionfitted gives the approximation of the original data matrix from the ordination result.
Functionresiduals gives the approximation of the original data from the unconstrained ordina-
tion. Thefitted.cca andresiduals.cca function both have the same marginal totals as the
original data matrix, and their entries do not add up to the original data. They are defined so that for
modelmod <- cca(y ~ x) , cca(fitted(mod)) is equal to constrained ordination, and
cca(residuals(mod)) is equal to unconstrained part of the ordination.
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Functionpredict can find the estimate of the original data matrix (type = "response" )
with any rank. Withrank = "full" it is identical tofitted . In addition, the function can
find the species scores or site scores from the community data matrix. The function can be used with
new data, and it can be used to add new species or site sccores to existing ordinations. The function
returns (weighted) orthornormal scores by default, and you must specify explicitscaling to add
those scores to ordination diagrams. Withtype = "wa" the function finds the site scores from
species scores. In that case, the new data can contain new sites, but species must match in the
original and new data. Withtype = "sp" the function finds species scores from site constraints
(linear combination scores). In that case the new data can contain new species, but sites must match
in the original and new data. Withtype = "lc" the function finds the linear combination scores
for sites from environmental data. In that case the new data frame must contain all constraining
and conditioning environmental variables of the model formula. If a completely new data frame is
created, extreme care is needed defining variables similarly as in the original model, in particular
with (ordered) factors.

Functioncalibrate.cca finds estimates of constraints from community ordination or"wa"
scores fromcca , rda andcapscale . This is often known as calibration, bioindication or en-
vironmental reconstruction. Basically, the method is similar to projecting site scores onto biplot
arrows, but it uses regression coefficients. The function can be called withnewdata so that cross-
validation is possible. Thenewdata may contain new sites, but species must match in the original
and new data The function does not work with ‘partial’ models withCondition term, and it
cannot be used withnewdata for capscale results. The results may only be interpretable for
continuous variables.

Functioncoef will give the regression coefficients from centred environmental variables (con-
straints and conditions) to linear combination scores. The coefficients are for unstandardized envi-
ronmental variables. The coefficients will beNAfor aliased effects.

Functionpredict.decorana is similar topredict.cca . However,type = "species"
is not available in detrended correspondence analysis (DCA), because detrending destroys the mu-
tual reciprocal averaging (except for the first axis when rescaling is not used). Detrended CA does
not attempt to approximate the original data matrix, sotype = "response" has no meaning in
detrended analysis (except withrank = 1 ).

Value

The functions return matrices or vectors as is appropriate.

Author(s)

Jari Oksanen.

References

Greenacre, M. J. (1984). Theory and applications of correspondence analysis. Academic Press,
London.

Gross, J. (2003). Variance inflation factors.R News3(1), 13–15.

See Also

cca , rda , capscale , decorana , vif , goodness.cca .
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Examples

data(dune)
data(dune.env)
mod <- cca(dune ~ A1 + Management + Condition(Moisture), data=dune.env)
# Definition of the concepts 'fitted' and 'residuals'
mod
cca(fitted(mod))
cca(residuals(mod))
# Remove rare species (freq==1) from 'cca' and find their scores
# 'passively'.
freq <- specnumber(dune, MARGIN=2)
freq
mod <- cca(dune[, freq>1] ~ A1 + Management + Condition(Moisture), dune.env)
predict(mod, type="sp", newdata=dune[, freq==1], scaling=2)
# New sites
predict(mod, type="lc", new=data.frame(A1 = 3, Management="NM", Moisture="2"), scal=2)
# Calibration and residual plot
mod <- cca(dune ~ A1 + Moisture, dune.env)
pred <- calibrate.cca(mod)
pred
with(dune.env, plot(A1, pred[,"A1"] - A1, ylab="Prediction Error"))
abline(h=0)

procrustes Procrustes Rotation of Two Configurations

Description

Functionprocrustes rotates a configuration to maximum similarity with another configuration.
Functionprotest tests the non-randomness (‘significance’) between two configurations.

Usage

procrustes(X, Y, scale = TRUE, symmetric = FALSE, scores = "sites", ...)
## S3 method for class 'procrustes':
summary(object, ...)
## S3 method for class 'procrustes':
plot(x, kind=1, choices=c(1,2), xlab, ylab, main,

ar.col = "blue", len=0.05, ...)
## S3 method for class 'procrustes':
points(x, display = c("target", "rotated"), ...)
## S3 method for class 'procrustes':
lines(x, type = c("segments", "arrows"), choices = c(1, 2), ...)
## S3 method for class 'procrustes':
residuals(object, ...)
## S3 method for class 'procrustes':
fitted(object, truemean = TRUE, ...)
protest(X, Y, scores = "sites", permutations = 1000, strata, ...)
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Arguments

X Target matrix

Y Matrix to be rotated.

scale Allow scaling of axes ofY.

symmetric Use symmetric Procrustes statistic (the rotation will still be non-symmetric).

scores Kind of scores used. This is thedisplay argument used with the correspond-
ing scores function: seescores , scores.cca andscores.cca for al-
ternatives.

x, object An object of classprocrustes .

kind For plot function, the kind of plot produced:kind = 1 plots shifts in two
configurations,kind = 0 draws a corresponding empty plot, andkind = 2
plots an impulse diagram of residuals.

choices Axes (dimensions) plotted.

xlab, ylab Axis labels, if defaults unacceptable.

main Plot title, if default unacceptable.

display Show only the"target" or "rotated" matrix as points.

type Combinetarget androtated points with line segments or arrows.

truemean Use the original range of target matrix instead of centring the fitted values.

permutations Number of permutation to assess the significance of the symmetric Procrustes
statistic.

strata An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata.

ar.col Arrow colour.

len Width of the arrow head.

... Other parameters passed to functions. Inprocrustes andprotest parame-
ters are passed toscores , in graphical functions to underlying graphical func-
tions.

Details

Procrustes rotation rotates a matrix to maximum similarity with a target matrix minimizing sum of
squared differences. Procrustes rotation is typically used in comparison of ordination results. It is
particularly useful in comparing alternative solutions in multidimensional scaling. Ifscale=FALSE ,
the function only rotates matrixY. If scale=TRUE , it scales linearly configurationY for maximum
similarity. SinceY is scaled to fitX, the scaling is non-symmetric. However, withsymmetric=TRUE ,
the configurations are scaled to equal dispersions and a symmetric version of the Procrustes statistic
is computed.

Instead of matrix,XandYcan be results from an ordination from whichscores can extract results.
Functionprocrustes passes extra arguments toscores , scores.cca etc. so that you can
specify arguments such asscaling .

Functionplot plots aprocrustes object and returns invisibly anordiplot object so that
function identify.ordiplot can be used for identifying points. The items in theordiplot
object are calledheads andpoints with kind=1 (ordination diagram) andsites with kind=2
(residuals). In ordination diagrams, the arrow heads point to the target configuration, which may
be either logical or illogical. Target and original rotated axes are shown as cross hairs in two-
dimensional Procrustes analysis, and with a higher number of dimensions, the rotated axes are
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projected onto plot with their scaled and centred range. Functionplot passes parameters to under-
lying plotting functions. For full control of plots, you can draw the axes usingplot with kind =
0, and then add items withpoints or lines . These functions pass all parameters to the underly-
ing functions so that you can select the plotting characters, their size, colours etc., or you can select
the width, colour and type of linesegments or arrows, or you can select the orientation and head
width of arrows .

Functionresiduals returns the pointwise residuals, andfitted the fitted values, either cen-
tred to zero mean (iftruemean=FALSE ) or with the original scale (these hardly make sense if
symmetric = TRUE ). In addition, there aresummary andprint methods.

If matrix X has a lower number of columns than matrixY, then matrixX will be filled with zero
columns to match dimensions. This means that the function can be used to rotate an ordination
configuration to an environmental variable (most practically extracting the result with thefitted
function).

Functionprotest calls procrustes(..., symmetric = TRUE) repeatedly to estimate
the ‘significance’ of the Procrustes statistic. Functionprotest uses a correlation-like statistic
derived from the symmetric Procrustes sum of squaresss asr =

√
(1− ss), and sometimes called

m12. Functionprotest has ownprint method, but otherwise usesprocrustes methods.
Thusplot with aprotest object yields a “Procrustean superimposition plot.”

Value

Functionprocrustes returns an object of classprocrustes with items. Functionprotest
inherits fromprocrustes , but amends that with some new items:

Yrot Rotated matrixY.

X Target matrix.

ss Sum of squared differences betweenX andYrot .

rotation Orthogonal rotation matrix.

translation Translation of the origin.

scale Scaling factor.

symmetric Type ofss statistic.

call Function call.

t0 This and the following items are only in classprotest : Procrustes correlation
from non-permuted solution.

t Procrustes correlations from permutations.

signif ‘Significance’ oft

permutations Number of permutations.

strata The name of the stratifying variable.
stratum.values

Values of the stratifying variable.

Note

The functionprotest follows Peres-Neto & Jackson (2001), but the implementation is still after
Mardiaet al. (1979).

Author(s)

Jari Oksanen
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References

Mardia, K.V., Kent, J.T. and Bibby, J.M. (1979).Multivariate Analysis. Academic Press.

Peres-Neto, P.R. and Jackson, D.A. (2001). How well do multivariate data sets match? The advan-
tages of a Procrustean superimposition approach over the Mantel test.Oecologia129: 169-178.

See Also

isoMDS , initMDS for obtaining objects forprocrustes , andmantel for an alternative to
protest without need of dimension reduction.

Examples

data(varespec)
vare.dist <- vegdist(wisconsin(varespec))
library(MASS) ## isoMDS
mds.null <- isoMDS(vare.dist, tol=1e-7)
mds.alt <- isoMDS(vare.dist, initMDS(vare.dist), maxit=200, tol=1e-7)
vare.proc <- procrustes(mds.alt, mds.null)
vare.proc
summary(vare.proc)
plot(vare.proc)
plot(vare.proc, kind=2)
residuals(vare.proc)

radfit Rank – Abundance or Dominance / Diversity Models

Description

Functions construct rank – abundance or dominance / diversity or Whittaker plots and fit pre-
emption, log-Normal, veiled log-Normal, Zipf and Zipf – Mandelbrot models of species abundance.

Usage

## S3 method for class 'data.frame':
radfit(df, ...)
## S3 method for class 'radfit.frame':
plot(x, order.by, BIC = FALSE, model, legend = TRUE,

as.table = TRUE, ...)
## Default S3 method:
radfit(x, ...)
## S3 method for class 'radfit':
plot(x, BIC = FALSE, legend = TRUE, ...)
rad.preempt(x, family = poisson, ...)
rad.lognormal(x, family = poisson, ...)
rad.veil(x, family = poisson, ...)
rad.zipf(x, family = poisson, ...)
rad.zipfbrot(x, family = poisson, ...)
## S3 method for class 'radline':
plot(x, xlab = "Rank", ylab = "Abundance", type = "b", ...)
## S3 method for class 'radline':
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lines(x, ...)
## S3 method for class 'radline':
points(x, ...)
as.rad(x)
## S3 method for class 'rad':
plot(x, xlab = "Rank", ylab = "Abundance", ...)

Arguments

df Data frame where sites are rows and species are columns.

x A vector giving species abundances in a site, or an object to be plotted.

order.by A vector used for ordering sites in plots.

BIC Use Bayesian Information Criterion, BIC, instead of Akaike’s AIC. The penalty
for a parameter isk = log(S) whereS is the number of species, whereas AIC
usesk = 2.

model Show only the specified model. If missing, AIC is used to select the model.
The model names (which can be abbreviated) arePreemption , Lognormal ,
Veiled.LN , Zipf , Mandelbrot .

legend Add legend of line colours.

as.table Arrange panels starting from upper left corner (passed toxyplot ).

family Error distribution (passed toglm ). All alternatives acceptinglink = "log"
in family can be used, although not all make sense.

xlab,ylab Labels forx andy axes.

type Type of the plot,"b" for plotting both observed points and fitted lines,"p" for
only points,"l" for only fitted lines, and"n" for only setting the frame.

... Other parameters to functions.

Details

Rank – Abundance Dominance (RAD) or Dominance/Diversity plots (Whittaker 1965) display log-
arithmic species abundances against species rank order in the community. These plots are supposed
to be effective in analysing types of abundance distributions in communities. These functions fit
some of the most popular models following Wilson (1991). Functionas.rad constructs observed
RAD data. Functionsrad.XXXX (whereXXXXis a name) fit the individual models, and function
radfit fits all models. The argument of the functionradfit can be either a vector for a single
community or a data frame where each row represents a distinct community. All these functions
have their ownplot functions. When the argument is a data frame,plot usesLattice graph-
ics, and other functions use ordinary graphics. The ordinary graphics functions return invisibly an
ordiplot object for observed points, and functionidentify.ordiplot can be used to label
selected species. The most complete control of graphics can be achieved withrad.XXXX methods
which havepoints andlines functions to add observed values and fitted models into existing
graphs.

Functionrad.preempt fits the niche preemption model, a.k.a. geometric series or Motomura
model, where the expected abundancea of species at rankr is ar = Jα(1− α)r−1. The only esti-
mated parameter is the preemption coefficientα which gives the decay rate of abundance per rank.
In addition there is a fixed scaling parameterJ which is the total abundance. The niche preemption
model is a straight line in a RAD plot. Functionrad.lognormal fits a log-Normal model which
assumes that the logarithmic abundances are distributed Normally, orar = exp(log µ + log σN),
whereN is a Normal deviate. Functionrad.veil is similar, but it assumes that only a proportion
veil of most common species were observed in the community, the rest being too rare or scanty
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to occur in a sample plot of this size (but would occur in a larger plot). Functionrad.zipf fits
the Zipf modelar = Jp1r

γ wherep1 is the fitted proportion of the most abundant species, and
γ is a decay coefficient. The Zipf – Mandelbrot model (rad.zipfbrot ) adds one parameter:
ar = Jc(r + β)γ after whichp1 of the Zipf model changes into a meaningless scaling constant
c. There are great histories about ecological mechanisms behind each model (Wilson 1991), but
several alternative and contrasting mechanisms can produce similar models and a good fit does not
imply a specific mechanism.

Log-Normal and Zipf models are generalized linear models (glm ) with logarithmic link func-
tion. Veiled log-Normal and Zipf – Mandelbrot add one nonlinear parameter, and these two mod-
els are fitted usingnlm for the nonlinear parameter and estimating other parameters and log-
Likelihood withglm . Pre-emption model is fitted as purely nonlinear model. The defaultfamily
is poisson which is appropriate only for genuine counts (integers), but other families that accept
link = "log" can be used. FamilyGammamay be appropriate for abundance data, such as
cover. The “best” model is selected byAIC . Therefore “quasi” families such asquasipoisson
cannot be used: they do not haveAIC nor log-Likelihood needed in non-linear models.

Value

Functionrad.XXXX will return an object of classradline , which is constructed to resemble re-
sults ofglm and has many (but not all) of its components, even when onlynlm was used in fitting.
At least the followingglm methods can be applied to the result:fitted , residuals.glm
with alternatives"deviance" (default), "pearson" , "response" , function coef , AIC ,
extractAIC , anddeviance . Functionradfit applied to a vector will return an object of
classradfit with item y for the constructed RAD, itemfamily for the error distribution, and
item models containing eachradline object as an item. In addition, there are specialAIC ,
coef andfitted implementations forradfit results. When applied to a data frameradfit
will return an object of classradfit.frame which is a list ofradfit objects. The functions
are still preliminary, and the items in theradline objects may change.

Note

The RAD models are usually fitted for proportions instead of original abundances. However, noth-
ing in these models seems to require division of abundances by site totals, and original observations
are used in these functions. If you wish to use proportions, you must standardize your data by site
totals, e.g. withdecostand and use appropriatefamily such asGamma.

The lognormal model is fitted in a standard way, but I do think this is not quite correct – at least it is
not equivalent to fitting Normal density to log abundances like originally suggested (Preston 1948).

Some models may fail. In particular,rad.veil often tends toveil = 0 meaning that none of
the community is present, and the function prints an error messageError: NA/NaN/Inf in
foreign function call (arg 1) . The error is caught andNAare returned.

Wilson (1991) defined preemption model asar = Jp1(1− α)r−1, wherep1 is the fitted proportion
of the first species. However, parameterp1 is completely defined byα since the fitted proportions
must add to one, and therefore I handle preemption as a one-parameter model.

Author(s)

Jari Oksanen

References

Preston, F.W. (1948) The commonness and rarity of species.Ecology29, 254–283.

Whittaker, R. H. (1965) Dominance and diversity in plant communities.Science147, 250–260.
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Wilson, J. B. (1991) Methods for fitting dominance/diversity curves.Journal of Vegetation Science
2, 35–46.

See Also

fisherfit andprestonfit . An alternative approach is to useqqnorm or qqplot with any
distribution. For controlling graphics:Lattice , xyplot , lset .

Examples

data(BCI)
mod <- rad.veil(BCI[1,])
mod
plot(mod)
mod <- radfit(BCI[1,])
plot(mod)
# Take a subset of BCI to save time and nerves
mod <- radfit(BCI[2:5,])
mod
plot(mod, pch=".")

rankindex Compares Dissimilarity Indices for Gradient Detection

Description

Rank correlations between dissimilarity indices and gradient separation.

Usage

rankindex(grad, veg, indices = c("euc", "man", "gow", "bra", "kul"),
stepacross = FALSE, method = "spearman", ...)

Arguments

grad The gradient variable or matrix.

veg The community data matrix.

indices Dissimilarity indices compared, partial matches to alternatives invegdist .

stepacross Usestepacross to find a shorter path dissimilarity. The dissimilarities for
site pairs with no shared species are setNAusingno.shared so that indices
with no fixed upper limit can also be analysed.

method Correlation method used.

... Other parameters tostepacross .

Details

A good dissimilarity index for multidimensional scaling should have a high rank-order similarity
with gradient separation. The function compares most indices invegdist against gradient sepa-
ration using rank correlation coefficients incor.test .
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Value

Returns a named vector of rank correlations.

Note

There are several problems in using rank correlation coefficients. Typically there are very many ties
whenn(n − 1)/2 gradient separation values are derived from justn observations. Due to floating
point arithmetics, many tied values differ by machine epsilon and are arbitrarily ranked differently
by rank used incor.test . Two indices which are identical with certain transformation or stan-
dardization may differ slightly (magnitude10−15) and this may lead into third or fourth decimal
instability in rank correlations. Small differences in rank correlations should not be taken too se-
riously. Probably this method should be replaced with a sounder method, but I do not yet know
which. . . You may experiment withmantel , anosim or evenprotest .

Earlier version of this function usedmethod = "kendall" , but that is far too slow in large data
sets.

Author(s)

Jari Oksanen

References

Faith, F.P., Minchin, P.R. and Belbin, L. (1987). Compositional dissimilarity as a robust measure of
ecological distance.Vegetatio69, 57-68.

See Also

vegdist , stepacross , no.shared , isoMDS , cor , Machine , and for alternativesanosim ,
mantel andprotest .

Examples

data(varespec)
data(varechem)
## The next scales all environmental variables to unit variance.
## Some would use PCA transformation.
rankindex(scale(varechem), varespec)
rankindex(scale(varechem), wisconsin(varespec))

read.cep Reads a CEP (Canoco) data file

Description

read.cep reads a file formatted by relaxed strict CEP format used byCanoco software, among
others.

Usage

read.cep(file, maxdata=10000, positive=TRUE, trace=FALSE, force=FALSE)
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Arguments

file File name (character variable).

maxdata Maximum number of non-zero entries.

positive Only positive entries, like in community data.

trace Work verbosely.

force Run function, even ifR refuses first.

Details

Cornell Ecology Programs (CEP) introduced several data formats designed for punched cards. One
of these was the ‘condensed strict’ format which was adopted by popular softwareDECORANAand
TWINSPAN. Later, Cajo ter Braak wroteCanoco based onDECORANA, where he adopted the
format, but relaxed it somewhat (that’s why I call it a ‘relaxed strict’ format). Further, he introduced
a more ordinary ‘free’ format, and allowed the use of classical Fortran style ‘open’ format with
fixed field widths. This function should be able to deal with all theseCanoco formats, whereas it
cannot read many of the traditional CEP alternatives.

All variants of CEP formats have:

• Two or three title cards, most importantly specifying the format (or wordFREE) and the
number of items per record (number of species and sites forFREEformat).

• Data in one of three accepted formats:

1. Condensed format: First number on the line is the site identifier, and it is followed by
pairs (‘couplets’) of numbers identifying the species and its abundance (an integer and a
floating point number).

2. Open Fortran format, where the first number on the line must be the site number, followed
by abundance values in fields of fixed widths. Empty fields are interpreted as zeros.

3. ‘Free’ format, where the numbers are interpreted as abundance values. These numbers
must be separated by blank space, and zeros must be written as zeros.

• Species and site names, given in Fortran format(10A8) : Ten names per line, eight columns
for each.

With optionpositive = TRUE the function removes all lines and columns with zero or negative
marginal sums. In community data with only positive entries, this removes empty sites and species.
If data entries can be negative, this ruins data, and such data sets should be read in with option
positive = FALSE .

Value

Returns a data frame, where columns are species and rows are sites. Column and row names are
taken from the CEP file, and changed into uniqueR names bymake.names after stripping the
blanks.

Note

The function relies on smooth linking of Fortran file IO inR session. This is not guaranteed to work,
and therefore the function may not work inyour system, but it can crash theR session. Therefore
the default is that the function does not run. If you still want to try:

1. Save your session

2. Runread.cep() with switchforce=TRUE
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If you transfer files between operating systems or platforms, you should always check that your file
is formatted to your current platform. For instance, if you transfer files from Windows to Linux,
you should change the files tounix format, or your session may crash when Fortran program tries
to read the invisible characters that Windows uses at the end of each line.

If you compiledvegan using gfortran , the input is probably corrupted. You either should
compilevegan with other FORTRAN compilers or not to useread.cep . The problems still
persist ingfortran 4.01 .

Author(s)

Jari Oksanen

References

Ter Braak, C.J.F. (1984–): CANOCO – a FORTRAN program forcanonicalcommunityordination
by [partial] [detrended] [canonical] correspondence analysis, principal components analysis and re-
dundancy analysis.TNO Inst. of Applied Computer Sci., Stat. Dept. Wageningen, The Netherlands.

Examples

## Provided that you have the file `dune.spe'
## Not run:
theclassic <- read.cep("dune.spe", force=T)
## End(Not run)

scores Get Species or Site Scores from an Ordination

Description

Function to access either species or site scores for specified axes in some ordination methods.

Usage

## Default S3 method:
scores(x, display=c("sites", "species"), choices, ...)

Arguments

x An ordination result.

display Partial match to access scores forsites or species .

choices Ordination axes. If missing, returns all axes.

... Other parameters (unused).
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Details

Functionscca anddecorana have specificscores function to access their ordination scores.
Most standard ordination methods of librariesmva, multiv andMASSdo not have a specificclass ,
and no specific method can be written for them. However,scores.default guesses where
some commonly used functions keep their site scores and possible species scores. For site scores,
the function seeks items in orderpoints , rproj , x , andscores . For species, the seeking order
is cproj , rotation , andloadings . If x is a matrix,scores.default returns the chosen
columns of that matrix, ignoring whether species or sites were requested (do not regard this as a
bug but as a feature, please). Currently the function seems to work at least forisoMDS , prcomp ,
princomp , ca , pca . It may work in other cases or fail mysteriously.

Value

The function returns a matrix of requested scores.

Author(s)

Jari Oksanen

See Also

scores.cca , scores.decorana . These have somewhat different interface –scores.cca
in particular – but all work with keywordsdisplay="sites" anddisplay="species" and
return a matrix with these.

Examples

data(varespec)
vare.pca <- prcomp(varespec)
scores(vare.pca, choices=c(1,2))

specaccum Species Accumulation Curves

Description

Functionspecaccum finds species accumulation curves or the number of species for a certain
number of sampled sites or individuals.

Usage

specaccum(comm, method = "exact", permutations = 100, ...)
## S3 method for class 'specaccum':
plot(x, add = FALSE, ci = 2, ci.type = c("bar", "line", "polygon"),

col = par("fg"), ci.col = col, ci.lty = 1, xlab = "Sites",
ylab = x$method, ...)

## S3 method for class 'specaccum':
boxplot(x, add = FALSE, ...)
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Arguments

comm Community data set.

method Species accumulation method (partial match). Method"collector" adds
sites in the order they happen to be in the data,"random" adds sites in random
order,"exact" finds the expected (mean) species richness,"coleman" finds
the expected richness following Coleman et al. 1982, and"rarefaction"
finds the mean when accumulating individuals instead of sites.

permutations Number of permutations withmethod = "random" .

x A specaccum result object

add Add to an existing graph.

ci Multiplier used to get confidence intervals from standard deviation (standard
error of the estimate). Valueci = 0 suppresses drawing confidence intervals.

ci.type Type of confidence intervals in the graph:"bar" draws vertical bars,"line"
draws lines, and"polygon" draws a shaded area.

col Colour for drawing lines.

ci.col Colour for drawing lines or filling the"polygon" .

ci.lty Line type for confidence intervals or border of the"polygon" .

xlab,ylab Labels forx andy axis.

... Other parameters to functions.

Details

Species accumulation curves (SAC) are used to compare diversity properties of community data
sets using different accumulator functions. The classic method is"random" which finds the mean
SAC and its standard deviation from random permutations of the data, or subsampling without re-
placement (Gotelli & Colwell 2001). The"exact" method finds the expected SAC using the
method of Kindt (2003), and its standard deviation. Method"coleman" finds the expected SAC
and its standard deviation following Coleman et al. (1982). All these methods are based on sam-
pling sites without replacement. In contrast, themethod = "rarefaction" finds the expected
species richness and its standard deviation by sampling individuals instead of sites. It achieves this
by applying functionrarefy with number of individuals corresponding to average number of
individuals per site.

The function has aplot method. In addition,method = "random" hassummary andboxplot
methods.

Value

The function returns an object of class"specaccum" with items:

call Function call.

method Accumulator method.

sites Number of sites. Formethod = "rarefaction" this is the average num-
ber of sites corresponding to a certain number of individuals.

richness The number of species corresponding to number of sites. Withmethod =
"collector" this is the observed richness, for other methods the average or
expected richness.

sd The standard deviation of SAC (or its standard error). This isNULL in method
= "collector" , and it is estimated from permutations inmethod = "random" ,
and from analytic equations in other methods.
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perm Permutation results withmethod = "random" and NULL in other cases.
Each column inperm holds one permutation.

Note

The SAC withmethod = "exact" was developed by Roeland Kindt, and its standard deviation
by Jari Oksanen (both are unpublished). Themethod = "coleman" underestimates the SAC
because it does not handle properly sampling without replacement. Further, its standard deviation
does not take into account species correlations, and is generally too low.

Author(s)

Roeland Kindt〈r.kindt@cgiar.org〉 and Jari Oksanen.

References

Coleman, B.D, Mares, M.A., Willis, M.R. & Hsieh, Y. (1982). Randomness, area and species
richness.Ecology63: 1121–1133.

Gotellli, N.J. & Colwell, R.K. (2001). Quantifying biodiversity: procedures and pitfalls in mea-
surement and comparison of species richness.Ecol. Lett.4, 379–391.

Kindt, R. (2003). Exact species richness for sample-based accumulation curves.Manuscript.

See Also

rarefy . Underlying graphical functions areboxplot , matlines , segments andpolygon .

Examples

data(BCI)
sp1 <- specaccum(BCI)
sp2 <- specaccum(BCI, "random")
sp2
summary(sp2)
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, ci.col="lightblue")
boxplot(sp2, col="yellow", add=TRUE, pch="+")

specpool Extrapolated Species Richness in a Species Pool

Description

The functions estimate the extrapolated species richness in a species pool, or the number of un-
observed species. Functionspecpool is based on incidences in sample sites, and gives a single
estimate for a collection of sample sites (matrix). FunctionestimateR is based on abundances
(counts) on single sample site.

Usage

specpool(x, pool)
specpool2vect(X, index = c("Jack.1","Jack.2", "Chao", "Boot","Species"))
estimateR(x, ...)
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Arguments

x Data frame or matrix with species data.

pool A vector giving a classification for pooling the sites in the species data. If miss-
ing, all sites are pooled together.

X A specpool result object.

index The selected index of extrapolated richness.

... Other parameters (not used).

Details

Many species will always remain unseen or undetected in a collection of sample plots. The function
uses some popular ways of estimating the number of these unseen species and adding them to the
observed species richness (Palmer 1990, Colwell & Coddington 1994).

The incidence-based estimates inspecpool use the frequencies of species in a collection of sites.
In the following,SP is the extrapolated richness in a pool,S0 is the observed number of species
in the collection,a1 anda2 are the number of species occurring only in one or only in two sites in
the collection,pi is the frequency of speciesi, andN is the number of sites in the collection. The
variants of extrapolated richness inspecpool are:

Chao SP = S0 + a2
1

(a2+1) + a1a2
2(a2+1)2

First order jackknife SP = S0 + a1
N−1

N

Second order jackknife SP = S0 + a1
2N−3

N − a2
(N−2)2

N(N−1)

Bootstrap SP = S0 +
∑S0

i=1(1− pi)N

The abundance-based estimates inestimateR use counts (frequencies) of species in a single site.
If called for a matrix or data frame, the function will give separate estimates for each site. The
two variants of extrapolated richness inestimateR are Chao and ACE. The Chao estimator is
identical to the one above, except thatai refers to number of species with abundancei instead of
incidence. The ACE is defined as:

ACE SP = Sabund + Srare

Cace
+ a1

Cace
γ2

ace

where Cace = 1− a1
Nrare

γ2
ace = max

[
Srare

∑10

i=1
i(i−1)ai

CaceNrare(Nrare−1) − 1, 0
]

Hereai refers to number of species with abundancei andSrare is the number of rare species,
Sabund is the number of abundant species, with an arbitrary threshold of abundance 10 for rare
species, andNrare is the number of individuals in rare species.

Functions estimate the the standard errors of the estimates. These only concern the number of added
species, and assume that there is no variance in the observed richness. The equations of standard
errors are too complicated to be reproduced in this help page, but they can be studied in theR
source code of the function. The standard error are based on the following sources: Chao (1987)
for the Chao estimate and Smith and van Belle (1984) for the first-order Jackknife and the bootstrap
(second-order jackknife is still missing). The variance estimator ofSace was developed by Bob
O’Hara (unpublished).
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Value

Functionspecpool returns a data frame with entries for observed richness and each of the indices
for each class inpool vector. The utility functionspecpool2vect maps the pooled values into
a vector giving the value of selectedindex for each original site. FunctionestimateR returns
the estimates and their standard errors for each site.

Note

The functions are based on assumption that there is a species pool: The community is closed so that
there is a fixed pool sizeSP . Such cases may exist, although I have not seen them yet. All indices
are biased for open communities.

Seehttp://viceroy.eeb.uconn.edu/EstimateS for a more complete (and positive)
discussion and alternative software for some platforms.

Author(s)

Bob O’Hara (estimateR ) and Jari Oksanen (specpool ).

References

Chao, A. (1987). Estimating the population size for capture-recapture data with unequal catchabil-
ity. Biometrics43, 783–791.

Colwell, R.K. & Coddington, J.A. (1994). Estimating terrestrial biodiversity through extrapolation.
Phil. Trans. Roy. Soc. LondonB 345, 101–118.

Palmer, M.W. (1990). The estimation of species richness by extrapolation.Ecology71, 1195–1198.

Smith, E.P & van Belle, G. (1984). Nonparametric estimation of species richness.Biometrics40,
119–129.

See Also

veiledspec , diversity .

Examples

data(dune)
data(dune.env)
attach(dune.env)
pool <- specpool(dune, Management)
pool
op <- par(mfrow=c(1,2))
boxplot(specnumber(dune) ~ Management, col="hotpink", border="cyan3",

notch=TRUE)
boxplot(specnumber(dune)/specpool2vect(pool) ~ Management, col="hotpink",

border="cyan3", notch=TRUE)
par(op)
data(BCI)
estimateR(BCI[1:5,])

http://viceroy.eeb.uconn.edu/EstimateS
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stepacross Stepacross as Flexible Shortest Paths or Extended Dissimilarities

Description

Functionstepacross tries to replace dissimilarities with shortest paths stepping across interme-
diate sites while regarding dissimilarities above a threshold as missing data (NA). With path =
"shortest" this is the flexible shortest path (Williamson 1978, Bradfield & Kenkel 1987), and
with path = "extended" an approximation known as extended dissimilarities (De’ath 1999).
The use ofstepacross should improve the ordination with high beta diversity, when there are
many sites with no species in common.

Usage

stepacross(dis, path = "shortest", toolong = 1, trace = TRUE, ...)

Arguments

dis Dissimilarity data inheriting from classdist or a an object, such as a matrix,
that can be converted to a dissimilarity matrix. Functionsvegdist anddist
are some functions producing suitable dissimilarity data.

path The method of stepping across (partial match) Alternative"shortest" finds
the shortest paths, and"extended" their approximation known as extended
dissimilarities.

toolong Shortest dissimilarity regarded asNA. The function uses a fuzz factor, so that
dissimilarities close to the limit will be madeNA, too.

trace Trace the calculations.

... Other parameters (ignored).

Details

Williamson (1978) suggested using flexible shortest paths to estimate dissimilarities between sites
which have nothing in common, or no shared species. Withpath = "shortest" function
stepacross replaces dissimilarities that aretoolong or longer withNA, and tries to find short-
est paths between all sites using remaining dissimilarities. Several dissimilarity indices are semi-
metric which means that they do not obey the triangle inequalitydij ≤ dik + dkj , and shortest path
algorithm can replace these dissimilarities as well, even when they are shorter thantoolong .

De’ath (1999) suggested a simplified method known as extended dissimilarities, which are calcu-
lated withpath = "extended" . In this method, dissimilarities that aretoolong or longer
are first madeNA, and then the function tries replace theseNAdissimilarities with a path through
single stepping stone points. If not allNAcould be replaced with one pass, the function will make
new passes with updated dissimilarities as long as allNAare replaced with extended dissimilarities.
This mean that in the second and further passes, the remainingNAdissimilarities are allowed to have
more than one stepping stone site, but previously replaced dissimilarities are not updated. Further,
the function does not consider dissimilarities shorter thantoolong , although some of these could
be replaced with a shorter path in semi-metric indices, and used as a part of other paths. In optimal
cases, the extended dissimilarities are equal to shortest paths, but in several cases they are longer.

As an alternative to defining too long dissimilarities with parametertoolong , the input dissimi-
larities can containNAs. If toolong is zero or negative, the function does not make any dissimi-
larities intoNA. If there are noNAs in the input andtoolong = 0 , path = "shortest" will
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find shorter paths for semi-metric indices, andpath = "extended" will do nothing. Function
no.shared can be used to set dissimilarities toNA.

If the data are disconnected or there is no path between all points, the result will containNAs and
a warning is issued. Several methods cannot handleNAdissimilarities, and this warning should be
taken seriously. Functiondistconnected can be used to find connected groups and remove rare
outlier observations or groups of observations.

Alternative path = "shortest" uses Dijkstra’s method for finding flexible shortest paths,
implemented as priority-first search for dense graphs (Sedgewick 1990). Alternativepath =
"extended" follows De’ath (1999), but implementation is simpler than in his code.

Value

Function returns an object of classdist with extended dissimilarities (see functionsvegdist
anddist ). The value ofpath is appended to themethod attribute.

Note

The function changes the original dissimilarities, and not all like this. It may be best to use the
function only when you reallymust: extremely high beta diversity where a large proportion of
dissimilarities are at their upper limit (no species in common).

Semi-metric indices vary in their degree of violating the triangle inequality. Morisita and Horn–
Morisita indices ofvegdist may be very strongly semi-metric, and shortest paths can change
these indices very much. Mountford index violates basic rules of dissimilarities: non-identical sites
have zero dissimilarity if species composition of the poorer site is a subset of the richer. With
Mountford index, you can find three sitesi, j, k so thatdik = 0 anddjk = 0, but dij > 0. The
results ofstepacross on Mountford index can be very weird. Ifstepacross is needed, it is
best to try to use it with more metric indices only.

Author(s)

Jari Oksanen

References

Bradfield, G.E. & Kenkel, N.C. (1987). Nonlinear ordination using flexible shortest path adjustment
of ecological distances.Ecology68, 750–753.

De’ath, G. (1999). Extended dissimilarity: a method of robust estimation of ecological distances
from high beta diversity data.Plant Ecol.144, 191–199.

Sedgewick, R. (1990).Algorithms in C. Addison Wesley.

Williamson, M.H. (1978). The ordination of incidence data.J. Ecol.66, 911-920.

See Also

Functiondistconnected can find connected groups in disconnected data, and functionno.shared
can be used to set dissimilarities asNA.

Examples

# There are no data sets with high beta diversity in vegan, but this
# should give an idea.
data(dune)
dis <- vegdist(dune)
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edis <- stepacross(dis)
plot(edis, dis, xlab = "Shortest path", ylab = "Original")
## Manhattan distance have no fixed upper limit.
dis <- vegdist(dune, "manhattan")
is.na(dis) <- no.shared(dune)
dis <- stepacross(dis, toolong=0)

varespec Vegetation and environment in lichen pastures

Description

The varespec data frame has 24 rows and 44 columns. Columns are estimated cover values
of 44 species. The variable names are formed from the scientific names, and are self explanatory
for anybody familiar with the vegetation type. Thevarechem data frame has 24 rows and 14
columns, giving the soil characteristics of the very same sites as in thevarespec data frame. The
chemical measurements have obvious names.Baresoil gives the estimated cover of bare soil,
Humpdepth the thickness of the humus layer.

Usage

data(varechem)
data(varespec)

References

Väre, H., Ohtonen, R. and Oksanen, J. (1995) Effects of reindeer grazing on understorey vegetation
in dry Pinus sylvestris forests.Journal of Vegetation Science6, 523–530.

Examples

data(varespec)
data(varechem)

vegan-internal Internal vegan functions

Description

Internal vegan functions.

Usage

ordiParseFormula(formula, data, xlev = NULL)
ordiTerminfo(d, data)
centroids.cca(x, mf, wt)
permuted.index(n, strata)
spider.cca(x, ...)

Details

These are not to be called by the user. Functionspider.cca was replaced withordispider
and will be removed in the future.
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vegdist Dissimilarity Indices for Community Ecologists

Description

The function computes dissimilarity indices that are useful for or popular with community ecolo-
gists. Gower, Bray–Curtis, Jaccard and Kulczynski indices are good in detecting underlying ecolog-
ical gradients (Faith et al. 1987). Morisita, Horn–Morisita and Binomial indices should be able to
handle different sample sizes (Wolda 1981, Krebs 1999, Anderson & Millar 2004), and Mountford
(1962) and Raup-Crick indices for presence–absence data should be able to handle unknown (and
variable) sample sizes.

Usage

vegdist(x, method="bray", binary=FALSE, diag=FALSE, upper=FALSE,
na.rm = FALSE, ...)

Arguments

x Community data matrix.

method Dissimilarity index, partial match to"manhattan" , "euclidean" , "canberra" ,
"bray" , "kulczynski" , "jaccard" , "gower" , "morisita" , "horn" ,
"mountford" , "raup" or "binomial" .

binary Perform presence/absence standardization before analysis usingdecostand .

diag Compute diagonals.

upper Return only the upper diagonal.

na.rm Pairwise deletion of missing observations when computing dissimilarities.

... Other parameters. These are ignored, except inmethod ="gower" which
acceptsrange.global parameter ofdecostand . .

Details

Jaccard ("jaccard" ), Mountford ("mountford" ), Raup–Crick ("raup" ) and Binomial in-
dices are discussed below. The other indices are defined as:

euclidean djk =
√∑

i(xij − xik)2
manhattan djk =

∑
i |xij − xik|

gower djk =
∑

i
|xij−xik|

max xi−min xi

canberra djk = 1
NZ

∑
i
|xij−xik|
xij+xik

whereNZ is the number of non-zero entries.

bray djk =
∑

i
|xij−xik|∑

i
(xij+xik)

kulczynski djk = 1− 0.5(
∑

i
min(xij ,xik)∑

i
xij

+
∑

i
min(xij ,xik)∑

i
xik

)

morisita djk =
2
∑

i
xijxik

(λj+λk)
∑

i
xij

∑
i
xik

whereλj =
∑

i
xij(xij−1)∑

i
xij

∑
i
(xij−1)

horn Like morisita , butλj =
∑

i x2
ij/(

∑
i xij)2

binomial djk =
∑

i[xij log(xij

ni
) + xik log(xik

ni
)− ni log( 1

2 )]/ni

whereni = xij + xik
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Jaccard index is computed as2B/(1 + B), whereB is Bray–Curtis dissimilarity.

Binomial index is derived from Binomial deviance under null hypothesis that the two compared
communities are equal. It should be able to handle variable sample sizes. The index does not have
a fixed upper limit, but can vary among sites with no shared species. For further discussion, see
Anderson & Millar (2004).

Mountford index is defined asM = 1/α whereα is the parameter of Fisher’s logseries assum-
ing that the compared communities are samples from the same community (cf.fisherfit ,
fisher.alpha ). The indexM is found as the positive root of equationexp(aM) + exp(bM) =
1 + exp[(a + b − j)M ], wherej is the number of species occurring in both communities, anda
andb are the number of species in each separate community (so the index uses presence–absence
information). Mountford index is usually misrepresented in the literature: indeed Mountford (1962)
suggested an approximation to be used as starting value in iterations, but the proper index is defined
as the root of the equation above. The functionvegdist solvesM with the Newton method.
Please note that if eithera or b are equal toj, one of the communities could be a subset of other, and
the dissimilarity is0 meaning that non-identical objects may be regarded as similar and the index is
non-metric. The Mountford index is in the range0 . . . log(2), but the dissimilarities are divided by
log(2) so that the results will be in the conventional range0 . . . 1.

Raup–Crick dissimilarity (method = "raup" ) is a probabilistic index based on presensec/absence
data. It is defined as1 − prob(j), or based on the probability of observing at leastj species in
shared in compared communities. Legendre & Legendre (1978) suggest using simulations to as-
sess the probability, but the current function uses analytic result from hypergeometric distribution
(phyper ) instead. This probability (and the index) is dependent on the number of species missing
in both sites, and adding all-zero species to the data or removing missing species from the data
will influence the index. The probability (and the index) may be almost zero or almost one for a
wide range of parameter values. The index is nonmetric: two communities with no shared species
may have a dissimilarity slightly below one, and two identical communities may have dissimilarity
slightly above zero.

Morisita index can be used with genuine count data (integers) only. Its Horn–Morisita variant is
able to handle any abundance data.

Euclidean and Manhattan dissimilarities are not good in gradient separation without proper stan-
dardization but are still included for comparison and special needs.

Bray–Curtis and Jaccard indices are rank-order similar, and some other indices become identical or
rank-order similar after some standardizations, especially with presence/absence transformation of
equalizing site totals withdecostand . Jaccard index is metric, and probably should be preferred
instead of the default Bray-Curtis which is semimetric.

The naming conventions vary. The one adopted here is traditional rather than truthful to priority.
The function finds either quantitative or binary variants of the indices under the same name, which
correctly may refer only to one of these alternatives For instance, the Bray index is known also as
Steinhaus, Czekanowski and Sørensen index. The quantitive version of Jaccard should probably
called Ruzicka index (but spelled with characters that cannot be shown here). The abbreviation
"horn" for the Horn–Morisita index is misleading, since there is a separate Horn index. The
abbreviation will be changed if that index is implemented invegan .

Value

Should provide a drop-in replacement fordist and return a distance object of the same type.

Note

The function is an alternative todist adding some ecologically meaningful indices. Both methods
should produce similar types of objects which can be interchanged in any method accepting either.
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Manhattan and Euclidean dissimilarities should be identical in both methods. Canberra index is
divided by the number of variables invegdist , but not indist . So these differ by a constant
multiplier, and the alternative invegdist is in range (0,1). Functiondaisy (packagecluster)
provides alternative implentation of Gower index for mixed data of numeric and class variables (but
it works for mixed variables only).

Most dissimilarity indices invegdist are designed for community data, and they will give mis-
leading values if there are negative data entries. The results may also be misleading orNAor NaN
if there are empty sites. In principle, you cannot study species compostion without species and you
should remove empty sites from community data.

Author(s)

Jari Oksanen, with contributions from Tyler Smith (Gower index) and Michael Bedward (Raup–
Crick index).

References

Anderson, M.J. and Millar, R.B. (2004). Spatial variation and effects of habitat on temperate reef
fish assemblages in northeastern New Zealand.Journal of Experimental Marine Biology and Ecol-
ogy305, 191–221.

Faith, D. P, Minchin, P. R. and Belbin, L. (1987). Compositional dissimilarity as a robust measure
of ecological distance.Vegetatio69, 57–68.

Krebs, C. J. (1999).Ecological Methodology.Addison Wesley Longman.

Legendre, P, & Legendre, L. (1998)Numerical Ecology. 2nd English Edition. Elsevier.

Mountford, M. D. (1962). An index of similarity and its application to classification problems. In:
P.W.Murphy (ed.),Progress in Soil Zoology, 43–50. Butterworths.

Wolda, H. (1981). Similarity indices, sample size and diversity.Oecologia50, 296–302.

See Also

decostand , dist , rankindex , isoMDS , stepacross , daisy , dsvdis .

Examples

data(varespec)
vare.dist <- vegdist(varespec)
# Orlóci's Chord distance: range 0 .. sqrt(2)
vare.dist <- vegdist(decostand(varespec, "norm"), "euclidean")

vegemite Prints a Compact, Ordered Vegetation Table

Description

The function prints a compact vegetation table, where species are rows, and each site takes only one
column without spaces. The vegetation table can be ordered by explicit indexing, by environmental
variables or results from an ordination or cluster analysis.
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Usage

vegemite(x, use, scale, sp.ind, site.ind, zero=".")
coverscale(x, scale=c("Braun.Blanquet", "Domin", "Hult", "Hill", "fix", "log"))

Arguments

x Vegetation data.

use Either a vector or an object fromcca , decorana etc.or hclust for ordering
sites and species.

sp.ind Species indices.

site.ind Site indices.

zero Character used for zeros.

scale Cover scale used (can be abbreviated).

Details

The function prints a traditional vegetation table. Unlike in ordinary data matrices, species are used
as rows and sites as columns. The table is printed in compact form: only one character can be used
for abundance, and there are no spaces between columns.

The parameteruse can be a vector or an object fromhclust , adendrogram or any ordination
result recognized byscores . If use is a vector, it is used for ordering sites. Ifuse is an object
from ordination, both sites and species are arranged by the first axis. Whenuse is an object
from hclust , the sites are ordered similarly as in the cluster dendrogram. If ordination methods
provide species scores, these are used for ordering species. In all cases where species scores are
missing, species are ordered by their weighted averages (wascores ) on site scores. There is no
natural, unique ordering in hierarchic clustering, but in some cases species are still nicely ordered.
Alternatively, species and sites can be ordered explicitly giving their indices or names in parameters
sp.ind andsite.ind . If these are given, they take precedence overuse .

If scale is given,vegemite callscoverscale to transform percent cover scale or some other
scales into traditional class scales used in vegetation science (coverscale can be called directly,
too). Braun-Blanquet and Domin scales are actually not strict cover scales, and the limits used
for codesr and+ are arbitrary. ScaleHill may be inappropriately named, since Mark O. Hill
probably never intended this as a cover scale. However, it is used as default ‘cut levels’ in his
TWINSPAN, and surprisingly many users stick to this default, and so this is ade factostandard in
publications. All traditional scales assume that values are cover percentages with maximum 100.
However, non-traditional alternativelog can be used with any scale range. Its class limits are
integer powers of 1/2 of the observed maximum in the data, with+ used for non-zero entries less
than 1/512 of data maximum (log stands alternatively for logarithmic or logical). Scalefix is
intended for ‘fixing’ 10-point scales: it truncates scale values to integers, and replaces 10 withX
and positive values below 1 with+.

Value

The function is used mainly to print a table, but it returns (invisibly) a list with items:

spec Ordered species indices.

sites Ordered site indices.

Note

This function was calledvegetab in older versions ofvegan . The new name was chosen because
the output is so compact (and to avoid confusion with thevegtab function in thelabdsvpackage).
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Author(s)

Jari Oksanen

References

The cover scales are presented in many textbooks of vegetation science; I used:

Shimwell, D.W. (1971)The Description and Classification of Vegetation. Sidgwick & Jackson.

See Also

cut andapprox for making your own ‘cover scales’,wascores for weighted averages.

Examples

data(varespec)
## Print only more common species
freq <- apply(varespec > 0, 2, sum)
vegemite(varespec, scale="Hult", sp.ind = freq > 10)
## Order by correspondence analysis, use Hill scaling and layout:
dca <- decorana(varespec)
vegemite(varespec, dca, "Hill", zero="-")

wascores Weighted Averages Scores for Species

Description

Computes Weighted Averages scores of species for ordination configuration or for environmental
variables.

Usage

wascores(x, w, expand=FALSE)
eigengrad(x, w)

Arguments

x Environmental variables or ordination scores.

w Weights: species abundances.

expand Expand weighted averages so that they have the same weighted variance as the
corresponding environmental variables.

Details

Functionwascores computes weighted averages. Weighted averages ‘shrink’: they cannot be
more extreme than values used for calculating the averages. Withexpand = TRUE, the function
‘dehsrinks’ the weighted averages by making their biased weighted variance equal to the biased
weighted variance of the corresponding environmental variable. Functioneigengrad returns the
inverses of squared expansion factors or the attributeshrinkage of the wascores result for
each environmental gradient. This is equal to the constrained eigenvalue ofcca when only this one
gradient was used as a constraint, and describes the strength of the gradient.
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Value

Functionwascores returns a matrix where species define rows and ordination axes or environ-
mental variables define columns. Ifexpand = TRUE, attributeshrinkage has the inverses of
squared expansion factors orcca eigenvalues for the variable. Functioneigengrad returns only
theshrinkage attribute.

Author(s)

Jari Oksanen

See Also

isoMDS , cca .

Examples

data(varespec)
data(varechem)
library(MASS) ## isoMDS
vare.dist <- vegdist(wisconsin(varespec))
vare.mds <- isoMDS(vare.dist)
vare.points <- postMDS(vare.mds$points, vare.dist)
vare.wa <- wascores(vare.points, varespec)
plot(scores(vare.points), pch="+", asp=1)
text(vare.wa, rownames(vare.wa), cex=0.8, col="blue")
## Omit rare species (frequency <= 4)
freq <- apply(varespec>0, 2, sum)
plot(scores(vare.points), pch="+", asp=1)
text(vare.wa[freq > 4,], rownames(vare.wa)[freq > 4],cex=0.8,col="blue")
## Works for environmental variables, too.
wascores(varechem, varespec)
## And the strengths of these variables are:
eigengrad(varechem, varespec)
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identify.ordiplot , 50, 51, 56, 60, 63
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86 INDEX

initMDS , 62
initMDS (metaMDS), 41
interp , 52, 53
isoMDS , 2, 6, 11, 17, 34, 35, 41–44, 62, 66,

69, 79, 82

Lattice , 63, 65
lda , 11
lines , 45–47
lines.humpfit (humpfit ), 35
lines.prestonfit (fisherfit ), 29
lines.procrustes (procrustes ), 59
lines.radline (radfit ), 62
linestack , 38
lset , 65

Machine , 66
make.cepnames , 39
make.names , 39, 67
make.unique , 39
mantel , 3, 40, 62, 66
matlines , 71
metaMDS, 34, 35, 41
metaMDSdist (metaMDS), 41
metaMDSiter (metaMDS), 41
metaMDSredist , 34
metaMDSredist (metaMDS), 41

na.action , 14
nlm , 24, 30, 31, 37, 64
no.shared , 65, 66, 75
no.shared (distconnected ), 21

ordiarrows (ordihull ), 45
ordicluster , 22
ordicluster (ordihull ), 45
ordiellipse (ordihull ), 45
ordigrid (ordihull ), 45
ordihull , 45, 50, 51
ordiParseFormula

(vegan-internal ), 76
ordiplot , 44, 45, 47, 50, 51, 54, 56, 63
ordiplot3d , 49, 50
ordirgl (ordiplot3d ), 49
ordisegments , 50
ordisegments (ordihull ), 45
ordispantree , 22, 23
ordispantree (ordihull ), 45
ordispider , 33, 50, 76
ordispider (ordihull ), 45
ordisurf , 11, 28, 52
ordiTerminfo , 13
ordiTerminfo (vegan-internal ), 76

orditorp , 53
orglpoints (ordiplot3d ), 49
orglsegments (ordiplot3d ), 49
orglspider (ordiplot3d ), 49
orgltext (ordiplot3d ), 49

pairs.profile.glm , 36
paste , 39
pca , 69
permuted.index (vegan-internal ),

76
permutest.cca , 13
permutest.cca (anova.cca ), 4
phyper , 78
plot , 38, 48
plot.anosim (anosim ), 2
plot.cca , 8, 9, 12, 13, 27, 45, 47, 48, 50,

51, 54, 55
plot.decorana , 45, 47, 48, 54
plot.decorana (decorana ), 15
plot.default , 54
plot.envfit (envfit ), 26
plot.fisherfit (fisherfit ), 29
plot.humpfit (humpfit ), 35
plot.metaMDS , 54
plot.metaMDS (metaMDS), 41
plot.prestonfit (fisherfit ), 29
plot.procrustes , 47, 48
plot.procrustes (procrustes ), 59
plot.profile.fisherfit

(fisherfit ), 29
plot.profile.glm , 36
plot.rad , 47
plot.rad (radfit ), 62
plot.radfit (radfit ), 62
plot.radline (radfit ), 62
plot.specaccum (specaccum ), 69
points , 53, 54, 56
points.cca , 12
points.cca (plot.cca ), 55
points.decorana (decorana ), 15
points.humpfit (humpfit ), 35
points.metaMDS (metaMDS), 41
points.ordiplot , 50, 51
points.ordiplot (ordiplot ), 47
points.procrustes (procrustes ), 59
points.radline (radfit ), 62
polygon , 45–47, 71
postMDS (metaMDS), 41
prcomp , 69
predict.cca , 12–14, 57
predict.decorana , 17
predict.decorana (predict.cca ), 57
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predict.humpfit (humpfit ), 35
predict.rda , 13
predict.rda (predict.cca ), 57
prestondistr (fisherfit ), 29
prestonfit , 65
prestonfit (fisherfit ), 29
princomp , 69
print.anosim (anosim ), 2
print.anova , 5
print.anova.cca (anova.cca ), 4
print.bioenv (bioenv ), 5
print.cca (cca ), 9
print.decorana (decorana ), 15
print.envfit (envfit ), 26
print.factorfit (envfit ), 26
print.fisherfit (fisherfit ), 29
print.humpfit (humpfit ), 35
print.mantel (mantel ), 40
print.metaMDS (metaMDS), 41
print.permutest.cca (anova.cca ), 4
print.prestonfit (fisherfit ), 29
print.procrustes (procrustes ), 59
print.protest (procrustes ), 59
print.radfit (radfit ), 62
print.radline (radfit ), 62
print.specaccum (specaccum ), 69
print.summary.bioenv (bioenv ), 5
print.summary.cca (cca ), 9
print.summary.decorana

(decorana ), 15
print.summary.humpfit (humpfit ),

35
print.summary.procrustes

(procrustes ), 59
print.vectorfit (envfit ), 26
procrustes , 6, 43, 44, 59
profile.fisherfit (fisherfit ), 29
profile.glm , 30, 37
profile.humpfit (humpfit ), 35
protest , 6, 41, 66
protest (procrustes ), 59

qqnorm , 65
qqplot , 31, 65
qr , 13
quasipoisson , 64

rad.lognormal , 30
rad.lognormal (radfit ), 62
rad.preempt (radfit ), 62
rad.veil , 30
rad.veil (radfit ), 62
rad.zipf (radfit ), 62

rad.zipfbrot (radfit ), 62
radfit , 31, 62
rank , 3, 66
rankindex , 6, 43, 44, 65, 79
rarefy , 70, 71
rarefy (diversity ), 23
rda , 4, 5, 7–9, 12, 14, 20, 21, 27, 32, 33,

46–48, 50, 55–58
rda (cca ), 9
read.cep , 66
renyi (diversity ), 23
residuals.cca (predict.cca ), 57
residuals.glm , 37, 64
residuals.procrustes

(procrustes ), 59
residuals.rda (predict.cca ), 57
rgl , 49–51
rgl.lines , 50
rgl.points , 50, 51
rgl.texts , 50, 51
rgl.viewpoint , 50, 51
ripley.subs (bioenv ), 5
ripley.subsets (bioenv ), 5
rug , 38

save.image , 51
scale , 6, 14
scatterplot3d , 49–51
scores , 27, 46–50, 52, 53, 60, 68, 80
scores.cca , 12–14, 60, 69
scores.cca (plot.cca ), 55
scores.decorana , 69
scores.decorana (decorana ), 15
scores.envfit (envfit ), 26
scores.metaMDS (metaMDS), 41
scores.ordiplot (ordiplot ), 47
segments , 46, 47, 61, 71
Shepard , 34, 35
spantree , 46
spantree (distconnected ), 21
specaccum , 69
specnumber (diversity ), 23
specpool , 30, 31, 71
specpool2vect (specpool ), 71
spenvcor , 14
spenvcor (goodness.cca ), 32
spider.cca (vegan-internal ), 76
sqrt , 43
step , 20, 21
stepacross , 8, 21–23, 42–44, 65, 66, 74, 79
stressplot (goodness.metaMDS ), 34
stripchart , 38
strsplit , 39
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substring , 39
summary.anosim (anosim ), 2
summary.bioenv (bioenv ), 5
summary.cca , 13, 14
summary.cca (cca ), 9
summary.decorana (decorana ), 15
summary.humpfit (humpfit ), 35
summary.procrustes (procrustes ),

59
summary.rda , 8
summary.rda (cca ), 9
summary.specaccum (specaccum ), 69
svd , 10
symbols , 28

terms , 13
text , 53, 54, 56
text.cca , 12
text.cca (plot.cca ), 55
text.decorana (decorana ), 15
text.metaMDS (metaMDS), 41
text.ordiplot , 50, 51
text.ordiplot (ordiplot ), 47

varechem (varespec ), 76
varespec , 76
vectorfit (envfit ), 26
vegan-internal , 76
vegdist , 2, 3, 6–9, 22, 23, 41–44, 65, 66, 74,

75, 77
vegemite , 79
veiledspec , 73
veiledspec (fisherfit ), 29
vif , 33, 58
vif.cca , 13, 14
vif.cca (goodness.cca ), 32

wascores , 41, 42, 44, 80, 81, 81
weights.cca , 14
weights.cca (ordihull ), 45
weights.decorana (ordihull ), 45
weights.rda (ordihull ), 45
wisconsin , 43, 44
wisconsin (decostand ), 18

xyplot , 63, 65
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