
CTFS R Manual Outline
August 9, 2004

1.0 Installing and Customizing the R environment
The R environment - what’s attached, what functions are available, how to load up
packages, (hopefully how to load up a CTFS package)

2.0 Objects and how to “address” them
Explanation of vectors, matrices, dataframes, arrays and lists; Discussion of components
of objects such a names (row, column, list) and how to address the objects.

3.0 Using the R Help Facility
How to read the help pages and get somewhere with R help.

4.0 File organization
Recommendation to use a system which will help ensure some order in the file location
and an ability to clean up files after an extensive analysis without fear of losing valuable
information.

6.0 Reading and Writing datafiles
Explanation of general knowledge of how to read and write datafiles as well as specific
CTFS file structures and CTFS functions

1.0 Installing and Customizing the R environment

This manual is written for use by CTFS colleagues using R in a Windows (version 95 or
later) operating system. Some information is provided that is specific to Mac OSX. The
vast majority of the user’s experience of the R environment will be identical across
platforms.

1.1 Installing R

All CTFS partners working on analyzing CTFS datasets should have the most recent
version of R installed on their computer. The R installation file can be downloaded from
the CRAN homepage http://cran.r-project.org/. Users should return to this web page to
keep track of changes and new releases of R.

From this website R users can easily update their R program. The R program can either
be installed from a binary (precompiled form) or from source files (compiled locally on a
user’s machine). If you have previously installed R as a binary, continue to update it in
the same form. If you have installed R by compiling source files locally, then do this for
updating. Do not mix locally compiled R with binary precompiled R updates or vice
versa.

As of writing this manual (August 2004), the most recent version of R for Windows and
MacOSX is 1.9.1 in both binary (precompiled) and source files.

The easiest and fastest method of installing R is to locate the link for the operating system
that you are using under the "Precompiled Binary Distributions" section of CRAN’s
homepage. The user should click on Windows (95 or later) and will then be prompted to
choose between two subdirectories. Choose base. The user should now see a directory
containing various R 1.9.1 files. To install the R program, the user should select
“rw1091.exe", the user should click on “rw1091.exe", and choose to open the file upon
completion of its download. This executable file (~20 MB) contains all of the relevant
information for completely installing R on a computer. A new box will open outside of
the internet browser entitled "Setup - R for Windows." The user must now manually
complete the installation and setup of R. Now the user will need to navigate through
several steps in which all of the default settings are appropriate, for example we
recommend that the user accept the default R directory location; choose to install all of
R’s components; accept the default selection of a Start Menu folder; and select all of the
additional tasks.

If R has installed correctly, a shortcut named "R 1.9.1" will appear on the user’s windows
desktop. This shortcut points to the file RGui.exe which is located in a folder named bin
in the R directory. The R directory is by default: c:\Program Files\R\rw1091 but to
eliminate any future confusion, the R directory location will henceforth be referred to as
$R_HOME. The R directory also contains ten other folders which contain all of the files
needed to run R. The folder named library contains sub-folders for each package that
automatically came with this version of R. Any package that is installed in the future,

http://cran.r-project.org/

including the CTFS package, will be installed into its own subfolder in the library.
More instructions on how to download and install R are available on the CRAN
homepage.

Installing R for OS is much the same. If using a precompiled binary form, chose the
"Precompiled Binary Distributions" section on CRAN’s homepage. Chose MacOS X
 (10.2.x and above). The chose R.dmg (1.9.1) and download this disk image (option-
click). Open and double click on "R-1.9.1.pkg" icon on the R.dmg disk image. Please
also read the ReadMe.txt file inside the disk image to understand if you have to install
further components.

1.2 Running R and Quitting R

To run R in Windows, select the shortcut to RGui.exe or the file itself. This will open
RGui which is a graphical user interface for running R. For MacOS you can put R into
the dock or an alias to R in a dock folder and run it from there.

Run R. A window called the R Console will open. R is interactive mode such that lines
of code are evaluated immediately upon input. Commands are entered at the R prompt
below the bar and the results of the command appear above. In R, a session begins each
time R Console opens and ends each time R is exited. The R workspace is all of the R
objects (discussed in Chapter 2,) that were created in the current, and possibly R sessions.
This is also known as the GlobalEnv.

To quit R, select Exit from the File menu or type ‘q()’ into the command line. R will
then ask the user whether he/she wants to save the workspace image. If you answer yes,
all of the R objects are saved into the file ".RData" in the default directory. These will be
available the next time R is started and you load in this save workspace. If you answer
no, all objects that have not been explicitly saved to a folder on disk will be deleted. (See
below for more details).

In most cases, the user should answer NO since starting a new session with an old
workspace means that much of the memory available for R is already used. Note that R
generally requires 512 RAM to run analyses of full CTFS datasets. The entire workspace
image or just specific R objects from the workspace image into a *.rdata file(s) outside of
the R environment. For example, the command:

> save(mydata,file="04Aug26.RData")”

saves the R object mydata into a file called "04Aug26.RData" located in $R_Home,
unlike ".Rdata", this file's R objects will not load and use memory automatically. The
workspace saved into any *.RData file can be restored by opening the *.RData file.

1.3 Important R Terms:

Ambiguity and uncertainty about the definitions of many R related terms is a source of

confusion and frustration for many CTFS colleagues. This confusion is also evident in
the R documentation produced by the R project; many concepts are given several names
and the same names are given to several different concepts. This section will try to
define some of these terms in a straightforward and clear manner. Let us know if these
definitions work for you and if they are used consistently in this manual and other
documentation.

The R Environment is meant to encompass everything that is currently accessible to the
user when R is opened. This includes the R Console, the R Window, the objects,
packages and help pages available to the user. It also includes files that are read into the
current R session using the appropriate R functions.

The R Environment is divided into search paths which contain all of the objects
(functions, variables, datasets, etc.) that the R Environment has available at any given
time.

Search Path 1, which is also referred to as the Global Environment and the Workspace
Image, is the location of all objects that are created at the R command line. Objects that
are “sourced” and “loaded” into R are also put into this search path. (See Section 1.5
Useful Functions for explanation of source() and load().)

Search Path 2, 3, 4, etc. are the location of all packages that are “installed” or “loaded”
into the R Environment as well as R objects that are attached to the to it. (See Section
X.x Useful Functions for explanation of attach().)

1.4 R Commands:

R is an expression language with a very simple syntax. It is case sensitive, so “A” and “a”
are considered different statements in R. For example,

> A = 2
> a = 1
> A
[1] 2
> a
[1] 1

All R commands can be classified as either expressions or assignments. An expression
is a command that is evaluated and printed but does not change the value of an object.

> 2 + 2
> 4

An assignment is a command that is also evaluated and the result is saved into an object
rather than displayed. The result can be displayed by properly addressing an object.

> a <- 2 + 2
 > a
 > 4

If a command is not complete at the end of a line, R will give a different prompt, by
default ‘+’ on second and subsequent lines and continue to read input until the command
is syntactically complete.

 >a <- 2 +
 > +

In R, the user can use two assignment operators (almost) interchangeably. Above, the
assignment operator used was “<-” but “=”, another assignment operator, could have
been used instead. There are differences in the behavior of “<-” and “=”. The “<-“ or “-
>” operators are pointers and the “=” is an assignment. But for most instances, they
behave the same way.

1.5 Useful Functions:

The following functions are used to control the contents of the search paths, allow objects
in the workspace to be saved to disk and provide summary information on the structure of
an object.

search(): displays the names all attached packages and R objects in all of the search
paths.

> search()
 [1] ".GlobalEnv" "file:bci9095.full.rdata"
 [3] "file:bci95.mult.rdata" "file:tst.bci9095.spp.rdata"
 [5] "package:CTFSAUG" "package:methods"
 [7] "package:stats" "package:graphics"
 [9] "package:utils" "Autoloads"
[11] "package:base"

The GlobalEnv is the first search path. There are 3 datafiles in the next search
paths (2 to 4). A test package of CTFS functions has been loaded into the 5th path.
Then the standard packages that are loaded when R is run occupy the remaining
paths (6 to 11).

ls(): displays the names of the objects in the search path specified by the argument, a
number, passed to the function. When used without an argument (default) the objects in
the GlobalEnv are listed. When used with a number, the objects in that search path are
listed.

 > ls()
 [1] "mort.out"

 > ls(2)
 [1] "bci9095.full"

 > ls(5)
 [1] "abundanceperquad" "assemble.demography" "fill.dimension"
 [4] "find.climits" "growth" "growth.dbh"
 [7] "growth.eachspp" "growth.indiv" "gxgy.to.hectindex"
 [10] "gxgy.to.index" "gxgy.to.rowcol" "index.to.gxgy"
 [13] "index.to.rowcol" "merge.census" "mortality"
 [16] "mortality.calculation" "mortality.dbh" "mortality.eachspp"
 [19] "pop.change" "recruitment" "recruitment.eachspp"
 [22] "rndown5" "rowcol.to.index" "select.dbhrange"
 [25] "split.data" "split.dbh" "split.grform"
 [28] "split.habitat" "text.to.rdata" "totalabund"
 [31] "totalabund.spp" "trim.growth" "unwind.matrix"

load(): searches (in the working directory unless otherwise specified by the user) for a
file matching the name (in quotation marks) and then copies the file into search path 1
(GlobalEnv). If the desired file is in the working directory then no path name is needed.
Otherwise, the full path and filename must be provided.

 > load("bci.spp.info.rdata")
 > ls()
 [1] "bci.spp.info" "mort.out"

After a file (*.rdata) is loaded, it can be addressed by its name and the “rdata” extension
is not a part of its name. For more information about how to organize your R related files
read chapter 4.

attach():searches (in the working directory unless otherwise specified by the user) for a
file matching the name (in quotation marks) and then copies the file into search path 2.
All objects in search path 2 and higher are shifted one search path higher. After a file or
database (*.rdata) is attached, it can be referenced without its “.rdata” extension.

 > attach("bci.spp.info.rdata")
 > search()
 [1] ".GlobalEnv" "file:bci.spp.info.rdata" "file:bci9095.full.rdata"
 [4] "file:bci95.mult.rdata" "file:tst.bci9095.spp.rdata" "package:CTFSAUG"
 [7] "package:methods “ "package:stats" "package:graphics"
 [10] "package:utils" "Autoloads" "package:base"

Note that bci.spp.info.rdata is now is search path 2 and all of the preexisiting objects
have been “pushed down” one more search path. Compare with the use of search()
above. After a file (*.rdata) is loaded, it can be addressed by its name and the “rdata”
extension is not a part of its name. For more information about how to organize your R
related files read chapter 4.

source(): This function reads R code from a file. In this way, r can automatically get
large chunks of code or functions at once. The code is saved into search path 1.

 >source(“basal.area.r”)
 > ls()
 [1] "ba" "ba.ind" "ba.perquad" "ba.tot"
 [5] "ba.tot.spp" "bci.spp.info" "mort.out" "pop.change.ba"

Note that the file basal.area.r contained 6 functions. These functions are now all
available in the GlobalEnv along with the preexisting objects. (See use of ls() above).

str(): displays the structure (i.e. its type and associate information about the type: list,
data frame, vector, etc.) of an R object as well as parts of the object itself to allow the
user to address and use the object properly. The name of the object that you want to see
the structure of must be within the R environment and must be provided to the function as
an argument.

> str(bci.spp.info)
`data.frame': 318 obs. of 8 variables:
 $ sp : chr "acacme" "acaldi" "acalma" "ade1tr" ...
 $ genus : chr "Acacia" "Acalypha" "Acalypha" "Adelia" ...
 $ species : chr "melanoceras" "diversifolia" "macrostachya" "triloba" ...
 $ family : chr "Fabaceae:Mimos." "Euphorbiaceae" "Euphorbiaceae"
"Euphorbiaceae" ...
 $ grform : chr "U" "S" "U" "U" ...
 $ repsize : int 4 2 2 10 4 20 16 4 4 20 ...
 $ breedsys: chr "B" "M" "M" "D" ...
 $ maxht : chr "6" "6" "5" "5" ...

save(): writes an R object(s) to an external file on disk. The argument(s) are the names of
object(s) in the R environment to be saved as well as a specification of the file to which
to save. The full path must be specified if the current directory is not where the file
should be placed. The file name must be in quotes.

 > save(bci.spp.info, tst.bci95.spp.rdata, myspp, file = “SppAug04.rdata”)
 > save(mort.out, file=”mort.out.rdata”)

rm(): removes R object(s) from the search path. By default, it removes from search path
1, but by passing the function a value for its parameter “pos”, one can use the function to
remove objects from the other search paths.

 > rm(bci.spp.info, tst.bci95.spp.rdata) #removes objects from search path 1
 >rm(myspp, pos=3) #removes myspp from search path 3

detach(): detaches a database, i.e., removes it from the search() path of available R
objects. Usually, this is either a data frame which has been attached or a package which
was required previously. It does not detach objects from search path 1 nor can it be used
to detach the package called base. By default the object in search path 2 is removed.
Provide the search path number to remove an object from a specific location. When an
object is removed, all remaining objects advance one search path.

> detach()

history(): is used to display a history of the previous commands in the workspace. By
default, the function displays the last 25 commands in a separate window. For example,

> history()

If the user wants to see a specific number of commands, he/she must pass the number of
commands as an argument in the function call. For example, the following will display
the last 10 commands:

> history(10)

Previous commands can be displayed directly in the R console box with the use of the
back arrow key. The previous commands can be edited and reentered.

gc(): causes a garbage collection, or memory reallocation, to take place.
Although memory allocation and reallocation takes place automatically, sometimes
things can get “boloxed” up in memory by accidental overwriting or pointers to memory
locations being lost. This is not often obvious to a user until file contents change
unexpectedly or an object that was accessible becomes inaccessible without cause

 > gc()

1.6 Using a Text Editor for Programming

R Console is very convenient when you wish to immediately see the results of a single
command line. However, oftentimes the user may wish to write several lines of code
before seeing any results. In this situation, the user could write a series of commands in a
text editor, save the commands as a simple text file in $R_Home with the extension “.r”
and then source() this file to make its contents available in R. This is how all R functions
are written.

Windows comes with two simple text editors: WordPad and Notepad. There are also
numerous additional freeware and shareware text editors that can be downloaded off of
the internet, such as Alphatk (http://www.santafe.edu/~vince/Alphatk.html), Winedt
(http://www.winedt.com/) and EMacs
(http://www.gnu.org/software/emacs/emacs.html#Obtaining). For the MacOS X, AlphaX
or Emacs work are both powerful text editors and have capacity to keep track of complex

function development projects.

1.7 Installing and Loading Extra Packages

A long-term goal of CTFS is to develop a package distribution of its functions, datasets
and documentation. The package is not ready for distribution.

Packages that do not come pre-installed into R are generally distributed as compressed
files for Windows users. In order to use one such package, a user should uncompress, or
extract, the file into $R_HOME\library. This should create a folder under library named
after the package name.

Occasionally, the extractive process creates an extra folder bearing the packages name
into which the actual package folder and all of its files are placed. It is necessary to
eliminate this extra folder so that the path to the package is: $R_HOME\library\package
name rather than $R_HOME\library\package name\package name in order for R to
recognize the package as installed.

Once the package is installed in the $R_HOME\library, the package must be attached to
the current R session. Do this selecting the Packages menu. And then select the “Load
Package…” option. A box will appear that lists each package contained in the user’s
$_Home\library folder. The user should highlight the name of the package (varies based
on version) and select OK.

For MacOS X, there is the Packages menu that provides options for installing and
loading packages and datasets. Packages that have been downloaded on the local
machine can be installed either as compressed files, as source or as precompiled packages
(see options in Install from local files). Installed packages are placed in
$R_HOME\library. The Package Manager menu attaches an installed package. The
same is true for Datasets Manager. Both provide a window with a checkbox and a single
line (title) package description. Check the packages that you wish to attach.

library() loads a package from $R_HOME/library into the current R Environment.

> library(“CTFSAUG”)

This loads the entire contents of the CTFSAUG package into the GlobalEnv. library() is
a load() command not an attach() command.

Additional packages are maintained and distributed by CRAN (http://cran.us.r-
project.org/src/contrib/PACKAGES.html)

1.8 Customizing your R Environment

The various characteristics of the R Environment are set in R preferences which is used
each time R is run. This file can contain many user specific preferences including

http://cran.us.r-project.org/src/contrib/PACKAGES.html
http://cran.us.r-project.org/src/contrib/PACKAGES.html

commands to load certain package(s) is into one’s workspace upon initiation of a new R
session. A Using a text editor, the user should open the file
$R_HOME\R\rw1091\etc\Rprofile. At the bottom of the file, he/she should add the
following line: “library("Package Name")”. We strongly recommend that users do not
change anything else in Rprofile.

Alternatively, one can make a mystartup.r file that contains commands you would like to
have executed for each new session of R. This can be the first file you source upon
running R. Here is an example of some of useful things to do to make the R environment
easy to work in. The lines in such a file can be easily changed to accommodate the
changing needs of an ongoing analysis or function development project. All lines that
begin with “#” are comments and are not executed.

File: CTFS.development.setup.R

install and load most recent version of CTFS package AND survival
library(survival)
library(CTFSAUG)

attach datasets by changing working directory and attaching desired files
setwd("/Users/phall/Documents/Research and Datasets/CTFS R&D/CTFS
datasets 2003/BCI")
attach("bci.quad.info.rdata")
attach("bci.spp.info.rdata")
attach("bci9095.full.rdata")
attach("bci95.mult.rdata")
attach("bci95.full.rdata")
attach("tst.bci95.full.rdata")
attach("tst.bci9095.full.rdata")

run help for html files
help.start()

set working directory to the one where functions under development are being
kept.
setwd("/Users/phall/Documents/CTFS_Package_Development/programs/R
programs development")

2.0 R objects and how to “address” them

R operates on objects which are named data structures. This section explains the main
types of these data structures used by CTFS functions: vectors, matrices, arrays, data
frames, and lists.

2.1 Vector
A vector is a set of contiguous cells containing data of a single type. R has five basic
vector types: logical (true or false), integer (1,2,3…), real (65.354, 89.23, 12.3…),
complex (2 + 3i, …), and string or character (“A”, “B”, “C”, “termam”, “vismma”,
“PSYDEF” ...). Single numbers, such as 4.2, and strings, such as "four point two" are
vectors of length 1. The type “complex” will not be futher dealt with.

Vectors can be created using c(). c() concatenates, or combines, all the arguments (i.e.
objects inside the parentheses) forms them into a vector. The following commands will
create a vector consisting of the five numbers:

> example.vector <- c(10.4, 5.6, 3.1, 6.4, 21.7)
> example.vector
 [1] 10.4 5.6 3.1 6.4 21.7

The cells of a vector are addressed through indexing operations. There are a variety of
way to express the index of an R object. Some of them produce identical results but one
form may be easier to understand in a given situation than another. Other forms are
specific and can only be used in one manner.

The first index operator is [], the square brackets. For example the n-th element can be
accessed using the notation: x[n].

>example.vector[5]
> [1] 21.7

The nth to the nth+x element can be address using “:” to indicate range.

> example.vector[2:5]
[1] 5.6 3.1 6.4 21.7

Note what happens when the range specified is invalid for the vector:

> example.vector[2:7]
[1] 5.6 3.1 6.4 21.7 NA NA

Vectors can be used in arithmetic expressions. The arithmetic operations are performed
element by element, i.e. are performed individually on each element on the vector. The
elementary arithmetic operators are the usual +, -, *, / and ^. In addition all of the
common arithmetic functions are also available: log, exp, sin, cos, tan, sqrt, etc..

> example.vector2 <- example.vector + 3
 > example.vector2
[1] 13.4 8.6 6.1 9.4 24.7

2.2 Matrix
A matrix can be thought of as a two-dimensional vector. Like a vector, a matrix can only
contain a single type of data, either numeric or character. Like vectors, matrices can be
used in arithmetic expressions and the operation is performed on the entire matrix as is
done in matrix algebra. (This topic will not be dealt with here. See any linear algebra
text book or the R manual: “Introduction to R; Arrays and Matrices”.)

A matrix can be created with matrix().

> matrix(data, nrow, ncol, byrow=F, dimnames)

data : value(s) with which the matrix will be filled.
nrow : the number of rows.
ncol : the number of columns
byrow : a logical value (either TRUE or FALSE). If TRUE , the matrix is filled by rows,

i.e. values are inserted in order into the matrix row by row rather than by columns.
Otherwise, by default the matrix is filled by columns.

dimnames : dimensions, i.e. a name for the rows and a name for the columns. By default,
dimnames is set to NULL, i.e. no names are given to the rows and columns.

The following R command sets up a five element by five element matrix named
example.matrix with values 1:25 filled by columns with the values 1 to 25. The contents
of the matrix are displayed:

> example.matrix <-matrix(1:25, nrow = 5, ncol = 5, byrow = FALSE, dimnames
= NULL)
> example.matrix

 [,1] [,2] [,3] [,4] [,5]
[1,] 1 6 11 16 21
[2,] 2 7 12 17 22
[3,] 3 8 13 18 23
[4,] 4 9 14 19 24
[5,] 5 10 15 20 25

Here’s what happens when the values of 1 to 25 are filled into the matrix when byrow
=TRUE:

> example.matrix<-matrix(1:25,nrow=5,ncol=5,byrow=TRUE,dimnames=NULL)
> example.matrix
 [,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 5

[2,] 6 7 8 9 10
[3,] 11 12 13 14 15
[4,] 16 17 18 19 20
[5,] 21 22 23 24 25

In the previous example, all five of the arguments were supplied in the function call to
matrix(). However, because ncol, byrow and dimnames were passed their default values,
they could have been omitted from the function call. The exact same matrix could have
been made using the following command:

> example.matrix.col <-matrix(1:25, nrow = 5)
> example.matrix.col

 [,1] [,2] [,3] [,4] [,5]
[1,] 1 6 11 16 21
[2,] 2 7 12 17 22
[3,] 3 8 13 18 23
[4,] 4 9 14 19 24
[5,] 5 10 15 20 25

The cells of a matrix are addressed and displayed through indexing operations. Since a
matrix has 2 dimensions, both rows and column have to be specified. The first value is
for rows, the second for column. If ALL rows or ALL columns are displayed, then a “,”
is used.

Here are several examples of how to address example.matrix:

> example.matrix[1,3] # 1st row, 3rd column
[1] 11
> example.matrix[2,] # 2nd row, all columns
[1] 2 7 12 17 22
> example.matrix[,4] # all rows, 4th column
[1] 16 17 18 19 20
> example.matrix[1:2,3] # rows 1 to 2, 3rd column
[1] 11 12

> example.matrix[1:2,1:2] The first 2 rows and first 2 columns
 [,1] [,2]
[1,] 1 6
[2,] 2 7

Matrices can be assigned row and column names. R recognizes two methods for
assigning row and column names: 1) passing a list of the names (as character strings in
quotation marks) as an argument to the matrix() function or 2) use the function
dimnames() to alter a preexisting matrix. For example:

> cols<- c("Uno","Dos","Tres","Cuatro","Cinco")

> rows<- c("Un","Deux","Trois","Quatre","Cinq")
> dimnames(example.matrix)<-list(rows,cols
> example.matrix

 Uno Dos Tres Cuatro Cinco
Un 1 6 11 16 21
Deux 2 7 12 17 22
Trois 3 8 13 18 23
Quatre 4 9 14 19 24
Cinq 5 10 15 20 25

Once assigned the contents of rows and columns can be assessed by the names of the row
and column in quotes or by their position.

> example.matrix["Quatre","Dos"]
[1] 9
> example.matrix[4,2]
[1] 9

Another way of creating matrices is to bind vectors together using the function rbind ()
which takes vectors as rows and “binds” them together to make a matrix. See the R help
pages for further information on rbind() and cbind().

2.3 Arrays:
An array is a more general data construct that can have anywhere from zero to eight
dimensions. In fact, vectors are special cases of one-dimensional arrays and matrices of
two-dimensional arrays. Arrays can be used in arithmetical expressions. The general
syntax of the array function is as follows:

> array (data, dim, dimnames)

data : the value(s), in the form of a vector, with which the array will be filled.
Dim : a vector containing the dimensions of the array. Note that dim()will provide the

number of dimensions on an array.
dimnames : the names of each of the dimensions. By default, dimnames() is set to

NULL, i.e. no names are given to the dimensions.

As with matrices, it is not necessary to pass the function array() all of its arguments.

Here is an example of how to create a three-dimensional array in which the first
dimension has 3 elements, the second dimension has 4 elements and the third dimension
has 2 elements filled with the numbers 1:24:

> example.array<-array(1:24, c(3,4,2)) # (rows, columns, sets)
 > example.array # displays the array

, , 1 # first set
 [,1] [,2] [,3] [,4]

[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

, , 2 # second set

 [,1] [,2] [,3] [,4]
[1,] 13 16 19 22
[2,] 14 17 20 23
[3,] 15 18 21 24

Data are addressed and displayed from an array by specifying the desired position of each
dimension. Here are several examples of how to access certain positions within our
array:

> example.array[1,4,2] # displays the value in the first row,

fourth column of the second set
[1] 22
> example.array[1,,1] # displays the values in the first dimension row of

the first set
[1] 1 4 7 10

Like matrix(), array() allows the user to name the dimensions of an array. array()can be
passed a list of the desired names or dimnames() can be used (see matrix explanation).
Once assigned, the dimensions can be addressed and displayed by their names or by their
position.

2.4 Data Frames:
A data frame consists of an ordered collection of objects known as its components. The
components of a data frame can be of different types (vectors or matrices) but each must
have the same length. This means the number of values in each row must be the same.
Some value must be present for each column for each row. Data frames are differentiated
from other two-dimensional arrays because variables of different types can be mixed and
the length of the rows must be identical. Data frames are extremely useful for creating
and storing CTFS datasets because of the variety of variables in these datasets and the
ease with which a data.frame handles this variation.

The general syntax of the data.frame function is as follows:

> data.frame(data1, data2, …)

The notation (data1, data2, …) means that the function will accept as many datasets as it
is passed as arguments.

In the following example, a data frame of six components is constructed. The
components are the 5 columns of example.matrix and the single column of

example.vector created in the previous examples. Each column of example.matrix
becomes a component of the data frame.

> example.dataframe <- data.frame(example.matrix, example.vector)
> example.dataframe # displays the data frame
 X1 X2 X3 X4 X5 example.vector # generated component names
1 1 6 11 16 21 10.4
2 2 7 12 17 22 5.6
3 3 8 13 18 23 3.1
4 4 9 14 19 24 6.4
5 5 10 15 20 25 21.7

As with the previous R objects, the dim() can be used to assess the dimensions of a data
frame.

 > dim(example.dataframe)

[1] 5 6

The first value returned is the number of rows, the second the number of columns. Note
that length() returns only the length of the rows, that is the number of columns.

> length(example.dataframe)
[1] 6

When a data frame is created, names are created for its components based upon the
names of the objects from which the data frame was constructed. In the above example,
the dimensions of example.matrix and example.vector have already been named.
Displaying the entire data frame results in:

> example.dataframe
 Uno Dos Tres Cuatro Cinco example.vector
Un 1 6 11 16 21 10.4
Deux 2 7 12 17 22 5.6
Trois 3 8 13 18 23 3.1
Quatre 4 9 14 19 24 6.4
Cinq 5 10 15 20 25 21.7

These names of the components can be modified using the assignment function
dimnames() for both dimensions at the same time or with rownames() and colnames() for
only rows and columns, respectively.

> rownames(example.dataframe)
[1] "Un" "Deux" "Trois" "Quatre" "Cinq"

> colnames(example.dataframe)
[1] "Uno" "Dos" "Tres" "Cuatro" "Cinco"
"example.vector"

> dimnames(example.dataframe)
[[1]]
[1] "Un" "Deux" "Trois" "Quatre" "Cinq"

[[2]]
[1] "Uno" "Dos" "Tres" "Cuatro" "Cinco"
"example.vector"

To get a quick version of the contents of a data frame, its names and structure (number of
rows and column), use str()

> str(example.dataframe)
`data.frame': 5 obs. of 6 variables:
 $ Uno : int 1 2 3 4 5
 $ Dos : int 6 7 8 9 10
 $ Tres : int 11 12 13 14 15
 $ Cuatro : int 16 17 18 19 20
 $ Cinco : int 21 22 23 24 25
 $ example.vector: num 10.4 5.6 3.1 6.4 21.7

str() tells you that the object is, indeed, a ‘data.frame’ that it has 5 observations (rows)
and 6 variables (columns). It provides the names for each column (but not the rows), the
type of object in each column (int means an integer) and provides some of the values. In
this case example.dataframe is small enough that its entire contents are displayed. But on
larger data frames, all columns and their type will be provided but only a few rows of
their values. Row names are not displayed. Rows are often not named other than by
reference to their number (order) in the data frame.

Data in a data frame can be addressed and displayed in a greater variety of ways then
from a matrix. Here are some examples using example.dataframe.

> example.dataframe[1:3,]
 Uno Dos Tres Cuatro Cinco example.vector
Un 1 6 11 16 21 10.4
Deux 2 7 12 17 22 5.6
Trois 3 8 13 18 23 3.1

> example.dataframe[,1:3]
 Uno Dos Tres
Un 1 6 11
Deux 2 7 12
Trois 3 8 13
Quatre 4 9 14
Cinq 5 10 15

> example.dataframe[1:3,1:3]
 Uno Dos Tres
Un 1 6 11
Deux 2 7 12
Trois 3 8 13

In addition the operator “$” can be used to address columns by column name. This
cannot be used for row names.

> example.dataframe$Uno
[1] 1 2 3 4 5

> example.dataframe$Deux
NULL
> example.dataframe$Uno[3]
[1] 3

However, addressing a data frame as is more typical of some programming languages for
addressing arrays is NOT valid. The incorrect and correct form is shown below.

> example.dataframe[1][2]
Error in "[.data.frame"(example.dataframe[1], 2) :
 undefined columns selected

> example.dataframe[1,2]
[1] 6

2.5 Lists:
A list is another R object consisting of an ordered collection of objects known as its
components. Like data frames, the components of a list do not have to be of the same
type. A list has is more flexible than a data frame because its components may also have
different structures, i.e. each component may have a different length or row size. For
example a list of 3 components could contain a vector of length 5 filled with logical
values, a single character string, and a matrix of dimension 4 x 8 filled with numbers.

The general syntax of the list function is as follows:

 > list(...)

Where the arguments supplied (…) are the objects which will become the components of
the list.

Because lists can include many different structures, it is very important to learn how to
address each component, to address elements of each component and to understand what
portion of the list is being addressed. Single brackets “[]” and double brackets “[[]]” are
used individually or together to address different components of a list and different

elements of its components, respectively. The components of lists also can have names
including row and column names for elements where appropriate (when a component is a
matrix, array or data frame). Lists can also be composed of lists which had components
of their own. The “[[]]” address different “levels” of the large list.

This takes some practice, so let’s work with an interesting list and see how to address its
contents. The dataset tst.bci9095.spp is a list of data frames. If the user has the CTFS
package loaded on his/her machine, he/she can directly load such an example dataset into
his/her search path. Otherwise, attach the dataset which is located in
$R_HOME/library/CTFS/data.

The following command and display use the functions str() to show the structure and
basic organization of this list.

> str(tst.bci9095.spp) # str() displays the structure of the object
List of 3
 $ alsebl:`data.frame': 11128 obs. of 13 variables:
 ..$ tag : num [1:11128] -27784 47 49 68 71 ...
 ..$ gx : num [1:11128] -9 984 985 986 1000 ...
 ..$ gy : num [1:11128] -9 342 329 276 278 ...
 ..$ dbh0 : num [1:11128] NA 437 228 278 269 360 580 NA 311 348 ...
 ..$ dbh1 : num [1:11128] NA 426 228 277 318 368 580 NA 318 351 ...
 ..$ pom0 : num [1:11128] 0 2 1 1 1 2 2 0 2 2 ...
 ..$ pom1 : num [1:11128] 0 3 1 1 1 2 2 0 2 2 ...
 ..$ date0 : num [1:11128] 0 3702 3632 3627 3627 ...
 ..$ date1 : num [1:11128] 0 5382 5396 5390 5390 ...
 ..$ codes0 :Class 'AsIs' chr [1:11128] "*" "B" "*" "*" ...
 ..$ codes1 :Class 'AsIs' chr [1:11128] "*" "B" "*" "*" ...
 ..$ status0:Class 'AsIs' chr [1:11128] NA "A" "A" "A" ...
 ..$ status1:Class 'AsIs' chr [1:11128] NA "A" "A" "A" ...
 $ psycde:`data.frame': 160 obs. of 13 variables:
 ..$ tag : num [1:160] 9472 15954 20840 25559 31664 ...
 ...
 $ socrex:`data.frame': 1133 obs. of 13 variables:
 ..$ tag : num [1:1133] 12330 12359 12444 12616 12636 ...
 ...

This list consists of 3 objects: List of 3.
These objects are each data frames: $ alsebl:`data.frame'.
The first data frame for alsebl has 11128 rows and 13 columns.
The second data frame for psycde has 160 rows and 13 columns and etc.

Note that only the complete description of the first data frame is provided because all of
the other data frames have the same structure though their dimensions vary.

length () returns the number of components in the list which is the number of data frames.

> length(tst.bci9095.spp)
[1] 3

names() returns the names given to the components in a list in this case, each data frame
contains the trees for a single species, so the names of the data frames are the species
names.

> names(tst.bci9095.spp)
[1] "alsebl" "psycde" "socrex"

Here are some examples of how to access a component in this list:

> tst.bci9095.spp[2]
$psycde
 tag gx gy dbh0 dbh1 pom0 pom1 date0 date1 codes0 codes1 status0 status1
261491 9472 993.0 101.8 NA NA 0 0 3613 5354 DN * D D
261492 15954 843.6 126.0 NA NA 0 0 3572 5318 DS * D D
...

In this example [2] selects and displays the second component from the list
tst.bci9095.spp, which is a data frame of the species psycde. This component is given the
name $psycde in the list. Note that, in reality all 160 of the elements of this component
would display rather than the abbreviated 2 elements that are displayed above. If the user
asks R to list this data frame the entire R console would be filled with data. So take care
with what is requested for display!

> tst.bci9095.spp[2:3]
$psycde
 tag gx gy dbh0 dbh1 pom0 pom1 date0 date1 codes0 codes1 status0 status1
261491 9472 993.0 101.8 NA NA 0 0 3613 5354 DN * D D
261492 15954 843.6 126.0 NA NA 0 0 3572 5318 DS * D D

$socrex
 tag gx gy dbh0 dbh1 pom0 pom1 date0 date1 codes0 codes1 status0 status1
288000 12330 964.4 421.0 NA NA 0 0 3634 5380 * * D D
288001 12359 964.1 435.0 128 117 1 1 3634 5380 * * A A

The [2:3] selects a range of components in positions 2 through 3 in the list. Note that
there is no "," inside the brackets because [2:3] represents only one dimension of
components in the list: the names of the species. Again, this returns ALL of the rows, or
trees, for each species; 160 for psycde and 1133 for socrex.

This is an incorrect use of the single brackets,

> tst.bci9095.spp[2,]

Error in tst.bci9095.spp[2,] : incorrect number of dimensions

because the single brackets refer to the components of the list, not the elements of the
components.

Addressing the elements of the components within the list directly is done using “[[]]”.
For example,

> tst.bci9095.spp[[2]]
 tag gx gy dbh0 dbh1 pom0 pom1 date0 date1 codes0 codes1 status0 status1
261491 9472 993.0 101.8 NA NA 0 0 3613 5354 DN * D D
261492 15954 843.6 126.0 NA NA 0 0 3572 5318 DS * D D
...

refers to the second component in the list and returns the components of that component,
which is in this case a data frame. Using “[[]]” refers directly to the object as if that
object were not a component of the list at all. See how the output differs with the use of
“[]” or “[[]]”.

> tst.bci9095.spp[2]
$psycde
 tag gx gy dbh0 dbh1 pom0 pom1 date0 date1 codes0 codes1 status0 status1
261491 9472 993.0 101.8 NA NA 0 0 3613 5354 DN * D D
261492 15954 843.6 126.0 NA NA 0 0 3572 5318 DS * D D
…

tst.bci9095.spp[2], refers to the data frame as the second component within the list
tst.bci9095.spp. This is evident because the name of the component is the first output.
While, tst.bci9095.spp[[2]], refers to the data frame as an individual and separate data
frame. When the data frame is referenced with the [[]], its elements can now be accessed
by the user. For example, the following commands display the first five values of each of
the thirteen elements within the data frame which is the second component of the list:

> tst.bci9095.spp[[2]][1:5,] # displays the 1st 5 values of all of the elements
 tag gx gy dbh0 dbh1 pom0 pom1 date0 date1 codes0 codes1 status0 status1
261491 9472 993.0 101.8 NA NA 0 0 3613 5354 DN * D D
261492 15954 843.6 126.0 NA NA 0 0 3572 5318 DS * D D
261493 20840 955.2 104.7 NA NA 0 0 3620 5342 DS * D D
261494 25559 920.8 62.8 NA NA 0 0 3598 5340 * * D D
261495 31664 901.4 199.0 NA NA 0 0 3613 5369 DN * D D

Again, the second set of brackets (“[1:5,]”) refers to the components of the data frame.
In this case the first 5 rows (1:5) with all columns (,) are returned.

If a user were to attempt to access the elements of a list’s component without the use of
the component’s name or of double brackets, the user would get an error as follows:

 > tst.bci9095.spp[2][1:5,]
 Error in tst.bci9095.spp[2][1:5,] : incorrect number of dimensions

The following example addresses the first through fifth values of the fourth and fifth
elements of the data frame that is the second component of the list tst.bci9095.spp:

> tst.bci9095.spp[[1]][1:5,4:5]
 dbh0 dbh1
4218 NA NA
4219 437 426
4220 228 228
4221 278 277
4222 269 318

Like with data frames, one may omit the use of “[[]]” in order to access the elements of
the components within a list by substituting the use of “$” and the name of each object.
For example:

> tst.bci9095.spp$psycde
 tag gx gy dbh0 dbh1 pom0 pom1 date0 date1 codes0 codes1 status0 status1
261491 9472 993.0 101.8 NA NA 0 0 3613 5354 DN * D D
261492 15954 843.6 126.0 NA NA 0 0 3572 5318 DS * D D
…

This call returns the same results as the call tst.bci9095.spp[[2]]. Similarly, the call
tst.bci9095.spp$psycde[1:5,4:5] returns the same values as tst.bci9095.spp[[2]][1:5,4:5].

Here’s a way to see the first 5 rows of alsebl, all columns are displayed.

> tst.bci9095.spp$alsebl[1:5,]
 tag gx gy dbh0 dbh1 pom0 pom1 date0 date1 codes0 codes1 status0
status1
4218 -27784 -9.0 -9.0 NA NA 0 0 0 0 * * <NA> <NA>
4219 47 984.3 341.6 437 426 2 3 3702 5382 B B A A
4220 49 985.3 328.9 228 228 1 1 3632 5396 * * A A
4221 68 985.7 275.8 278 277 1 1 3627 5390 * * A A
4222 71 999.9 277.6 269 318 1 1 3627 5390 M * A A

Or only a given column can be displayed, using the column names. Note that this returns
a vector (just dbh0 of alsebl). If the “[]” were not used, all dbh0 values for all 11128
trees would be displayed. This can be controlled by using the “[]”, but without the “,”,
because the dbh0 is only a vector.

> tst.bci9095.spp$alsebl$dbh0[1:5]

[1] NA 437 228 278 269

A list may have almost any type of object as a component. In these examples we address
data frames only but a list can also contain a component of various lists. Accessing data
from a list within a list is more complicated.

3.0 Using the R Help Facility
The purpose of this chapter is to orient the user to the format and terminology used in the
R help facility so that the help pages for R functions become a substantial resource for the
user. The R help pages are very similar in form and terminology to Unix man pages.

3.1 Help Pages
The R help facility contains a collection of help pages each of which provides a
description and explanation of the use and arguments of a particular function. Help pages
are an invaluable resource in R. As the library of CTFS functions has grown, workshop
instructors have begun developing help pages which document each of the CTFS
functions. At this time a set of stand along HTML pages are available that provide a
quick reference guide to the use of many CTFS functions (http://ctfs.si.edu/workshop).

In the future, a CTFS R package will have help pages for CTFS functions and for general
information on types of analyses. These manual chapters and teaching tools will also be
integrated into the package. The help pages can be accessed within and R session or
directly by using the html version of the files. The links among files should work under
both circumstances.

When the future CTFS package is loaded into the R environment, its help pages are made
available to the user through R just as any other loaded R package.

Help pages appear as simple text “man” pages by default. If help.start() is run (often
included in the R preferences file or a startup file), then help pages in HTML format
appear. From here it is assumed that the HTML format is available.

3.2 Accessing Help Pages
Help pages can be accessed from within the open R environment by:

(1) selecting "HTML help” from the HELP menu
(2) ?topic
(3) help(topic)
(4) help.search(“concept”)

Selecting R HELP from the Help Menu will open an html file with links to installed R
packages (including the future CTFS package). Let’s follow the links through a test run
of the CTFS R package.

 Open R Help, click on “Packages”

An index of all available R packages that came with the R installation and any locally
installed packages appears.

 Click on “CTFSAUG”

http://ctfs.si.edu/workshop

An index of all available functions in the test version of the CTFS package, CTFSAUG,
appear with a short (title) description of each function. You can follow these links to
help pages on individual files. Note that at the top of the page “overview” and
“directory” information is provided.

 Click on “overview”

An index to CTFSAUG “vignettes” appears. A “vignette” is a document that can take on
just about any form and any content. These documents are (by default) viewed in pdf
format. In the case of CTFSAUG, the vignettes are these manual chapters.

Explore the links and get an understanding of how the help pages are interconnected.

From the R Console, ?topic or help(topic) will bring up the html pages for the specific
function that is named topic. If the name is not correctly typed you get:

 > help(mort)
 Error in help(mort) : No documentation for 'mort' in specified packages and

libraries: you could try 'help.search("mort")'

If you don’t know the name of the function, try the help.search(“topic”) form of help. R
will provide a list of help pages that contain information on topic. Chose the ones you
want and each will appear in a separate browser window.

For a topic specified by special characters, the special characters must be enclosed in
double or single quotes. The use of double quotes makes the special characters a
character string. Examples of such special characters are: “!”, “%%”, “&” and “[[”. See
the help pages of these special characters to learn about what they do. The use of double
quotes is also necessary to find the help pages for words which have special syntactic
meaning in R. For example syntactic words include: “if”, “for”, “while”, “repeat” and
“function”. See the help pages of these words to learn what they do. For example:

> ?"[["
> help("[[")
> ?"if"
> help("if")

3.3 Interpreting Help Pages
Help pages, including the CTFS help pages, follow a general format that closely
resembles that of UNIX man pages. The names of the function and of its package are
written at the top of each help page. Each help page contains a brief description of the
function’s application, and is divided into sections. The most important sections are:
Description, Usage, Arguments, Details, Value and Examples. The names and number of
sections vary from help page to help page depending on the author of the help page. The
help page of the CTFS function growth() will be used to illustrate how to read a help
page.

The Title is a single sentence description of the function and is what appears in the index
lists for function description.
Annual Growth Rates by Categories (User defined groups)

The Description section consists of a short paragraph which details an explanation of the
function and its purpose.

Description

Computes annual growth rate for all trees or any user defined categorization of trees.
Two growth rates can be computed: simple change in dbh over time and relative growth
rate. Growth rates can also be evaluated for unrealistically high and low values and
removed from the summary values. Growth rate in mm dbh per year, relative growth rate
in % change in dbh per year, standard deviation or 95% confidence limits, and sample
size are provided. The dataset must have at least 2 censuses to compute growth.

The Usage section contains basic format for invoking a function which is called the usage
line. It consists of the function name followed by all of the function’s arguments inside
parenthesis. For example, a usage line would appear in the following format:

function name (argument 1, argument 2, argument 3, …)

Usage
growth(datafile, cens1 = "0", cens2 = "1", rounddown = FALSE,
method = "I", stdev = FALSE, err.limit=4, maxgrowth=75, split1 = rep("all",
dim(get(datafile))[1]), split2 = rep("all", dim(get(datafile))[1]))

Argument(s) are the variable(s) provided to a function when it is used either when typed
into the R console by the user or when used by another function (“called” from inside
another function). Arguments provide functions with the values that are needed to
perform their purposes. Oftentimes, some of the arguments specified in the usage line are
set equal to specific values or variables. These are referred to as “default” values. If no
default values are provided, then the function must be used with a name for the variable
without a default value

Because the arguments cens1, cens2, rounddown, method, stdev, split1 and split2 are all
set equal to values in the usage line, the user can infer that these arguments have default
values. The function growth () must, as a minimum, be passed the name of a datafile.

Here is the detailed description of some of the arguments in growth():

datafile: "name" of file (in quotes) must be a dataframe with trees as rows and contain at
least 2 censuses

cens1: census number, value used to identify measurements from the first census for

computing growth such as dbh0.

cens2: census number, value used to identify measurements from the second census for
computing growth such as dbh1.

rounddown: logical value in caps. When TRUE, if either of census is < 55, then the floor
of the dbh value / 5 is provided. When FALSE, no change in the dbh is made.

The datafile must be provided and no defaults exist. cens1 and cens2 are optional
because defaults are provided. The defaults are the values that these variables are set to
in usage. In this case, “0” and “1”. The same is true for rounddown. Read through the
rest of the arguments. A user can define values for arguments with “=” or use the
defaults, which ever is appropriate.

Look down at the bottom of the page for examples on how to use the function and its
arguments. Note that these examples (should be) can be run in the R session if the
appropriate datafiles are available.

1. Default use of growth()

> growth("tst.bci9095.full") -> growth.out

The Details section generally describes the process and computations that a function
undergoes as it runs. For example, if the function is computing a complex mathematical
equation this section would explain the mathematics performed by the function. Help
Page authors often include additional miscellaneous information in this section.

The Value section explains the value that the function returns, i.e. the output of the
function. Many functions return complex data and this section is crucial to interpreting
the different aspects of that data. Although the user might be able to guess what these
variable names represent, this section of the help page clearly explains what each name
actually represents

In this example, growth() returns a list and the component of the list and their names are
provided so the user can address them properly to view the values that growth()
computes. The names on the list are specified by the $.

In the case of growth() some of the complexities of the split1 and split2 variables are
explored. The variables appear to be very complicated in the usage statement. However,
this is only because the function is computing default, effectively “empty” values for
these variables unless the user provides otherwise. Here is the example of providing user
defined values for an argument of some complexity.

The See Also section contains links to functions that are related to growth (). Reading
these help pages will further the user’s understanding of this function.

The Examples section provides examples of how the user would call the function in the
R console. For example, if the user has the CTFS package, appropriate datasets and
objects loaded in the R environment, which can be copied from CTFS help pages and
paste them unmodified into the R console. Here is the example for creating a vector to
use for calculating mean growth rates for each species instead of the default of an overall
mean growth rate for all trees.

> tst.bci9095.full$sp->spp.vct
> dim(tst.bci9095.full)
[1] 12421 14
> length(spp.vct)
[1] 12421

A vector of species names is made from the dataset such that the vector has a row for the
name of each tree and in the same order as the trees in the dataset.

> growth.szclass("tst.bci9095.full",split1=spp.vct) -> growth.out

The function is run using the user created value of split1. Note that all the user does is set
split1 = spp.vct, the new variable created. All the information provided by the function
the default value for split1 is producing is ignored and only the contents of spp.vct are
used in the function.

Here is what the function returns. Note that it is, indeed, a list.
> growth.out
$rate
 all
alsebl 0.5776014
psycde 0.1742765
socrex 1.6349520

$N
 all
alsebl 7111
psycde 20
socrex 483

$clim
 all
alsebl 0.03320377
psycde 0.16768391
socrex 0.25021546

$dbhmean

 all
alsebl 49.93489
psycde 13.55000
socrex 91.02070

3.4 Viewing Functions in R
The source code of functions that are currently loaded into any R environment can be
viewed in R by typing the function’s name without the (). The source code for functions
not currently loaded into R can be viewed by opening the file in which the function is
saved using a text editor; i.e. Note Pad The individual functions of a locally installed
package can be viewed in $R_HOME\library/R-ex

3.5 Resource:

The complete documentation of growth()
growth {CTFSAUG}
R Documentation

Annual Growth Rates by Categories (User defined groups)

Description

Computes annual growth rate for all trees or any user defined categorization of trees. Two growth rates can
be computed: simple change in dbh over time and relative growth rate. Growth rates can also be evaluated
for unrealistically high and low values and removed from the summary values. Growth rate in mm dbh per
year, relative growth rate in % change in dbh per year, standard deviation or 95% confidence limits, and
sample size are provided. The dataset must have at least 2 censuses to compute growth.

 Usage
growth(datafile, cens1 = ""0", cens2 = "1", rounddown = FALSE,
method = "I", stdev = FALSE, err.limit=4, maxgrowth=75, split1 = rep("all",
dim(get(datafile))[1]), split2 = rep("all", dim(get(datafile))[1]))

Arguments

datafile
"name" of file (in quotes) must be a dataframe with trees as rows and contain at least 2 censuses

cens1
census number, value used to identify measurements from the first census for computing growth such as
dbh0.

cens2
census number, value used to identify measurements from the second census for computing growth such as
dbh1.

rounddown
logical value in caps. When TRUE, if either of census is < 55, then the floor of the dbh value / 5 is
provided. When FALSE, no change in the dbh is made.

method

character indicating the type of growth rate to be calculated. When "I" the annual change in dbh is
provided. When "E" the relative growth rate is provided. see CTFS.growth for more details on method.

stdev
logical value in caps. When TRUE, the standard deviation of growth is provided. When FALSE, a 95%
condfidence interval is provided. The confidence limits are not computed.

err.limit
number of standard deviations: used for determining if an individual tree growth rate is too high or low for
inclusion.

maxgrow
maximum absolute growth rate, mm per year: used for determining if an individual tree growth rate is too
high for inclusion.

split1
a vector of categorical values of the same length as datafile which groups trees into classes of interest for
which growth values are computed. This vector can be composed of charcters or numbers.

split2
a second vector of categorical values of the same length as datafile which groups trees into classes of
interest for which growth values are computed. This vector can be composed of charcters or numbers.

Details

See CTFS.growth for details on the computation methods of growth rates and associated functions.

 Any two censuses on a datafile can be used. They do not have to be sequential, only that cens1 has to be
before cens2.

 The name of the input datafile datafile must be in quotes which is different from many other functions.

 The name of the vector for split1 or split2 must NOT be in quotes.

 If you have problems running this function, make sure you have entered the argument values for datafile,
cens1, cens2. properly.

 Value

growth returns a list of lists with the following named components. Values for each category of the split
vectors are provided.

 $rate
the annual growth rate in mm per year or % per year, type determined by the argument method

$N
the number of trees used to compute growth rate

$clim
the 95% confidence limit based on a normal distribution

$dbhmean
the mean dbh in mm for trees used to compute growth rate

 If the vector(s) split1 and split2 are provided by the user, then growth rates and associated statistics are

computed for each value of the vectors. The vectors are nested so that growth rates is computed for each
category of split2 within each category of split1

Author(s)

Pamela Hall, documentation: Rick Condit, function

 See Also

growth, growth.dbh, growth.eachspp, growth.indiv, rndown5, trim.growth, split.habitat, split.grform,
split.dbh CTFS.mortality, CTFS.abundance, CTFS.recruitment, CTFS.growth

Examples
Not run:
1. Default use of growth()

> growth("tst.bci9095.full") -> growth.out
> growth.out
$rate
 all
all 0.6436158

$N
 all
all 7614

$clim
 all
all 0.03529664

$dbhmean
 all
all 52.44563

2. Create a vector of species names for each tree to compute growth
rates for each species.

> tst.bci9095.full$sp->spp.vct
> dim(tst.bci9095.full)
[1] 12421 14
> length(spp.vct)
[1] 12421

> growth.szclass("tst.bci9095.full",split1=spp.vct) -> growth.out
> growth.out
$rate
 all
alsebl 0.5776014
psycde 0.1742765
socrex 1.6349520

$N
 all
alsebl 7111
psycde 20
socrex 483

$clim
 all
alsebl 0.03320377
psycde 0.16768391
socrex 0.25021546

$dbhmean
 all
alsebl 49.93489
psycde 13.55000
socrex 91.02070

3. Create 2 vectors: the first of habitats based on the quad location
of each tree and the second of tree species names.

> split.habitat(tst.bci9095.full,bci.quad.info,by.col="hab")->habitat.vct
> length(habitat.vct)
[1] 12421
> tst.bci9095.full$sp->spp.vct
> length(spp.vct)
[1] 12421
> growth("tst.bci9095.full",split1=spp.vct,split2=habitat.vct)->growth.spp.hab.out
> growth.spp.hab.out[1]
$rate
 1 2 3 4 5 6 7 8
alsebl 0.4952 0.4877 0.6492 0.5578 0.6279 0.5222 0.6118 0.5503
psycde 0.0000 NA 0.7222 -0.2095 0.2067 NA 0.2019 0.0353
socrex 1.2016 1.7317 1.4579 3.38964 1.5580 1.8466 1.6783 2.0268
End(Not run)

[Package Contents]

4.0 File organization, Data, Functions and Results
CTFS colleagues working with R generate many large datasets, graphs and tables. A lack
of organization for this data leads to wasted memory, storage space and time as well as
misplaced and lost files. Although there is not only one correct way to organize CTFS R
files, we recommend here a system which will help ensure some order in the file location
and an ability to clean up files after an extensive analysis without fear of losing valuable
information.

4.1 Basic File Organization of R
The first step to organizing personal R files is to develop an understanding of where
general R packages, functions, manuals and documentation are located.

The R directory is the directory into which all of the R files are placed upon installation,
i.e. $R_HOME, contains 10 sub-folders with various files. The actual R program file,
Rgui.exe, is located in $R_HOME. The file .rData which is created and modified when
the user saves their workspace is also located in $R_HOME. In addition to the files
needed to run R, $R_HOME also contains help documentation as well as various other
files.

$R_HOME’s sub-folder “library”, contains all of the R packages installed on a given
computer. Each installed package is contained within its own folder. As explained in
Chapter 1, a package is a bundle of functions, documentation, and datasets. Upon
installation, R includes more than 30 packages each with its own folder in the library
folder. Each package folder contains a sub-folder called “R.” This folder contains all of
functions specific to a particular package. Oftentimes, all of a package’s functions are
contained within a single file. Most package folders also contain a sub-folder called
“html” in which all of the package’s html help pages are stored. These are the html help
pages that the user can access using the R help facility described in chapter 3. The user
can also directly open these files by selecting the files themselves. This will open a
Windows Explorer window outside of R.

In the MacOS the file structure is substantially different and depends upon whether R was
installed for a single or multiple users. In general, it is not necessary to know where R is
actually installed. The object is now where the user’s files are kept.

When R is installed for multiple users it will appear in a folder sw in the root directory.
There are many layers of folders within this that contain programs, libraries, etc that R is
dependent upon. R is usually located quite a few layers down in the R.framesworks
folder. Multiple versions of R can be maintained. Further down is the library folder that
contains the packages installed with a given version of R. Do not move nor alter any of
these folders or files.

The “home” directory for R in MacOSX is not a useful directory to know. The “home”
directory of a user is useful as it is where all the user’s files are kept and where the files
used by R, created by the user and locally installed packages is located. “Local”
installation means that the package was only installed for a single user. Packages can

also be installed for all users but this involves using the Unix terminal and won’t be
covered here.

A locally installed R package (like the future CTFS package) appears in
~user/Library/R/library. (“~user” refers to the home directory of a given user). The
installed package contains numerous folders. Explore them and see where the R
functions are kept, the html pages, manual chapters and the source files for help pages
and functions. The help pages and manual chapters can be directly accessed from here or
used during an R session. The latter is much easier to do since this is what the software
was intended for.

4.2 CTFS Specific Files
During a CTFS Analytical Workshops, functions, datasets, tables and output from
analyses are created. Keeping track of these is critical to proper interpretation of results
and learning how to use CTFS functions. It is important to be able to separate work in
progress from more finished work that needs to be preserved. CLEAN UP! Keep the
number of “temp” files down by frequently reviewing them and getting rid of them. If
you use “tmp” or “tst” in the file name, then it will be much easier to find them in the
directories.

We highly recommend that users name their datasets, functions and results files clearly
and with consistency. Use a code to indicate the type of information in the file. “res” for
results from a function, “mort.res” for results from a mortality analysis. Put a date in the
file name to indicate when it was created. Don’t rely on the date of the file as opening
under some circumstances can change the file date.

Consider keeping a log of files created and how they were obtained. This can be done in
the “comments” section in file names in the MacOSX.

As a suggestion: Create a directory system that is specific to the 2004 workshop, the
functions that will be distributed, functions that you will be writing, results you will be
generating, and non-R files that are part of a manuscript. We suggest a folder labeled
“CTFS 2004”. Within this folder consider the following folders as “topics”.

Keep the FDP permanent datasets in a “remote” location from the directories where
functions are being written and results being generated so that the datasets will not
accidently get overwritten.

“Functions2004”: This folder should contain at least three subfolders: that differentiate
between the functions provided at the beginning of the workshop, functions that are
created during the workshop and functions that are “finalized” during the workshop. For
instance: Initial, Development, Final may serve.

The Initial folder should include functions distributed at the beginning of the workshop
and could include documentation. When the user is creates a new version of a function

which already exists in this folder the user should delete the old version if it is no longer
in use.

The user may also wish to have functions from previous workshop. These can be kept in
folders with the workshop year in the title eg. “Functions2003”, etc. Be very careful
with redundant function names. Functions from previous years that have been revised are
best removed if they are useless or have their name changed to indicate the year of their
creation.

When a CTFS Package is created, the proliferation of functions and documentation will
be considerably eased as the Initial version of each function will be kept in the package’s
folder in the R library. These functions will be available for revision, but not necessarily
for immediate incorporation into the package.

 “Results”: This folder is meant to contain all of the results of the CTFS user’s work.
This folder should be further divided by topics of analysis, for example, mortality,
growth, or neighborhood analysis. Each of these topic subfolders should contain all of
the user’s results pertaining to that topic, for instance, datasets (output from functions),
graphs, tables, papers, etc. Unlike the other two folders, “Results” could contain files
that aren’t directly associated with R.

Here is an example of a directory structure. The file names are in italics. Note that not
all folders have been filled in with file names.

CTFS Datasets
 Final Versions
 Lambir
 BCI
 bci9095.full.rdata
 bci9095.spp.rdata
 bci95.mult.rdata
 bci.spp.info.rdata
 bci.quad.info.rdata
 Yasuni
 Working Versions

CTFS2004
 Functions
 Initial
 Functions
 HTML
 Development
 Final
 Results
 Habitat_Dynamics
 Mortality
 Mort.spp.res
 Mort.spp.smalltree50.res
 mort.habclass.res
 Mort.habclass.smalltree50.res
 Growth
 Graphs
 Hab8.plot
 Hab6.plot
 Specialists.plot
 Tables
 Species by Habitat6
 Species by Habitat6 smalltrees
 Specialists by Habitat6
 Summary
 Methods1.hab defined
 Methods2.mort&growth rules
 Synopsis specialists by hab6
 Density_Dependence
 Similar_Species

6.0 Reading and Writing Datafiles

Data can be entered using the keyboard (short datasets or test files) or by use of read and
write data functions. To use the read and write functions in R, a database created in data
management software must be converted to a tab delimited text file without quotes.
Include the column headings (variable names) as the first line of the file. Use database
and spreadsheet software that provide this option, either as part of the “Save As” or
“Export”.

6.1 Reading Datafiles

There are several ways to read large text files into R datasets. In addition to the
information provided here, please read the R help pages for each function. The named
files to be read into R must be located by an explicit path name or be in the working
directory of the current R session. Use setwd() to make the working directory the one
containing the data file to be read in. The following examples assume that the working
directory for the R session is the directory in which the data files are located. If not, be
sure to use the entire path in quotes when specifying the file name.

scan()
reads data from a text file into a vector or a list of vectors directly from the console. The
general syntax of scan() is:

>scan(file , what , sep , quote , skip)

file : name of the input file to read data from. The path should be included if it is not the

default path, i.e. the working directory. If the file is specified as '""', then input is
taken from the keyboard.

what : specifies the type of data to be read: logical, integer, numeric, character, or list.
sep : specifies what the field separator is, which by default, is a blank space between 2

fields as known as “white space”. Other common separators are tab (“\t”) and
commas (“,”)

quote : specifies the set of quoting characters used to define where one character string
begins and ends.

skip : designates the number of lines of the input file to skip before beginning to read the
data values, as in the case of column names, which you would skip.

Scan returns a list of vectors with the types given by the types of the elements in 'what'.
This provides a way of reading columnar data. For example:

scancensdata=function(alsebl.txt)
 {
 data.read=scan(censdata,skip=1,what=list("","","","","","",""))
 tag=as.numeric(data.read[[1]])
 dbh=as.numeric(data.read[[2]])
 status=data.read[[3]]

 pom=as.numeric(data.read[[4]])
 stems=as.numeric(data.read[[5]])
 date=as.numeric(data.read[[6]])
 codes=data.read[[7]]

return(data.frame(tag=tag,dbh=dbh,status=status,pom=pom,stems=stems,
date=date,codes=codes))
 }

This function reads in your text datafile, censdata, containing the fields tag, dbh, status,
pom, number of stems, date, and codes. It skips the first row containing the names of the
columns, and specifies that the data be read in as a list of character vectors. The vectors
are converted to numeric when applicable and a data.frame is returned as output. Note
that the column names as provided in the text file are not included in the output except
with the explicit inclusion of the column names in the data.frame statement.

Here is a datafile called alsebl.txt that can be made into a dataset accessible by R that
can be read in using scan(). This file is white space delimited.

tag dbh status pom stems date codes
000047 426 A 3 1 5382 B
000049 228 A 1 1 5396 *
000068 277 A 1 1 5390 *
000071 318 A 1 1 5390 *
000073 368 A 2 1 5382 B
000089 580 A 2 1 5382 B
000092 -1 D 0 -1 5387 *
000109 318 A 2 1 5382 B
000122 351 A 2 1 5377 B
000138 246 A 2 1 5377 B
000169 404 A 2 1 5377 B
000172 308 A 2 1 5377 BQ

Using the above function, scanscensdata() to create a dataframe Rdata file.

> alsebl=scancensdata("alsebl.txt")
> alsebl[1:5,]

 tag dbh status pom stems date codes
1 47 426 A 3 1 5382 B
2 49 228 A 1 1 5396 *
3 68 277 A 1 1 5390 *
4 71 318 A 1 1 5390 *
5 73 368 A 2 1 5382 B

> str(alsebl)

`data.frame': 11128 obs. of 14 variables:
 $ tag : num -27784 47 49 68 71 ...
 $ sp :Class 'AsIs' chr [1:11128] "alsebl" "alsebl" "alsebl" "alsebl" ...
 $ gx : num -9 984 985 986 1000 ...
 $ gy : num -9 342 329 276 278 ...
 $ dbh0 : num NA 437 228 278 269 360 580 NA 311 348 ...
 $ dbh1 : num NA 426 228 277 318 368 580 NA 318 351 ...
 $ pom0 : num 0 2 1 1 1 2 2 0 2 2 ...
 $ pom1 : num 0 3 1 1 1 2 2 0 2 2 ...
 $ date0 : num 0 3702 3632 3627 3627 ...
 $ date1 : num 0 5382 5396 5390 5390 ...
 $ codes0 :Class 'AsIs' chr [1:11128] "*" "B" "*" "*" ...
 $ codes1 :Class 'AsIs' chr [1:11128] "*" "B" "*" "*" ...
 $ status0:Class 'AsIs' chr [1:11128] NA "A" "A" "A" ...
 $ status1:Class 'AsIs' chr [1:11128] NA "A" "A" "A" ...

Notice that the fields tag, dbh, pom, stems, and date are numeric, while status and codes
are character fields. The left most numbers on each line are row numbers and serve as
row names once the data frame is created.

read.table()
reads a file in table format and outputs a data frame. This be accomplished with a single
line command line making it much easier to use than scan(). This function is appropriate
for the majority of text datasets that have been created by a spread sheet. However,
read.table() is an inefficient way to read in very large numerical files, especially those
with many columns. The scan() function is faster and takes up less memory. In fact
read.table() actually uses scan to read the file, and then processes the results of
scan().The difference between these two functions includes the format the variables in
the output file take on. By default in read.table(), numeric fields are read in as numeric
variables and character fields are read in as factors. The general syntax of read.table() is:

>read.table(file, header, sep, quote, dec, row.names, col.names, as.is, skip)

file : name of the input file to read data from.
header : a logical value indicating whether the input file contains the names of the

variables as its first line.
sep : specifies what the field separator is, which by default, is a blank space between 2

fields as known as “white space”. Other common separators are tab (“\t”) and
commas (“,”)

quote : specifies the set of quoting characters used to define where one character string
begins and ends.

dec : designates the character used for decimal points. In the CTFS datasets the period is
used (“.”).

row.names : a vector of names, or a single number giving the column of the table which
contains the names of the rows. The default is sequentially numbered rows.

col.names : a vector of names for the variables. The default is a '"V"' followed by the
column number eg V1 V2 V3….

as.is : a logical value. FALSE defines the default behavior, which is to convert the
character variables to factors. Designate as.is = TRUE to suppress conversion of
character variables to factors, leaving them “as is”.

skip : designates the number of lines of the input file to skip before beginning to read the
data values, as in the case of column names, which you would skip.

Here is a text file called bci.spp.info.txt that can be made into a dataset accessible by R
and can be read in using read.table() . The file is tab delimited text, with no quoting
characters and contains a header row with the variable names. The character variables
are to remain as characters and are not to be converted to factors.

Example:
sp genus species family grform repsize breedsys maxht
acacme Acacia melanoceras Fabaceae:Mimos. U 4 B 6
acaldi Acalypha diversifolia Euphorbiaceae S 2 M 6
acalma Acalypha macrostachya Euphorbiaceae U 2 M 5
ade1tr Adelia triloba Euphorbiaceae U 10 D 5

>bcispp=read.table(file=“/datasets/bci/spplist.txt”, as.is=T, header=T, sep="\t",
quote="")

6.2 Writing Datafiles

Once an R dataset has been created, you may want to continue using it in future analyses.
If you quit an R session without saving the workspace or saving specific objects, you will
lose all objects created in the current session. Instead of recreating the R datasets every
time an R session begins, you will want to save them and be able to call them up in a later
session.

The best way to accomplish this is to save the created file in your directory structure so
that it exists when you exit R.

Alternatively, especially when in a hurry, save the current workspace and loading it again
in the next session and the datafile will be available. Remember, that until the file is
saved into your directory structure, it does not exist permanently on your disk

save()
saves an R object to a specified file on disk which can be called up at a later date using
the load() or attach(). The general syntax is:

 > save(…., file)

.… : a list of the names of the objects to be saved.
file : name of the file on disk, in quotes with the suffix .rdata. By default the file is saves

in the working directory. Use setwd() to change the directory or include the full
path of the folder where you want to save the file.

Save the R file alsebl created above in the working directory
 > save(alsebl,file=”alsebl.rdata”)

Or in an explicitly provided path /R/results/ folder:

> save(alsebl, file=”/R/results/alsebl.rdata”)

A binary file called alsebl.rdata will be created in the /R/results/ folder, that is portable
across all R platforms (Windows, MacOS, Linux). The name of the file for the R session
will be the file name used when it was created in R. The saved name is the name of the
file on disk which always includes the .rdata suffix. These names DO NOT have to be
the same, though it greatly eases remembering what each file contains (see Chapter 4 on
file management).

load()

To call up this same file in the next R working session use:

> load(“/R/results/alsebl.rdata”)

or if the file is in the current working directory:

 > load(“alsebl.rdata”)

The R file “alsebl” will be available in the first environment. You can also use the “Load
Workspace” option under “File” in the menu bar to load the file.

attach()

this effectively does the same thing as load() but the file is placed in a different location
within the R session. It is places in environment #2 also referred to as R search path #2.

> attach(“/R/results/alsebl.rdata”)

By default, the R file “alsebl” will be available in the second environment (ls(2)). Once
attached or loaded, the variables in alsebl can be accessed by giving their names alone.

write.table()

This function is used to export a data frame to a text file for use in other software, such as
MS Excel or Word. Remember, R datasets are binary files and are not readable by other
software without conversation to a text file. If the R dataset to export is not a data frame,
this function will try to convert it to a data frame first. The general syntax is:

>write.table(x, file = "", append = FALSE, quote = TRUE, sep = " ",
 na = "NA", dec = ".", row.names = TRUE, col.names = TRUE)

x : name of the data frame to be exported. If x is not a data frame, the function will try to

convert it to a data frame.
file : the name of the file (in quotes) where the data frame is to be saved. The path should

be included if you want to save the file in a folder that is not the default.
append : a logical value which specifies what to do if file already exists. If 'TRUE', the

output is appended to the existing file, if 'FALSE', the file is overwritten,
destroying all previous data.

quote : a logical value or a numeric vector. If 'TRUE', all character and factor variables
will be surrounded by double quotes. If 'FALSE', nothing is quoted. If it is a
numeric vector, its elements are taken as the indices of the columns to quote.

sep : the separator to use to separate the field values within each row. Common field
separators are blank spaces, commas, tabs, or semicolons.

na : the string to use for missing values in the data. By default, it is assigned the string
“NA”, but you may assign it any other character.

dec : the character to use for the decimal point. The most common characters used are “.”
or “,”.

row.names : either a logical value indicating whether the row names of the data frame are
to be written, or it can be assigned a character vector of row names to be written.

col.names : either a logical value indicating whether the column names of the data frame
are to be used, or it can be assigned a character vector of column names to be
written.

To export an R table called bci.mort.spp as a text file to the /bci/mortality/ folder use:

> write.table(bci.mort.spp, file="/bci/mortality/spp.mort.txt", quote=F, sep="\t")

This creates a tab-delimited text file, with no quotes surrounding the character variables,
called spp.mort.txt. This text file can be called up in MS Word, MS Excel, or any other
database management software.

6.3 Creating CTFS Datasets

6.3.1 Preparing Text Datasets

Primary Files

In previous workshops, the datasets at each site were set up as separate species text files
under several folders:

- In the \census folder, the species files contained the location information for each
tree: tag, gx, gy.

- In the \census0 folder, the species files contained the census information from the
first census: tag, dbh (diameter at breast height), status code, pom (point of
measure), number of stems, date of measurement (Julian dates), and other site-
specific codes.

- Sites with recensus data had folders called \census1, \census2, and so on with
measurement data from each recensus.

Currently, however, instead of separate species files, the datasets should be set up as one
large text file for each census with all the trees together, in order of species. These files
will be referred to as the full text datasets, named using the following pattern:

Siteyear(s).full.rdata

For example, the BCI 1990 enumeration is named: bci90.full.rdata
The BCI 1990 and 1995 merged enumeration file is named: bci9095.full.rdata
The BCI 1985 to 1995 (3 censuses) file is named: bci85to90.full.rdata

The files for each of the census should include the same exact number of records and
should be in exactly the same tree order. This means that as trees die they are NOT
removed from a census dataset. When trees are recruited, they are added into ALL
previous censuses.

FORMAT

The columns in these full text datasets include:

tag : the number of the tree. Each record of this file should refer to one tree. All multiple

stem measurements other than the main stem should be moved to the multiple
stem file.

sp : the 4 to 6-letter species code. Every species code should appear in the species file
described below.

gx, gy : the x and y coordinates within the plot.
dbh : the diameter measurement from the current census.
pom : point of measure of the diameter.
date : date of measurement in Julian dates, i.e. number of days since a fixed date (we

suggest 1/1/80 when BCI, the first plot, was established).
codes : codes that each site wants to keep for later analyses or explanations.

Following are more detailed explanations of these variables.

tag : Each record in the dataset refers to one individual, identified by the tag number.
There should be no duplicate tag numbers. Tag numbers should always be in
identical and numerical order in all datasets.

sp : All species codes should be valid and included in the species dataset described

below. There shouldn’t be any extra species codes either in these datasets or in the
species list. All valid morphospecies should appear in the species list.

gx, gy : All gx and gy coordinates should fall within the range of the coordinates of your

plot. If a location is unknown, it should be given a code of –9. If any coordinate
falls exactly on the rightmost or uppermost border, change it to 1 decimal less.
For example, for a plot 1000 x 500 m, make sure that your gx coordinates go from
0 to 999.9 and your gy coordinates from 0 to 499.9.

dbh : Dbh should be above 10 mm in all cases where the tree is alive. For multiple-

stemmed plants, the largest dbh should appear in this dataset, the rest of the
measurements should appear in the multiple stem file (see below). The following
dbh codes should be used otherwise:

 0 - if the tree is alive, but its main stem broke off and its dbh is below 1 cm,
 or its stem is under 1.3 m. This is used in the case of resprouts also.
–1 - if the tree died in a later census.
–2 - if the tree had not entered the census yet but will in a later census.
–9 - if the dbh measurement was missed and is unknown.
5 - For Pasoh only, a dbh of 5 refers to trees that were alive and were >=10
 but were not measured.

pom : Pom refers to the point of measurement of the diameter. Pom is used when we

calculate growth rates. All trees ≥1 cm dbh should be given a pom code of 1 the
first time they enter a census, and in all subsequent censuses if the height at which
the dbh was measured does not change. If the diameter of the tree is measured at
a different height or at another stem (as in the case of multiple-stemmed trees) in
a subsequent census, the pom should be increased to the next number. This may
happen in trees with buttresses where the height at which the diameter was
measured changed, in trees whose main stem broke off or died and whose largest
stem is another one, or in trees whose main stem died but have resprouts. Trees
that have not entered the census yet, trees whose dbh is missing, or trees that have
died should all be given a pom of 0 (zero).

date : Dates refer to the date when the individual was measured. They should be julian

dates, calculated from the number of days since January 1st,1980 (the day the first
census at BCI began). Make sure the dates are all in the correct format before
converting them to julian dates. Some countries specify the month before the day,
while others specify the day before the month. Make sure it is consistent
throughout the dataset. Check that the dates fall within the range of the census
interval. It is very common to find the wrong year entered.

codes : Codes refer to any codes you have in your database that you want to keep and

may want to use in your analyses. They should not have spaces between them. Put
in underscores, periods, or any other character if you want to separate the codes.

ERROR CHECKING

Following are other inconsistencies to check in those sites with recensus data.

Number and order of records:

Make sure all tag numbers are in exactly the same order in each of your full datasets.
There should be the same number of records in all your census datasets.

Screen the dbh remeasurements:

You should recheck all dbhs that are smaller (allowing for some shrinkage or slight
measurement error) or abnormally larger than the previous census. A dbh may be smaller
than the previous census if the main stem broke off or died, or if the height at which the
measurement was taken changed. If so, make sure that it is annotated and increase the
pom to the next larger number.

If you do find an error in a previous dbh measurement, do not change the previous
measurement in your main database, since you will be estimating. Keep the
measurements, make a note of the problem, and let each scientist/analyst make their own
decision on what to do with the error.

For plots with 3 or more censuses, verify that all dead trees remain dead in the later
censuses. If a tree was found alive in a later census, the tag number may be incorrect or
you may have to change the previous “dead” code to “alive” and change the dbh to –9
(missing).

For plots with 3 or more censuses, verify that all recruit trees are indicated as to be
recruits in earlier censuses.

SUPPORT FILES

Besides the full text datasets, each site should also prepare the following files.

Species information file: site.spp.info.txt

This file contains the information for each species found at each site. Each species is a
row and the columns are the information about each species. Every single species code
that appears in your full datasets should appear in this list (including all morphospecies)

and every species code that appears in this species list should appear in your full datasets.
The file should have the following columns:

sp : the four to six-letter species code,
genus : the genus name
species : the species name
family : the family the species belongs to
grform : the growth form of the species, i.e. shrub, understory tree, mid-sized tree,

canopy tree.
repsize : the reproductive dbh (cm) of the species
breedsys : breeding system, i.e. bisexual, dioecious, monoecious, polygamous, etc.
maxht : maximum height (m) attained by the species.

All columns should have something filled in for every record and there should be no
spaces within each column. If your species name consists of 2 or more words, for
example, make sure to insert an underscore, dash or period in the space between the
words.

The first 5 columns should be filled in as best as possible. No columns should be left
blank. If a species has not been identified yet, put “Unidentified” or “Unknown” in the
relevant columns (family, genus, species). In the cases where information is missing, put
in a –1 or –9 in the columns for numeric fields (repsize, maxht) and a ‘*’ in the character
fields (grform, breedsys).

Any other information that is identified with a species can be placed into this file. For
instance, timber type, pioneer status etc. Classification of species that is derived from
analyses can also be kept here such as the degree of habitat specificity that can be
determined by using the torus habitat analysis. These classifications of species can be
used in further analyses.

An rdata file should be made from this text file and saved in the same directory that the
site rdata census files are kept. See read.table() and save() functions above. Save the file
as site.spp.info.rdata. eg. bci.spp.info.rdata.

Quadrate information file: site.quad.info.txt

This file contains information about each 20 by 20 m quadrate. Each quadrate is a row
and the columns are the information about each quadrate. There must be a row for each
quadrate. There are 1250 rows for a standard 1000 by 500 m CTFS plot. At a minimum
this file should contain the elevation data (m) for each 5 meter interval of the plot in order
of x and y. In addition, slope and convexity can be added for use in habitat analysis. The
elevation file should be tab-delimited. The columns are:

x : x coordinate of tree (east-west axis of plot)
y : y coordinate of tree (north-south axis of plot)
elev : elevation in m a.s.l.

slope : degrees (see “torus” analysis for computation)
convex : degrees (see “torus” analysis for computation)

The results of any form of habitat classification can also be put into this file. For
instance, the “torus” habitat analysis can be used to provide 8 classes of habitat and these
are assigned to each quadrate.

An rdata file should be made from this text file and saved in the same directory that the
site rdata census files are kept. See read.table() and save() functions above. Save the file
as site.quad.info.rdata. eg. bci.quad.info.rdata.

Multiple stem file: siteyear.mult.txt

There should be one multiple stem file for each census. Each file should include at least a
tag and dbh column. Each multiple stem file includes all stem measurements of all
multiple-stemmed individuals for that census, excluding the measurement of the largest
main stem, which is in the full database. The multiple stem files do not include the largest
stem measurement of each tree. The multiple stem files from each census will not
necessarily have the same number of records nor the same tag numbers, unlike the full
datasets for each census. At this time the multiple stem files are named: mult0 (first
census), mult1 (second census), etc.

An rdata file should be made from this text file and saved in the same directory that the
site rdata census files are kept. See read.table() and save() functions above. To be
consistent with the naming of other files, save the file as siteyear.mult.rdata. eg.
bci95.mult.rdata.

6.3.1 Preparing R Datasets

Once your text datasets are cleaned up, checked for errors and inconsistencies, and in the
correct format, make them into rdata files.

Once your tab-delimited text file (with no quotes) is ready with the appropriate column
headings, create the full dataset in R with the following command:

> siteyear..full=read.table(file=”FILENAME”, as.is=T, header=T, sep="\t",
quote="")

where site refers to the site (bci, yasuni, sinharaja, hkk, etc.), year refers to the census
year, and FILENAME refers to the name of your tab-delimited text file. Remember to
include the path in the FILENAME if your file is not found in working directory.

Similarly, to create a tab-delimited species text file with no quotes to an R species
dataset, use the following command:

> site.spp.info=read.table(file=”FILENAME”, as.is=T, header=T, sep="\t",
quote="")

To create an R multiple stem dataset:

> siteyear.mult0= read.table(file=”mult0.txt”, as.is=T, header=T, sep="\t",
quote="")

To create the R elevation file:

> site.quad.info=read.table(file=”FILENAME”, as.is.=T, header=T, sep=”\t”,
quote=“”)

You may then use this file to create an elevation matrix with the CTFS R function
readelevdata().

Split datasets by species

After the R full datasets are created, you can create a list of dataframes separated by
species with the CTFS R function called split.fulldata().

> siteyear.spp=split.fulldata(PLOT0.full)

This contains the same fields as the full dataset, but separated by species. The file
siteyear.spp is a list of dataframes, one for each species.

To extract a single species' data frame from siteyear.spp, use the CTFS R function
load.species().

Merged datasets from two censuses

To run the growth, mortality, and recruitment functions, you need to merge the full
datasets from at least two censuses, using the CTFS R function merge.census().
Following is an example using the 90 and 95 BCI censuses.

> bci9095.full=merge.census(“bci”, census0=bci90.full, census1=bci95.full)

Again, it is very important that the full datasets from the two censuses be in the exact
same tag order, since the program just merges the two datasets, it does not verify that the
tag numbers match before merging.

After merging the two datasets, you can create the split files on this merged dataset with
the split.fulldata() function mentioned above:

> bci9095.spp=split.data(bci9095.full)

Save all these R datasets to a folder on your computer with the save() function described
above.

	Chapter1.2004.pdf
	save()
	write.table()
	6.3.1 Preparing Text Datasets
	Primary Files
	Following are other inconsistencies to check in those sites
	SUPPORT FILES
	Species information file: site.spp.info.txt
	Quadrate information file: site.quad.info.txt
	Multiple stem file: siteyear.mult.txt
	Split datasets by species
	Merged datasets from two censuses

