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1 Introduction

Mixed-effects models are frequently used to analyze grouped data, because they model

flexibly the within-group correlation often present in this type of data. Examples of

grouped data include longitudinal data, repeated measures data, multilevel data, and

split-plot designs. We consider only mixed-effects models for a continuous response,

assumed to have a Gaussian distribution. We describe a set ofS functions, classes, and

methods for the analysis of linear and nonlinear mixed-effects models. These extend

the modeling facilities available in release 3 ofS (Chambers and Hastie, 1992) and

releases 3.4 (Unix) and 4.5 (Windows) ofS-PLUS. The source code, written inS and

C, is available athttp://nlme.stat.wisc.edu/.

The purpose of this document is to describe some of the capabilities in Version 3.0

of thenlme software and to give examples of their usage. A detailed description of the

various functions, classes, and methods can be found in the corresponding help files,

which are available on-line. The PostScript fileHelpFunc.ps, included with thenlme

distribution, contains printed versions of the help files.

§2 presents a new class for representing grouped data and some of the methods for

this class. Functions and methods for fitting and analyzing linear mixed-effects models

are described in§3. The nonlinear mixed-effects functions and methods are described

in §4. §5 presents some future directions for the code development.

2 A groupedData class

The datasets used for fitting mixed-effects models have several characteristics in com-

mon. They consist of measurements of a continuous response at several levels of a co-

variate, usuallytime , dose , or treatment . Further, these measurements are grouped

according to one, or several, factors. Additional covariates may be present. Some of

these vary within a group (inner covariates) and some do not (outercovariates).

As a first example of grouped data, we consider the data from an orthodontic study

presented in Potthoff and Roy (1964). The data, displayed in Figure 1, consist of four

measurements of the distance (in millimeters) from the center of the pituitary to the
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pterygomaxillary fissure made at ages 8, 10, 12, and 14 years on 16 boys and 11 girls.

This is an example of balanced repeated measures data, with a single level of grouping

(Subject ).
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Figure 1: Orthodontic growth patterns in 16 boys(M) and 11 girls(F) between 8 and 14
years of age. Panels within each gender group are ordered by maximum response.

An example of grouped data for which the primary covariate is a categorical vari-

able is given by the data on an experiment to compare three brands of machines used

in an industrial process. These data, presented in Milliken and Johnson (1992,§23.1,

p. 285), are shown in Figure 2. Six workers were randomly chosen from the employees

of a factory to operate each of three machines three times. The response is an overall

productivity score taking into account the number and quality of components produced.

As an example of grouped data with a nonlinear response, we consider an experi-

ment on the cold tolerance of a C4 grass species,Echinochloa crus-galli, described in



NLME 3.0 3

++ +

+++

++ +

+++

+++

+++

>>>

>> >

>>>

> >>

>>>

>>>6
�

2
�

4
�

1

3
�

5
�

45
�

50
�

55
�

60
�

65
�

70
�

Productivity score 

W
or

ke
r

+ >A
�

B C
�

Figure 2: Productivity scores for three brands of machines. Scores take into account
number and quality of components produced.

Potvin, Lechowicz and Tardif (1990). The CO2 uptake of six plants from Qúebec and

six plants from Mississippi was measured at several levels of ambient CO2 concentra-

tion. Half the plants of each type were chilled overnight before the experiment was

conducted. The data are shown in Figure 3.

An example of grouped data with two levels of grouping is given by a study in

radiology consisting of repeated measures of mean pixel values from CT scans of the

right and the left lymphnodes in the axillary region of 10 dogs over a period of 14 days

after application of a contrast. The purpose of the experiment was to model the mean

pixel value as a function of time, so as to estimate the time where the maximum mean

pixel value was attained. The data are shown in Figure 4.

The choice of a data structure for this type of data will affect the ease and flexibility

with which we can display the data and fit models to the data. A natural way to repre-

sent such data inS-PLUS is as adata.frame (i.e a rectangular array). For displaying

and modelling grouped data, it is often useful to incorporate a formula specifying some

of the roles of the variables in thedata.frame .

At a minimum the data frame must contain the response, the primary covariate,

such astime , and the grouping factor(s), such asSubject , Plant , or Dog andSide .

Additional factors or continuous covariates can be present. For example

> names(Orthodont) # Orthodontic growth
[1] "distance" "age" "Subject" "Sex"
> names(Machines)
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Figure 3: CO2 uptake versus ambient CO2 by treatment and type forEchinochloa crus-
galli plants, six from Qúebec and six from Mississippi. Half the plants of each type
were chilled overnight before the measurements were taken.



NLME 3.0 5

1040
1060
1080
1100
1120
1140
1160

1

0 5 10 15 20

2 3

0 5 10 15 20

9 8

0 5 10 15 20

6 4

0 5 10 15 20

5 7

0 5 10 15 20

1040
1060
1080
1100
1120
1140
1160

10

Time post injection (days)
�

P
ix

el
 in

te
ns

ity
 

1 2
�

Figure 4: Mean pixel intensity of the right (1) and left (2) lymphnodes in the axillary
region versus time from intravenous application of a contrast. The pixel intensities
were obtained from CT scans.

[1] "Worker" "Machine" "score"
> names(CO2) # CO2 uptake
[1] "Plant" "Type" "Treatment" "conc" "uptake"
> names(Pixel) # Pixel intensity
[1] "Dog" "Side" "day" "pixel"

The different roles of the variables in the data frame (response, primary covariate,

and grouping factors) can be described by a formula of the formresponse ˜ pri-

mary | grouping1/grouping2/... which is similar to the display formula in a

Trellis plot (Becker, Cleveland and Shyu, 1996). For example

> formula(Orthodont)
distance ˜ age | Subject
> formula(Machines)
score ˜ 1 | Worker
> formula(CO2)
uptake ˜ conc | Plant
> formula(Pixel)
pixel ˜ day | Dog/Side

The most convenient way of packaging the formula with the data is to create a new class

of object (Chambers and Hastie, 1992, Appendix A) which we have calledgrouped-

Data .

The function used to create objects of a given class is called the constructor for that

class. The constructor forgroupedData takes a formula and data frame as described



NLME 3.0 6

above. By default, the grouping factors are converted to ordered factors with the or-

der determined by a summary function applied to the response split according to the

groups, taking into account the nesting order (i.e. levels of a factor are sorted within the

levels of the factors that areouter to it). (The default summary function is the maxi-

mum.) Additionally, labels can be given for the response and the primary covariate and

their units can be specified as arbitrary strings. The reason for separating the labels and

the units is to allow propagation of the units to derived quantities such as the residuals

from a fitted model.

For example, creatinggroupedData objects for the examples above fromdata.frames

is accomplished by

> Orthodont <- groupedData(distance ˜ age | Subject,
+ data = Orthodont, outer = ˜ Sex,
+ labels = list(x = "Age",
+ y="Distance from pituitary to pterygomaxillary fissure"),
+ units = list(x = "(yr)", y = "(mm)"))
> plot(Orthodont, layout = c(8,4), # produces Figure 1
+ between = list(y = c(0, 0.5, 0)))
> Machines <- groupedData(score ˜ Machine | Worker,
+ data = Machines,
+ labels = list(y = "Productivity score"))
> plot(Machines) # produces Figure 2
> CO2 <- groupedData(uptake ˜ conc | Plant, data = CO2,
+ outer = ˜ Treatment * Type,
+ labels = list(x = "Ambient carbon dioxide concentration",
+ y = "CO2 uptake rate"),
+ units = list(x = "(uL/L)", y = "(umol/mˆ2 s)"))
> plot(CO2) # produces Figure 3
> Pixel <- groupedData(pixel ˜ day | Dog/Side,
+ data = Pixel,
+ labels =list(x="Time post injection",y="Pixel intensity"),
+ units = list(x = "(days)"))
> plot(Pixel, display = 1, inner = ˜Side) # produces Figure 4

The call to the constructor establishes the roles of the variables, converts the grouping

factors to ordered factors so panels in plots are ordered in a natural way and stores

descriptive labels for data plots and plots of derived quantities.

When outer factors are present, as in the Orthodont and CO2 data, they are given as

a formula such asouter = ˜ Sex andouter = ˜ Treatment * Type or, when,

multiple grouping factors are present, as a list of such formulas. Inner factors are

described in a similar way. When establishing the order of the levels of the grouping

factor, and hence the order of panels in a plot, re-ordering is only permitted within



NLME 3.0 7

combinations of levels for the outer factors. That is why the panels from boys and girls

are grouped together in Figure 1.

The plot method for thegroupedData class allows an optional argumentouter

which can be given a logical value or a formula. A logical value ofTRUE(or T) indi-

cates that the outer formula stored with the data should be used in the plot. The right

hand side of the explicit or inferred formula replaces the grouping factor in the trellis

formula. The grouping factor is then used to determine which points to join with lines.

For example

> plot(Orthodont, outer = T) # produces Figure 5
> plot(CO2, outer = T) # produces Figure 6

An inner factor is used to determine which points within a panel are joined by lines,

such in the plot of thePixel data above.
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Figure 5: Orthodontic growth patterns in 16 boys(M) and 11 girls(F) between 8 and 14
years of age, with different panels per gender.

When multiple levels of grouping are present, theplot method allows two op-

tional argumentsdisplayLevel andcollapseLevel , specifying, respectively, the

grouping level to be used to determine the panels of the Trellis plot and the grouping

level over which to collapse the data.

Another advantage of using a formula to describe the roles of the variables is that

this information can be used within the model-fitting functions to make the specifica-
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Figure 6: CO2 uptake versus ambient CO2 by treatment and type forEchinochloa crus-
galli plants, six from Qúebec and six from Mississippi. Half the plants of each type
were chilled overnight before the measurements were taken.
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tion of the model easier. For example, getting preliminary simple linear regression fits

by subject for the orthodontic growth example can be made as simple as

> Ortho.lis <- lmList(Orthodont)

3 The lme class and related methods

The plot of the individual growth curves in Figure 1 suggests that a linear model ade-

quately explains the orthodontic distance as a function of age, but the intercept and the

slope seem to vary with the individual. The corresponding linear mixed-effects model

is

dij = (β0 + bi0) + (β1 + bi1) agej + εij (1)

wheredij represents the distance for theith individual at agej, β0 andβ1 are the pop-

ulation average intercept and the population average slope,bi0 andbi1 are the effects in

intercept and slope associated with theith individual, andεij is the within-subject error

term. It is assumed that thebi = (bi0, bi1)
T are independent and identically distributed

with aN(0, σ2D) distribution and theεij are independent and identically distributed

with aN(0, σ2) distribution, independent of thebi.

One of the questions of interest for these data is whether the curves show significant

differences between boys and girls. Model (1) can be modified as

dij = (β00 + β01sexi + bi0) + (β10 + β11sexi + bi1) agej + εij (2)

to test for sex related differences in intercept and slope. In model (2),sexi is an indi-

cator variable assuming the value zero if theith individual is a boy and one if she is

a girl. β00 andβ10 represent the population average intercept and slope for the boys

andβ01 andβ11 are the changes in population average intercept and slope for girls.

Differences between boys and girls can be evaluated by testing whetherβ01 andβ11

are significantly different from zero. The remaining terms in (2) are defined as in (1).

In the Pixel example, a second order polynomial seems adequate to explain the

evolution of pixel intensity with time since the contrast was injected. Preliminary anal-

yses indicated that the intercept varies with dog, as well as with side within dog, and
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the linear term varies with dog, but not with side.

The corresponding multilevel linear mixed-effects model is

yijk = (β0 + b0i + b0i,j) + (β1 + b1i) tijk + β2t
2
ijk + εijk, (3)

wherei refers to the dog number (1 through 10),j to the lymphnode side (1 – right, 2

– left), andk refers to time;β0, β1, andβ2 denote respectively the intercept, the linear

term, and the quadratic term fixed effects;b0i denotes the intercept random effect at

the dog level,b0ij denotes the intercept random effect at the side within dog level,

and b1i denotes the linear term random effect at the dog level;y denotes the pixel

intensity,t denotes the time since contrast injection, andεijk denotes the error term.

It is assumed that thebi = [b0i, b1i]
T are independent and identically distributed with

common distributionN
(
0, σ2D1

)
, thebi,j = [b0i,j ] are independent and identically

distributed with common distributionN
(
0, σ2D2

)
and independent of thebi, and the

εijk are independent and identically distributed with common distributionN(0, σ2)

and independent of thebi and thebi,j .

3.1 Thelme function

The lme function is used to fit a linear mixed-effects model, as described in Laird and

Ware (1982), or a multilevel linear mixed-effects model as described, for example, in

Longford (1993) or Goldstein (1995), using either maximum likelihood or restricted

maximum likelihood. It produces an object of classlme . Several optional arguments

can be used with this function, but the typical call is

lme(fixed, data, random)

Only the first argument is required. The argumentsfixed and random are gener-

ally given as formulas as illustrated below. Any linear model formula (Chambers and

Hastie, 1992, chapter 3) is allowed, giving the model formulation considerable flexi-

bility. For the Orthodont data these formulas would be written as

fixed = distance ˜ age, random = ˜ age

for model (1) and
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fixed = distance ˜ age * Sex, random = ˜ age

for model (2). Note that the response variable is given only in the formula for the

fixed argument. By default, all terms in the fixed effects formula are assumed to have

random effects.

BecauseOrthodont is agroupedData object, no grouping structure must be ex-

plicitly given in random , as it is extracted from thegroupedData display formula.

Alternatively, the grouping structure can be included in the formula as conditioning

expression.

random = ˜ age | Subject

When multiple levels of grouping are present, as in the pixel intensity example,

random must be given as a list of formulas, as below.

fixed = pixel ˜ day+dayˆ2, random =list(Dog =˜ day, Side =˜ 1)

Note that the names of the elements in therandom list correspond to the names of the

grouping factors and are assumed to be in outermost to innermost order. A model with

a single intercept is represented by˜ 1 .

The optional argumentdata specifies the data frame in which the variables used in

the model are available. A simple call tolme to fit model (1) is

> Ortho.fit1 <- lme(fixed = distance ˜ age, data = Orthodont,
+ random = ˜ age | Subject)

To fit model (2) we use

> ## set contrasts for desired parameterization
> options(contrasts = c("contr.treatment", "contr.poly"))
> Ortho.fit2 <- update(Ortho.fit1, fixed = distance ˜ age*Sex)

The multilevel model (3) is fit by:

> Pixel.fit1 <- lme(fixed = pixel ˜ day + dayˆ2, data = Pixel,
+ random = list(Dog = ˜ day, Side = ˜1))

There are several methods available for the fitted objects of classlme , including

those for the generic functionsanova , print , summary, andplot . These are illus-

trated in the next sections.
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3.2 Theprint , summary , and anova methods

A brief description of the estimation results is returned by theprint method. It gives

estimates of the standard errors and correlations of the random effects, the within-group

variance, and the fixed effects. For theOrtho.fit1 object we get

> Ortho.fit1
Linear mixed-effects model fit by REML

Data: Orthodont
Log-restricted-likelihood: -221.32
Fixed: distance ˜ age

(Intercept) age
16.761 0.66019

Random effects:
Formula: ˜ age | Subject
Structure: General positive-definite

StdDev Corr
(Intercept) 2.32704 (Inter

age 0.22643 -0.609
Residual 1.31004

Number of Observations: 108
Number of Groups: 27

A more complete description of the estimation results is returned bysummary.

> summary(Ortho.fit2)
Linear mixed-effects model fit by REML

Data: Orthodont
AIC BIC logLik

448.58 469.74 -216.29

Random effects:
Formula: ˜ age | Subject
Structure: General positive-definite

StdDev Corr
(Intercept) 2.40549 (Inter

age 0.18034 -0.668
Residual 1.31004

Fixed effects: distance ˜ age + Sex + age:Sex
Value Std.Error DF t-value p-value

(Intercept) 16.341 1.019 79 16.043 0.000
age 0.784 0.086 79 9.121 0.000
Sex 1.032 1.596 25 0.647 0.524

age:Sex -0.305 0.135 79 -2.262 0.026
Correlation:

(Intr) age Sex
age -0.880
Sex -0.638 0.562

age:Sex 0.562 -0.638 -0.880
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Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-3.1681 -0.38594 0.007103 0.44516 3.8495

Number of Observations: 108
Number of Groups: 27

The approximate standard errors for the fixed effects are derived using the asymptotic

theory described in Pinheiro (1994). The results above indicate that the measurement

increases faster in boys than in girls (significant, negativeage:Sex fixed effect), but

the average intercept is common to boys and girls (non-significantSex fixed effect).

Alternatively, a likelihood ratio test can be used to test the difference between the

fixed effects models represented byCO2.fit1 andCO2.fit2 . The anova method

provides that capability. Because the default estimation method inlme is restricted

maximum likelihood (REML) and likelihood comparisons between REML fits with

different fixed effects structures are not meaningful, we need to refit the two objects

using maximum likelihood, before callinganova .

> Ortho.fit1.ML <- update(Ortho.fit1, method = "ML")
> Ortho.fit2.ML <- update(Ortho.fit2, method = "ML")
> anova(Ortho.fit1.ML, Ortho.fit2.ML)

Model df AIC BIC logLik Test Lik.Ratio
Ortho.fit1.ML 1 6 451.21 467.30 -219.61
Ortho.fit2.ML 2 8 443.81 465.26 -213.90 1 vs. 2 11.406

p-value
Ortho.fit1.ML
Ortho.fit2.ML 0.0033365

The likelihood ratio test strongly rejects the null hypothesis of no sex differences. For

small sample sizes, likelihood ratio tests tend to betoo liberalwhen comparing models

with nested fixed effects structures and should be used with caution. We recommend

using the Wald-type tests provided by theanova method with a single argument, as

these tend to have significance levels close to nominal, even for small samples.

The same methods can be used withlme objects resulting from multilevel fits. To

summarize the estimation results for model (3) we use

> summary(Pixel.fit1)
Linear mixed-effects model fit by REML

Data: Pixel
AIC BIC logLik

841.21 861.97 -412.61
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Random effects:
Formula: ˜ day | Dog
Structure: General positive-definite

StdDev Corr
(Intercept) 28.3699 (Inter

day 1.8437 -0.555

Formula: ˜ 1 | Side %in% Dog
(Intercept) Residual

StdDev: 16.824 8.9896

Fixed effects: pixel ˜ day + dayˆ2
Value Std.Error DF t-value p-value

(Intercept) 1073.3 10.2 80 105.5 0
day 6.1 0.9 80 7.0 0

I(dayˆ2) -0.4 0.0 80 -10.8 0
Correlation:

(Intr) day
day -0.517

I(dayˆ2) 0.186 -0.668

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-2.8291 -0.44918 0.025549 0.55722 2.752

Number of Observations: 102
Number of Groups:

Dog Side %in% Dog
10 20

3.3 Theplot method

Diagnostic plots for assessing the quality of the fitted model are obtained using the

plot method for classlme . This method takes several optional arguments, but a typical

call is of the form.

plot(object, formula)

where the first argument is thelme object and the second is a display formula for the

Trellis plot to be produced. The fitted object can be referenced by the symbol “.” in the

formula argument. For example, to produce a plot of the standardized residuals versus

fitted values by gender for theOrtho.fit2 object included in Figure 7, we use.

> plot(Ortho.fit2, # produces Figure 7
+ resid(., type = "p") ˜ fitted(.) | Sex)

There is evidence that the variability of the orthodontic distance is greater in boys than

in girls and that some possible outliers are present in the data. To assess the predictive
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Figure 7: Standardized residuals versus fitted values by gender, for thelme fit of
model (2).

power of the fitted model, we consider the plot of the observed versus fitted values by

individual, presented in Figure 8 and obtained with.

> plot(Ortho.fit2, # produces Figure 8
+ distance ˜ fitted(.) | Subject, layout = c(8, 4),
+ between = list(y = c(0, 0.5, 0)), abline = c(0,1))

For most of the subjects, there is very good agreement between the observed and fitted

values, indicating that the fit is adequate.

Theformula argument to theplot method gives virtually unlimited flexibility for

generating customized diagnostic plots. As one last example, we consider the plot of

the standardized residuals (at the side within dog level) for thePixel.fit1 object by

dog.

> plot(Pixel.fit1, Dog˜resid(., type="p"))# produces Figure 9

The residuals seem symmetrically scattered around zero, with similar variabilities, ex-

cept, possibly, for dog number 4.

3.4 Other methods

StandardS methods for extracting components of fitted objects, such asresiduals,

fitted , andcoefficients , can be also be used onlme objects. In addition, the

lme includes the methodsfixed.effects andrandom.effects for extracting the
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Figure 8: Observed distances versus fitted values by subject, for thelme fit of
model (2).
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fixed effects and the random effects estimates, respectively. Short names for the last

two functions arefixef andranef .

> coef(Ortho.fit2)
(Intercept) age Sex age:Sex

M16 15.557 0.69573 1.0321 -0.30483
M05 14.695 0.77590 1.0321 -0.30483
. . .
F04 18.002 0.81259 1.0321 -0.30483
F11 18.537 0.88586 1.0321 -0.30483
> fixef(Pixel.fit1)

(Intercept) day I(dayˆ2)
1073.3 6.1296 -0.36735

> ranef(Pixel.fit1, level = 1) # random effects at Dog level
(Intercept) day

1 -24.7142 -1.195371
10 19.3659 -0.099369

2 -23.5821 -0.432431
3 -27.0803 2.194756
4 -16.6585 3.095973
5 25.2998 -0.561271
6 10.8232 -1.037000
7 49.3539 -2.274458
8 -7.0540 0.990255
9 -5.7537 -0.681084

Predicted values are returned by thepredict method. For example, if we are

interested in predicting the average measurement for both boys and girls at ages 14, 15,

and 16, as well as for subjectsM01 andF10 at age 13, based on model (2), we should

create a new data frame, sayOrthodont.new , as follows,

> Orthodont.new <-
+ data.frame(Sex = c(1, 1, 1, 0, 0, 0, 1, 0),
+ age = c(14, 15, 16, 14, 15, 16, 13, 13),
+ Subject = c(NA, NA, NA, NA, NA, NA, "M01", "F10"))

and then use

> predict(Ortho.fit2, Orthodont.new, level = c(0,1))
Subject predict.fixed predict.Subject

1 NA 24.086 NA
2 NA 24.566 NA
3 NA 25.045 NA
4 NA 27.322 NA
5 NA 28.106 NA
6 NA 28.891 NA
7 M01 23.607 26.242
8 F10 26.537 22.738

to get the subject-specific and population predictions. Thelevel argument is used to

define the desired prediction levels, with0 (zero) referring to the population predic-
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tions.

3.5 Positive-definite matrix structures

Different positive-definite matrix structures can be used to represent the random effects

covariance matrix inlme . These are organized in the code as differentpdMat classes.

Table 1 lists the standardpdMat classes available inlme .

Class Description
pdSymm general positive-definite
pdDiag diagonal
pdIdent multiple of an identity
pdCompSymm compound symmetry
pdBlocked block diagonal

Table 1: Classes of positive-definite matrices inlme .

By default, thepdSymmclass is used to represent a random effects covariance ma-

trix. The desiredpdMat class must be specified with therandom argument. For exam-

ple, to fit a model with independent intercept and slope random effects in model (2),

one should use

> Ortho.fit3 <- update(Ortho.fit2, random = pdDiag(˜ age))
> Ortho.fit3
Linear mixed-effects model fit by REML

Data: Orthodont
Log-restricted-likelihood: -216.58
Fixed: distance ˜ age + Sex + age:Sex

(Intercept) age Sex age:Sex
16.341 0.78437 1.0321 -0.30483

Random effects:
Formula: ˜ age | Subject
Structure: Diagonal

(Intercept) age Residual
StdDev: 1.5546 0.088016 1.3655

Number of Observations: 108
Number of Groups: 27
> anova(Ortho.fit2, Ortho.fit3)

Model df AIC BIC logLik Test Lik.Ratio
Ortho.fit2 1 8 448.58 469.74 -216.29
Ortho.fit3 2 7 447.15 465.66 -216.58 1 vs. 2 0.56928

p-value
Ortho.fit2
Ortho.fit3 0.45054
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Note that, because the two models have the same fixed effects structure, the likelihood

ratio test based on REML is meaningful.

The grouping structured is inferred from thegroupedData display formula. Al-

ternatively,random could have been passed to the function as

random = list(Subject = pdDiag(˜ age))

As evidenced by the large p-value for the likelihood ratio test in theanova method

output, the independence between the random effects seems plausible.

Users may define their ownpdMat classes by specifying aconstructorfunction

and, at a minimum, methods for the functionspdConstruct , pdMatrix andcoef .

For examples of these functions, see the methods for classespdSymmandpdDiag .

3.6 Correlation and variance function structures

The within-group error covariance structure can be flexibly modeled inlme by com-

bining correlation structures and variance functions. Similarly to the positive-definite

matrix structures described in§3.5, the different correlation and variance functions

structures are organized intocorStruct andvarFunc classes, respectively. Tables 2

and 3 list the standard classes for each structure.

Class Description
corAR1 AR(1)
corARMA ARMA(p,q)
corCAR1 continuous AR(1)
corCompSymm compound symmetry
corExp exponential spatial correlation
corGaus Gaussian spatial correlation
corLin linear spatial correlation
corRation Rational quadratic spatial correlation
corSpher spherical spatial correlation
corSymm general correlation matrix

Table 2: Classes of correlation structures inlme .

The optional argumentcorrelation is used to specify a correlation structure and

the optional argumentweights is used for variance functions. By default, the within-

group errors are assumed to independent and homoscedastic.
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Class Description
varExp exponential of a variance covariate
varPower power of a variance covariate
varConstPower constant plus power of a variance covariate
varIdent different variances per level of a factor
varFixed fixed weights, determined by a variance covariate
varComb combination of variance functions

Table 3: Classes of variance functions inlme .

The variance function structures are used to model heteroscedasticity in the within-

group errors. For example, the residual versus fitted values plot of the residuals on

Figure 7 suggests that different variances should be allowed for boys and girls. We can

test that by updating the fit using thevarIdent variance function structure.

> Ortho.fit4 <-
+ update(Ortho.fit3, weights = varIdent(form = ˜1|Sex))
> Ortho.fit4
Linear mixed-effects model fit by REML

Data: Orthodont
Log-restricted-likelihood: -206.08
Fixed: distance ˜ age + Sex + age:Sex

(Intercept) age Sex age:Sex
16.341 0.78438 1.0321 -0.30483

Random effects:
Formula: ˜ age | Subject
Structure: Diagonal

(Intercept) age Residual
StdDev: 1.4487 0.1094 1.6584

Variance function:
Structure: Different standard deviations per stratum
Formula: ˜ 1 | Sex
Parameter estimates:
Male Female

1 0.42537
Number of Observations: 108
Number of Groups: 27
> anova(Ortho.fit3, Ortho.fit4)

Model df AIC BIC logLik Test Lik.Ratio
Ortho.fit3 1 7 447.15 465.66 -216.58
Ortho.fit4 2 8 428.17 449.32 -206.08 1 vs. 2 20.983

p-value
Ortho.fit3
Ortho.fit4 4.6342e-06

There is strong indication that the orthodontic distance is less variable in girls than

in boys. The fitted object can be referenced in theform argument to thevarFunc
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constructors through the symbol “.”. For example, to use a variance function that is an

arbitrary power of the fitted values in model (3), one can re-fitPixel.fit1 as below.

> Pixel.fit2 <-
+ update(Pixel.fit1, weights = varPower(form=˜fitted(.)))
> Pixel.fit2
Linear mixed-effects model fit by REML

Data: Pixel
Log-restricted-likelihood: -412.46
Fixed: pixel ˜ day + dayˆ2

(Intercept) day I(dayˆ2)
1073.3 6.1011 -0.36638

Random effects:
Formula: ˜ day | Dog
Structure: General positive-definite

StdDev Corr
(Intercept) 28.5049 (Inter

day 1.8734 -0.567

Formula: ˜ 1 | Side %in% Dog
(Intercept) Residual

StdDev: 16.66 4.217e-06

Variance function:
Structure: Power of variance covariate
Formula: ˜ fitted(.)
Parameter estimates:

power
2.0845

Number of Observations: 102
Number of Groups:

Dog Side %in% Dog
10 20

> anova(Pixel.fit1, Pixel.fit2)
Model df AIC BIC logLik Test Lik.Ratio

Pixel.fit1 1 8 841.21 861.97 -412.61
Pixel.fit2 2 9 842.92 866.28 -412.46 1 vs. 2 0.29119

p-value
Pixel.fit1
Pixel.fit2 0.58946

There is no evidence of heteroscedasticity in this case, as evidenced by the large

p-value of the likelihood ratio test in theanova output. Because the default value for

form in varPower is ˜fitted(.) , it suffices to useweights = varPower() in

this example.

The correlation structures are used to model within-group correlations, not cap-

tured by the random effects. These are generally associated with temporal or spatial

dependencies. For example, we can test for the presence of an autocorrelation of lag 1
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in the orthodontic growth example by updatingOrtho.fit4 as below.

> Ortho.fit5 <- update(Ortho.fit4, corr = corAR1())
> Ortho.fit5
Linear mixed-effects model fit by REML

Data: Orthodont
Log-restricted-likelihood: -206.04
Fixed: distance ˜ age + Sex + age:Sex

(Intercept) age Sex age:Sex
16.317 0.78599 1.0608 -0.3069

Random effects:
Formula: ˜ age | Subject
Structure: Diagonal

(Intercept) age Residual
StdDev: 1.451 0.11211 1.6307

Correlation Structure: AR(1)
Parameter estimate(s):

Phi
-0.057025

Variance function:
Structure: Different standard deviations per stratum
Formula: ˜ 1 | Sex
Parameter estimates:
Male Female

1 0.42506
Number of Observations: 108
Number of Groups: 27
> anova(Ortho.fit4, Ortho.fit5)

Model df AIC BIC logLik Test Lik.Ratio
Ortho.fit4 1 8 428.17 449.32 -206.08
Ortho.fit5 2 9 430.07 453.87 -206.04 1 vs. 2 0.094035

p-value
Ortho.fit4
Ortho.fit5 0.75911

The large p-value of the likelihood ratio test indicates that the autocorrelation is not

present. Note that the correlation structure is used together with the variance function,

representing an heterogeneous AR(1) process (Littel, Milliken, Stroup and Wolfin-

ger, 1996). Because the two structures are defined and constructed separately, any

correlation structure can be combined with any variance function.

Users may define their own correlation and variance function classes by specifying

appropriateconstructorfunctions and a few method functions. For a new correlation

structure, method functions must be defined for at leastcorMatrix andcoef . For

examples of these functions, see the methods for classescorSymm andcorAR1 . A new

variance function structure requires methods for at leastcoef , coef<- , andinitial-
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ize . For examples of these functions, see the methods for classvarPower .

4 Thenlme class and related methods

We illustrate the use of the functions and methods for the nonlinear mixed-effects

model by analyzing theCO2data of§2. These data come from a study of the cold

tolerance of aC4 grass species,Echinochloa crus-galli. A total of twelve four-week-

old plants, six from Qúebec and six from Mississippi, were divided into two groups:

control plants that were kept at26◦C and chilled plants that were subject to14 h of

chilling at7◦C. After10 h of recovery at20◦C,CO2 uptake rates (inµmol/m2s) were

measured for each plant at seven concentrations of ambientCO2 (100, 175, 250, 350,

500, 675, 1000µL/L). Each plant was subjected to the seven concentrations ofCO2

in increasing, consecutive order. The objective of the experiment was to evaluate the

effect of plant type and chilling treatment on theCO2 uptake.

The model used in Potvin et al. (1990) is

Uij = φ1i {1− exp [−φ2i (Cj − φ3i)]}+ εij , (4)

whereUij denotes theCO2 uptake rate of theith plant at thejth CO2 ambient con-

centration;φ1i, φ2i, andφ3i denote respectively the asymptotic uptake rate, the uptake

growth rate, and the maximum ambientCO2 concentration at which no uptake is veri-

fied for theith plant;Cj denotes thejth ambientCO2 level; and theεij are independent

and identically distributed error terms with distributionN(0, σ2).

4.1 Thenlme function

The nlme function is used to fit nonlinear mixed-effects models, as defined in Lind-

strom and Bates (1990), using either maximum likelihood or restricted maximum like-

lihood. Several optional arguments can be used with this function, but a typical call

is

nlme(model, data, fixed, random, start)
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The model argument is required and consists of a formula specifying the nonlinear

model to be fitted. AnyS nonlinear formula can be used, giving the function con-

siderable flexibility. From (4) we have that for theCO2 uptake data this argument is

declared as

uptake ˜ A * (1 - exp(-B * (conc - C)))

where we have used the notationA = φ1, B = φ2, andC = φ3. To enforce the rate

parameterφ2 to be positive, while preserving an unrestricted parametrization, we can

re-parametrize the model above usinglB = log(B)

uptake ˜ A * (1 - exp(-exp(lB) * (conc - C)))

Alternatively, we can define anS function, sayCO2.func , as

> CO2.func <-
+ function(conc, A, lB, C) A*(1 - exp(-exp(lB)*(conc - C)))

then write themodel argument as

uptake ˜ CO2.func(conc, A, lB, C)

The advantage of this latter approach is that the analytic derivatives of the model func-

tion can be passed to thenlme function as thegradient attribute of the returned value

from CO2.func and used in the optimization algorithm. TheS functionderiv can be

used to create expressions for the derivatives.

> CO2.func <- deriv(˜ A * ( 1 - exp(-exp(lB) * ( conc - C))),
+ c("A", "lB", "C"), function(conc, A, lB, C))

If the value returned by the model function does not have agradient attribute, nu-

merical derivatives are used in the optimization.

The argumentsfixed andrandom are formulas, or lists of formulas, that define the

structures of the fixed and random effects in the model. The first argument is required.

In these formulas a1 on the right hand side of a formula indicates that a single param-

eter is associated with the effect, but any linear formula inS could be used instead.

This gives considerable flexibility to the model, as time-dependent parameters can be

easily incorporated (e.g. when a formula infixed involves a covariate that changes

with time). Usually every parameter in the model will have an associated fixed effect,

but it may, or may not, have an associated random effect. Since we assumed that all
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random effects have mean zero, the inclusion of a random effect without a correspond-

ing fixed effect would be unusual. Note that thefixed andrandom formulas could be

directly incorporated in the model declaration. The approach used innlme allows for

more efficient calculation of derivatives.

For theCO2 uptake data, if we want to fit a model in which all parameters are

random and no covariates are included we use

fixed = A + lB + C ˜ 1, random = A + lB + C ˜ 1

By default,random = fixed , so therandom argument can be omitted. BecauseCO2

is agroupedData object, no grouping structure must be explicitly given inrandom ,

as it is extracted from thegroupedData display formula. Alternatively, the grouping

structure can be included in the formula as conditioning expression.

random = A + lB + C ˜ 1 | Plant

If we want to estimate the (fixed) effects of plant type and chilling treatment on the

parameters in the model we can use

fixed = A + lB + C ˜ Type * Treatment, random = A + lB + C ˜ 1

Data is an optional argument that names a data frame in which the variables in

model , fixed , and random are found, andstart provides a list of starting values

for the iterative algorithm. Only the fixed effects starting estimates are required. The

default starting estimates for the random effects are zero.

A simple call tonlme to fit model (4), without any covariates and with all parame-

ters as mixed effects is

> CO2.fit1 <-
+ nlme(model = uptake ˜ CO2.func(conc, A, lB, C),
+ fixed = A + lB + C ˜ 1, data = CO2,
+ start = c(30, log(0.01), 50))

The initial values for the fixed effects were obtained from Potvin et al. (1990).

4.2 Methods fornlme objects

Objects returned by thenlme function are of classnlme which inherits fromlme . All

methods described in section 3 are also available for thenlme class. In fact, with
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the exception of thepredict method, all methods are common to both classes. We

illustrate their use here with theCO2 uptake data.

The print method provides a brief description of the estimation results. It gives

estimates of the standard errors and correlations of the random effects, of the within-

group variance, and of the fixed effects.

> CO2.fit1
Nonlinear mixed-effects model fit by maximum likelihood

Model: uptake ˜ co2.func(conc, A, lB, C)
Data: CO2
Log-likelihood: -201.29
Fixed: A + lB + C ˜ 1

A lB C
32.468 -4.6323 43.827

Random effects:
Formula: list(A ˜ 1, lB ˜ 1, C ˜ 1)
Level: Plant
Structure: General positive-definite

StdDev Corr
A 9.5052 A lB

lB 0.1465 -0.129
C 11.9562 0.883 0.125

Residual 1.7427

Number of Observations: 84
Number of Groups: 12

Note that there is a moderately strong correlation between theA and theC random

effects and that these have small correlations with thelB random effect. The scatter

plot matrix of the random effects, obtained using thepairs method

> pairs(CO2.fit1, ˜ranef(.))

and shown in Figure 10, gives a graphical description of the random effects correlation

structure.

The correlation betweenA andC may be due to the fact that the plant type and the

chilling treatment, which were not included in theCO2.fit1 model, are affectingA

andC in the similar ways.

Theplot method for theranef.lme class can be used to explore the dependence

of the individual parametersA, lB, andC in model (4) on plant type and chilling factor.

> plot(ranef(CO2.fit1, augFrame = T), outer = ˜Treatment*Type,
+ layout = c(3,1)) # produces Figure 11
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Figure 10: Scatter plot matrix of the estimated random effects in model (4).
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NLME 3.0 28

These plots indicate that chilled plants tend to have smaller values ofA andC,

but the Mississippi plants seem to be much more affected than the Québec plants,

suggesting an interaction effect between plant type and chilling treatment. There is no

clear pattern of dependence betweenlB and the treatment factors, suggesting that this

parameter is not significantly affected by either plant type or chilling treatment.

We can then update the fitted object letting theA andC fixed effects depend on the

treatment factors, as below.

> CO2.fit2 <- update(CO2.fit1,
+ fixed = list(A+C ˜ Treatment * Type, lB ˜ 1),
+ start = c(32.55, 0, 0, 0, 41.56, 0, 0, 0, -4.6))

Thesummary method provides more detailed information on the new fitted object.

> summary(CO2.fit2)
Nonlinear mixed-effects model fit by maximum likelihood

Model: uptake ˜ co2.func(conc, A, lB, C)
Data: CO2

AIC BIC logLik
392.41 431.3 -180.2

Random effects:
Formula: list(A ˜ 1, lB ˜ 1, C ˜ 1)
Level: Plant
Structure: General positive-definite

StdDev Corr
A.(Intercept) 2.37058 A.(In) lB

lB 0.14749 -0.336
C.(Intercept) 8.16451 0.356 0.761

Residual 1.71134

Fixed effects: list(A + C ˜ Treatment * Type, lB ˜ 1)
Value Std.Error DF t-value p-value

A.(Intercept) 42.249 1.498 64 28.212 0.000
A.Treatment -3.692 2.058 64 -1.794 0.078

A.Type -11.078 2.065 64 -5.366 0.000
A.Treatment:Type -9.575 2.943 64 -3.254 0.002

C.(Intercept) 46.300 6.436 64 7.194 0.000
C.Treatment 8.830 7.230 64 1.221 0.226

C.Type 3.010 8.048 64 0.374 0.710
C.Treatment:Type -49.019 17.679 64 -2.773 0.007

lB -4.651 0.080 64 -58.069 0.000
. . .

The small p-values of the t-statistics associated with theTreatment:Type effects

indicate that both factors have a significant effect on parametersA andC and their

joint effect is not just the sum of the individual effects. We can investigate the joint

effect ofTreatment andType onA andC using theanova method.
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> anova(CO2.fit2,
+ terms = c("A.Treatment", "A.Type", "A.Treatment:Type"))
F-test for: A.Treatment, A.Type, A.Treatment:Type

numDF denDF F-value P-value
1 3 64 51.782 0
> anova(CO2.fit2,
+ terms = c("C.Treatment", "C.Type", "C.Treatment:Type"))
F-test for: C.Treatment, C.Type, C.Treatment:Type

numDF denDF F-value P-value
1 3 64 2.94 0.04

The p-values of the Wald F-tests suggest thatTreatment andType have a stronger

influence onA than onC.

Diagnostic plots can be obtained using the plot method, in the exact same way as

for lme objects. For example, plots of the standardized residuals versus fitted values

broken up byTreatment andType , shown in Figure 12, are obtained with

> plot(CO2.fit2,
+ resid(., type = "p") ˜ fitted(.) | Treatment * Type)
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Figure 12: Standardized residuals versus fitted values for theCO2.fit2 fit, by plant
type and chilling treatment.

The plots do not indicate any departures from the assumptions in the model — no

outliers seem to be present and the residuals are symmetrically scattered around the
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y = 0 line, with constant spread for different levels of the fitted values.

Predictions are returned by thepredict method. For example, to obtain the pop-

ulation predictions of theCO2 uptake rate for Qúebec and Mississippi plants under

chilling and no chilling, at ambientCO2 concentrations of75, 100, 200, and500µL/L,

we would first define

> CO2.new <-
+ data.frame(Type = rep(c("Quebec","Mississippi"), c(8, 8)),
+ Treatment =rep(rep(c("chilled","nonchilled"),c(4,4)),2),
+ conc = rep(c(75, 100, 200, 500), 4))

and then use

> predict(CO2.fit2, CO2.new, level = 0)
[1] 6.7850 11.9669 23.7850 30.7508 8.3637 10.3910 15.0145
[8] 17.7397 10.1335 16.9579 32.5219 41.6956 6.6677 13.4441

[15] 28.8986 38.0078
attr(, "label"):
[1] "Predicted values (umol/mˆ2 s)"

to obtain the predictions.

TheaugPred method can be used for plotting smooth fitted curves by calculating

fitted values at closely spaced concentrations. Figure 13 presents the individual fitted

curves for all twelve plants evaluated at 51 concentrations between 50 and 1000µL/L,

obtained with

> plot(augPred(CO2.fit2))

TheCO2.fit2 model explains the data reasonably well, as evidenced by the close

agreement between its fitted values and the observed uptake rates.

4.3 pdMat , corStruct , and varFunc objects

All classes of positive-definite matrices, correlation structures, and variance functions

described in§3.5 and§3.6 can be used with thenlme function, in the exact same way

as with lme . For example, to test if the random effects inCO2.fit2 can be assumed

to be independent, we can use

> CO2.fit3 <- update(CO2.fit2, random = pdDiag(A+lB+C˜1))

> anova(CO2.fit2, CO2.fit3)
Model df AIC BIC logLik Test Lik.Ratio
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Figure 13: Individual fitted curves for the twelve plants in theCO2 uptake data based
on theCO2.fit2 object.

CO2.fit2 1 16 392.41 431.30 -180.2
CO2.fit3 2 13 391.39 422.99 -182.7 1 vs. 2 4.9846

p-value
CO2.fit2
CO2.fit3 0.17293

The large p-value of the likelihood ratio test suggests that the assumption of indepen-

dence is reasonable.

To test for the presence of serial correlation in the within-group errors, we can use

> CO2.fit4 <- update(CO2.fit3, correlation = corAR1())
> anova(CO2.fit3, CO2.fit4)

Model df AIC BIC logLik Test Lik.Ratio
CO2.fit3 1 13 391.39 422.99 -182.70
CO2.fit4 2 14 393.30 427.33 -182.65 1 vs. 2 0.092787

p-value
CO2.fit3
CO2.fit4 0.76066

There does not appear to be evidence of within-group serial correlation.

Methods for extracting components from a fittednlme object are also available and

parallel those forlme objects. Some of the most commonly used arecoef , fitted ,

fixef , ranef , andresid .
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5 Conclusion

The functions, classes, and methods described here provide a comprehensive set of

tools for analyzing linear and nonlinear mixed-effects models with an arbitrary num-

ber of nested grouping levels. As they are defined within theS environment, all the

powerful analytical and graphical machinery present inS is simultaneously available.

The analyses of theOrthodont , Pixel andCO2data illustrate some of the available

features, but many other features are available.
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