
Chapter 4

Poisson Models for Count
Data

In this chapter we study log-linear models for count data under the assump-
tion of a Poisson error structure. These models have many applications, not
only to the analysis of counts of events, but also in the context of models for
contingency tables and the analysis of survival data.

4.1 Introduction to Poisson Regression

As usual, we start by introducing an example that will serve to illustrative
regression models for count data. We then introduce the Poisson distribution
and discuss the rationale for modeling the logarithm of the mean as a linear
function of observed covariates. The result is a generalized linear model with
Poisson response and link log.

4.1.1 The Children Ever Born Data

Table 4.1, adapted from Little (1978), comes from the Fiji Fertility Survey
and is typical of the sort of table published in the reports of the World
Fertility Survey. The table shows data on the number of children ever born
to married women of the Indian race classified by duration since their first
marriage (grouped in six categories), type of place of residence (Suva, other
urban and rural), and educational level (classified in four categories: none,
lower primary, upper primary, and secondary or higher). Each cell in the
table shows the mean, the variance and the number of observations.

In our analysis of these data we will treat the number of children ever
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Table 4.1: Number of Children Ever Born to Women of Indian Race
By Marital Duration, Type of Place of Residence and Educational Level

(Each cell shows the mean, variance and sample size)

Marr. Suva Urban Rural
Dur. N LP UP S+ N LP UP S+ N LP UP S+
0–4 0.50 1.14 0.90 0.73 1.17 0.85 1.05 0.69 0.97 0.96 0.97 0.74

1.14 0.73 0.67 0.48 1.06 1.59 0.73 0.54 0.88 0.81 0.80 0.59
8 21 42 51 12 27 39 51 62 102 107 47

5–9 3.10 2.67 2.04 1.73 4.54 2.65 2.68 2.29 2.44 2.71 2.47 2.24
1.66 0.99 1.87 0.68 3.44 1.51 0.97 0.81 1.93 1.36 1.30 1.19

10 30 24 22 13 37 44 21 70 117 81 21
10–14 4.08 3.67 2.90 2.00 4.17 3.33 3.62 3.33 4.14 4.14 3.94 3.33

1.72 2.31 1.57 1.82 2.97 2.99 1.96 1.52 3.52 3.31 3.28 2.50
12 27 20 12 18 43 29 15 88 132 50 9

15–19 4.21 4.94 3.15 2.75 4.70 5.36 4.60 3.80 5.06 5.59 4.50 2.00
2.03 1.46 0.81 0.92 7.40 2.97 3.83 0.70 4.91 3.23 3.29 –

14 31 13 4 23 42 20 5 114 86 30 1
20–24 5.62 5.06 3.92 2.60 5.36 5.88 5.00 5.33 6.46 6.34 5.74 2.50

4.15 4.64 4.08 4.30 7.19 4.44 4.33 0.33 8.20 5.72 5.20 0.50
21 18 12 5 22 25 13 3 117 68 23 2

25–29 6.60 6.74 5.38 2.00 6.52 7.51 7.54 – 7.48 7.81 5.80 –
12.40 11.66 4.27 – 11.45 10.53 12.60 – 11.34 7.57 7.07 –

47 27 8 1 46 45 13 – 195 59 10 –

born to each woman as the response, and her marriage duration, type of place
of residence and level of education as three discrete predictors or factors.

4.1.2 The Poisson Distribution

A random variable Y is said to have a Poisson distribution with parameter
µ if it takes integer values y = 0, 1, 2, . . . with probability

Pr{Y = y} =
e−µµy

y!
(4.1)

for µ > 0. The mean and variance of this distribution can be shown to be

E(Y ) = var(Y ) = µ.

Since the mean is equal to the variance, any factor that affects one will also
affect the other. Thus, the usual assumption of homoscedasticity would not
be appropriate for Poisson data.
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The classic text on probability theory by Feller (1957) includes a number
of examples of observations fitting the Poisson distribution, including data
on the number of flying-bomb hits in the south of London during World
War II. The city was divided into 576 small areas of one-quarter square
kilometers each, and the number of areas hit exactly k times was counted.
There were a total of 537 hits, so the average number of hits per area was
0.9323. The observed frequencies in Table 4.2 are remarkably close to a
Poisson distribution with mean µ = 0.9323. Other examples of events that
fit this distribution are radioactive disintegrations, chromosome interchanges
in cells, the number of telephone connections to a wrong number, and the
number of bacteria in different areas of a Petri plate.

Table 4.2: Flying-bomb Hits on London During World War II

Hits 0 1 2 3 4 5+
Observed 229 211 93 35 7 1
Expected 226.7 211.4 98.6 30.6 7.1 1.6

The Poisson distribution can be derived as a limiting form of the binomial
distribution if you consider the distribution of the number of successes in a
very large number of Bernoulli trials with a small probability of success in
each trial. Specifically, if Y ∼ B(n, π) then the distribution of Y as n →∞
and π → 0 with µ = nπ remaining fixed approaches a Poisson distribution
with mean µ. Thus, the Poisson distribution provides an approximation to
the binomial for the analysis of rare events, where π is small and n is large.

In the flying-bomb example, we can think of each day as one of a large
number of trials where each specific area has only a small probability of
being hit. Assuming independence across days would lead to a binomial
distribution which is well approximated by the Poisson.

An alternative derivation of the Poisson distribution is in terms of a
stochastic process described somewhat informally as follows. Suppose events
occur randomly in time in such a way that the following conditions obtain:

• The probability of at least one occurrence of the event in a given time
interval is proportional to the length of the interval.

• The probability of two or more occurrences of the event in a very small
time interval is negligible.

• The numbers of occurrences of the event in disjoint time intervals are
mutually independent.
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Then the probability distribution of the number of occurrences of the event
in a fixed time interval is Poisson with mean µ = λt, where λ is the rate
of occurrence of the event per unit of time and t is the length of the time
interval. A process satisfying the three assumptions listed above is called a
Poisson process.

In the flying bomb example these conditions are not unreasonable. The
longer the war lasts, the greater the chance that a given area will be hit
at least once. Also, the probability that the same area will be hit twice the
same day is, fortunately, very small. Perhaps less obviously, whether an area
is hit on any given day is independent of what happens in neighboring areas,
contradicting a common belief that bomb hits tend to cluster.

The most important motivation for the Poisson distribution from the
point of view of statistical estimation, however, lies in the relationship be-
tween the mean and the variance. We will stress this point when we discuss
our example, where the assumptions of a limiting binomial or a Poisson pro-
cess are not particularly realistic, but the Poisson model captures very well
the fact that, as is often the case with count data, the variance tends to
increase with the mean.

A useful property of the Poisson distribution is that the sum of indepen-
dent Poisson random variables is also Poisson. Specifically, if Y1 and Y2 are
independent with Yi ∼ P (µi) for i = 1, 2 then

Y1 + Y2 ∼ P (µ1 + µ2).

This result generalizes in an obvious way to the sum of more than two Poisson
observations.

An important practical consequence of this result is that we can analyze
individual or grouped data with equivalent results. Specifically, suppose
we have a group of ni individuals with identical covariate values. Let Yij

denote the number of events experienced by the j-th unit in the i-th group,
and let Yi denote the total number of events in group i. Then, under the
usual assumption of independence, if Yij ∼ P (µi) for j = 1, 2, . . . , ni, then
Yi ∼ P (niµi). In words, if the individual counts Yij are Poisson with mean
µi, the group total Yi is Poisson with mean niµi. In terms of estimation, we
obtain exactly the same likelihood function if we work with the individual
counts Yij or the group counts Yi.

4.1.3 Log-Linear Models

Suppose that we have a sample of n observations y1, y2, . . . , yn which can
be treated as realizations of independent Poisson random variables, with
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Yi ∼ P (µi), and suppose that we want to let the mean µi (and therefore the
variance!) depend on a vector of explanatory variables xi.

We could entertain a simple linear model of the form

µi = x′
iβ,

but this model has the disadvantage that the linear predictor on the right
hand side can assume any real value, whereas the Poisson mean on the left
hand side, which represents an expected count, has to be non-negative.

A straightforward solution to this problem is to model instead the log-
arithm of the mean using a linear model. Thus, we take logs calculating
ηi = log(µi) and assume that the transformed mean follows a linear model
ηi = x′

iβ. Thus, we consider a generalized linear model with link log. Com-
bining these two steps in one we can write the log-linear model as

log(µi) = x′
iβ. (4.2)

In this model the regression coefficient βj represents the expected change
in the log of the mean per unit change in the predictor xj . In other words
increasing xj by one unit is associated with an increase of βj in the log of
the mean.

Exponentiating Equation 4.2 we obtain a multiplicative model for the
mean itself:

µi = exp{x′
iβ}.

In this model, an exponentiated regression coefficient exp{βj} represents a
multiplicative effect of the j-th predictor on the mean. Increasing xj by one
unit multiplies the mean by a factor exp{βj}.

A further advantage of using the log link stems from the empirical obser-
vation that with count data the effects of predictors are often multiplicative
rather than additive. That is, one typically observes small effects for small
counts, and large effects for large counts. If the effect is in fact proportional
to the count, working in the log scale leads to a much simpler model.

4.2 Estimation and Testing

The log-linear Poisson model described in the previous section is a gener-
alized linear model with Poisson error and link log. Maximum likelihood
estimation and testing follows immediately from the general results in Ap-
pendix B. In this section we review a few key results.
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4.2.1 Maximum Likelihood Estimation

The likelihood function for n independent Poisson observations is a product
of probabilities given by Equation 4.1. Taking logs and ignoring a constant
involving log(yi!), we find that the log-likelihood function is

log L(β) =
∑
{yi log(µi)− µi},

where µi depends on the covariates xi and a vector of p parameters β through
the log link of Equation 4.2.

It is interesting to note that the log is the canonical link for the Poisson
distribution. Taking derivatives of the log-likelihood function with respect
to the elements of β, and setting the derivatives to zero, it can be shown
that the maximum likelihood estimates in log-linear Poisson models satisfy
the estimating equations

X′y = X′µ̂, (4.3)

where X is the model matrix, with one row for each observation and one
column for each predictor, including the constant (if any), y is the response
vector, and µ̂ is a vector of fitted values, calculated from the m.l.e.’s β̂ by
exponentiating the linear predictor η = X′β̂. This estimating equation arises
not only in Poisson log-linear models, but more generally in any generalized
linear model with canonical link, including linear models for normal data and
logistic regression models for binomial counts. It is not satisfied, however,
by estimates in probit models for binary data.

To understand equation 4.3 it helps to consider a couple of special cases.
If the model includes a constant, then one of the columns of the model matrix
X is a column of ones. Multiplying this column by the response vector y
produces the sum of the observations. Similarly, multiplying this column by
the fitted values µ̂ produces the sum of the fitted values. Thus, in models
with a constant one of the estimating equations matches the sum of observed
and fitted values. In terms of the example introduced at the beginning of
this chapter, fitting a model with a constant would match the total number
of children ever born to all women.

As a second example suppose the model includes a discrete factor repre-
sented by a series of dummy variables taking the value one for observations
at a given level of the factor and zero otherwise. Multiplying this dummy
variable by the response vector y produces the sum of observations at that
level of the factor. When this is done for all levels we obtain the so-called
marginal total. Similarly, multiplying the dummy variable by the fitted val-
ues µ̂ produces the sum of the expected or fitted counts at that level. Thus,
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in models with a discrete factor the estimating equations match the observed
and fitted marginals for the factor. In terms of the example introduced at
the outset, if we fit a model that treats marital duration as a discrete factor
we would match the observed and fitted total number of children ever born
in each category of duration since first marriage.

This result generalizes to higher order terms. Suppose we entertain mod-
els with two discrete factors, say A and B. The additive model A+B would
reproduce exactly the marginal totals by A or by B. The model with an
interaction effect AB would, in addition, match the totals in each combina-
tion of categories of A and B, or the AB margin. This result, which will be
important in the sequel, is the basis of an estimation algorithm known as
iterative proportional fitting.

In general, however, we will use the iteratively-reweighted least squares
(IRLS) algorithm discussed in Appendix B. For Poisson data with link log,
the working dependent variable z has elements

zi = η̂i +
yi − µ̂i

µ̂i
,

and the diagonal matrix W of iterative weights has elements

wii = µ̂i,

where µ̂i denotes the fitted values based on the current parameter estimates.
Initial values can be obtained by applying the link to the data, that

is taking the log of the response, and regressing it on the predictors using
OLS. To avoid problems with counts of 0, one can add a small constant to
all responses. The procedure usually converges in a few iterations.

4.2.2 Goodness of Fit

A measure of discrepancy between observed and fitted values is the deviance.
In Appendix B we show that for Poisson responses the deviance takes the
form

D = 2
∑
{yi log(

yi

µ̂i
)− (yi − µ̂i)}.

The first term is identical to the binomial deviance, representing ‘twice a
sum of observed times log of observed over fitted’. The second term, a sum
of differences between observed and fitted values, is usually zero, because
m.l.e.’s in Poisson models have the property of reproducing marginal totals,
as noted above.
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For large samples the distribution of the deviance is approximately a chi-
squared with n−p degrees of freedom, where n is the number of observations
and p the number of parameters. Thus, the deviance can be used directly
to test the goodness of fit of the model.

An alternative measure of goodness of fit is Pearson’s chi-squared statis-
tic, which is defined as

χ2
p =

∑ (yi − µ̂i)2

µ̂i
.

The numerator is the squared difference between observed and fitted values,
and the denominator is the variance of the observed value. The Pearson
statistic has the same form for Poisson and binomial data, namely a ‘sum of
squared observed minus expected over expected’.

In large samples the distribution of Pearson’s statistic is also approx-
imately chi-squared with n − p d.f. One advantage of the deviance over
Pearson’s chi-squared is that it can be used to compare nested models, as
noted below.

4.2.3 Tests of Hypotheses

Likelihood ratio tests for log-linear models can easily be constructed in terms
of deviances, just as we did in logistic regression models. In general, the
difference in deviances between two nested models has approximately in
large samples a chi-squared distribution with degrees of freedom equal to
the difference in the number of parameters between the models, under the
assumption that the smaller model is correct.

One can also construct Wald tests as we have done before, based on the
fact that the maximum likelihood estimator β̂ has approximately in large
samples a multivariate normal distribution with mean equal to the true
parameter value β and variance-covariance matrix var(β̂) = X′WX, where
X is the model matrix and W is the diagonal matrix of estimation weights
described earlier.

4.3 A Model for Heteroscedastic Counts

Let us consider the data on children ever born from Table 4.1. The unit of
analysis here is the individual woman, the response is the number of children
she has borne, and the predictors are the duration since her first marriage,
the type of place where she resides, and her educational level, classified in
four categories.
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4.3.1 The Mean-Variance Relation

Data such as these have traditionally been analyzed using ordinary linear
models with normal errors. You might think that since the response is a
discrete count that typically takes values such as 0, 2 or six, it couldn’t
possibly have a normal distribution. The key concern, however, is not the
normality of the errors but rather the assumption of constant variance.
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Figure 4.1: The Mean-variance Relationship for the CEB Data

In Figure 4.1 we explore the form of the mean-variance relationship for
these data by plotting the variance versus the mean for all cells in the table
with at least 20 observations. For convenience we use a log-log scale. Clearly,
the assumption of constant variance is not valid. Although the variance is
not exactly equal to the mean, it is not far from being proportional to it.
Thus, we conclude that we can do far more justice to the data by fitting
Poisson regression models than by clinging to ordinary linear models.

4.3.2 Grouped Data and the Offset

At this point you may wonder whether we need the individual observations
to be able to proceed further. The answer is no; all the information we need
is available in Table 4.1. To see this point let Yijkl denote the number of
children borne by the l-th woman in the (i, j, k)-th group, where i denotes
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marital duration, j residence and k education, and let Yijk =
∑

l Yijkl denote
the group total. If each of the observations in this group is a realization of
an independent Poisson variate with mean µijk, then the group total will
be a realization of a Poisson variate with mean nijkµijk, where nijk is the
number of observations in the (i, j, k)-th cell.

Suppose now that you postulate a log-linear model for the individual
means, say

log E(Yijkl) = log(µijk) = x′
ijkβ,

where xijk is a vector of covariates. Then the log of the expected value of
the group total is

log E(Yijk) = log(nijkµijk) = log(nijk) + x′
ijkβ.

Thus, the group totals follow a log-linear model with exactly the same coeffi-
cients β as the individual means, except for the fact that the linear predictor
includes the term log(nijk). This term, which is known beforehand, is called
an offset, and is a frequent feature of log-linear models for counts of events.
Often, when the response is a count of events the offset represents the log of
some measure of exposure, in our case the number of women.

Thus, we can analyze the data by fitting log-linear models to the indi-
vidual counts, or to the group totals. In the latter case we treat the log of
the number of women in each cell as an offset. The parameter estimates and
standard errors will be exactly the same. The deviances of course, will be
different, because they measure goodness of fit to different sets of counts.
Differences of deviances between nested models, however, are exactly the
same whether one works with individual or grouped data. The situation is
analogous to the case of individual and grouped binary data discussed in
the previous chapter, with the offset playing a role similar to that of the
binomial denominator.

4.3.3 The Deviance Table

Table 4.3 shows the results of fitting a variety of Poisson models to the
children ever-born data. The null model has a deviance of 3732 on 69 degrees
of freedom (d.f.) and does not fit the data, so we reject the hypothesis that
the expected number of children is the same for all these groups.

Introducing marital duration reduces the deviance to 165.8 on 64 d.f.
The substantial reduction of 3566 at the expense of only five d.f. reflects the
trivial fact that the (cumulative) number of children ever born to a woman
depends on the total amount of time she has been exposed to childbearing,
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Table 4.3: Deviances for Poisson Log-linear Models Fitted to
the Data on CEB by Marriage Duration, Residence and Education

Model Deviance d.f.
Null 3731.52 69
One-factor Models
Duration 165.84 64
Residence 3659.23 67
Education 2661.00 66
Two-factor Models
D + R 120.68 62
D + E 100.01 61
DR 108.84 52
DE 84.46 46
Three-factor Models
D + R + E 70.65 59
D + RE 59.89 53
E + DR 57.06 49
R + DE 54.91 44
DR + RE 44.27 43
DE + RE 44.60 38
DR + DE 42.72 34
DR + DE + RE 30.95 28

as measured by the duration since her first marriage. Clearly it would not
make sense to consider any model that does not include this variable as a
necessary control.

At this stage one could add to the model type of place of residence,
education, or both. The additive model with effects of duration, residence
and education has a deviance of 70.65 on 59 d.f. (an average of 1.2 per d.f.)
and provides a reasonable description of the data. The associated P-value
under the assumption of a Poisson distribution is 0.14, so the model passes
the goodness-of-fit test. In the next subsection we consider the interpretation
of parameter estimates for this model.

The deviances in Table 4.3 can be used to test the significance of gross
and net effects as usual. To test the gross effect of education one could
compare the one-factor model with education to the null model, obtaining a
remarkable chi-squared statistic of 1071 on three d.f. In this example it really
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doesn’t make sense to exclude marital duration, which is an essential control
for exposure time. A better test of the effect of education would therefore
compare the additive model D +E with both duration and education to the
one-factor model D with duration only. This gives a more reasonable chi-
squared statistic of 65.8 on three d.f., still highly significant. Since educated
women tend to be younger, the previous test overstated the educational
differential.

We can also test the net effect of education controlling for type of place of
residence, by comparing the three-factor additive model D +R+E with the
two-factor model D + R with duration and residence only. The difference
in deviances of 50.1 on three d.f. is highly significant. The fact that the
chi-squared statistic for the net effect is somewhat smaller than the test
controlling duration only indicates that part of the effect of education may
be attributed to the fact that more educated women tend to live in Suva or
in other urban areas.

The question of interactions remains to be raised. Does education make
more of a difference in rural areas than in urban areas? To answer this
question we move from the additive model to the model that adds an inter-
action between residence and education. The reduction in deviance is 10.8
on six d.f. and is not significant, with a P-value of 0.096. Does the effect of
education increase with marital duration? Adding an education by duration
interaction to the additive model reduces the deviance by 15.7 at the expense
of 15 d.f., hardly a bargain. A similar remark applies to the residence by
duration interaction. Thus, we conclude that the additive model is adequate
for these data.

4.3.4 The Additive Model

Table 4.4 shows parameter estimates and standard errors for the additive
model of children ever born (CEB) by marital duration, type of place of
residence and education.

The constant represents the log of the mean number of children for the
reference cell, which in this case is Suvanese women with no education who
have been married 0–4 years. Since exp{−0.1173} = 0.89, we see that on the
average these women have 0.89 children at this time in their lives. The dura-
tion parameters trace the increase in CEB with duration for any residence-
education group. As we move from duration 0–4 to 5–9 the log of the mean
increases by almost one, which means that the number of CEB gets multi-
plied by exp{0.9977} = 2.71. By duration 25–29, women in each category of
residence and education have exp{1.977} = 7.22 times as many children as
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Table 4.4: Estimates for Additive Log-Linear Model of Children Ever Born
by Marital Duration, Type of Place of Residence and Educational Level

Parameter Estimate Std. Error z-ratio
Constant −0.1173 0.0549 −2.14
Duration 0–4 –

5–9 0.9977 0.0528 18.91
10–14 1.3705 0.0511 26.83
15–19 1.6142 0.0512 31.52
20–24 1.7855 0.0512 34.86
25–29 1.9768 0.0500 39.50

Residence Suva –
Urban 0.1123 0.0325 3.46
Rural 0.1512 0.0283 5.34

Education None –
Lower 0.0231 0.0227 1.02
Upper -0.1017 0.0310 -3.28
Sec+ -0.3096 0.0552 -5.61

they did at duration 0–4.
The effects of residence show that Suvanese women have the lowest fertil-

ity. At any given duration since first marriage, women living in other urban
areas have 12% larger families (exp{0.1123} = 1.12) than Suvanese women
with the same level of education. Similarly, at any fixed duration, women
who live in rural areas have 16% more children (exp{0.1512} = 1.16), than
Suvanese women with the same level of education.

Finally, we see that higher education is associated with smaller family
sizes net of duration and residence. At any given duration of marriage,
women with upper primary education have 10% fewer kids, and women with
secondary or higher education have 27% fewer kids, than women with no
education who live in the same type of place of residence. (The last figure
follows from the fact that 1− exp{−0.3096} = 0.27.)

In our discussion of interactions in the previous subsection we noted
that the additive model fits reasonably well, so we have no evidence that
the effect of a variable depends on the values of other predictors. It is
important to note, however, that the model is additive in the log scale. In
the original scale the model is multiplicative, and postulates relative effects
which translate into different absolute effects depending on the values of the
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other predictors. To clarify this point we consider the effect of education.
Women with secondary or higher education have 27% fewer kids than women
with no education. Table 4.5 shows the predicted number of children at each
duration of marriage for Suvanese women with secondary education and with
no education, as well as the difference between these two groups.

Table 4.5: Fitted Values for Suvanese Women with No Education
and with Secondary or Higher Education

Marital Duration 0–4 5–9 10–14 15–19 20–24 25+
No Education 0.89 2.41 3.50 4.47 5.30 6.42
Secondary+ 0.65 1.77 2.57 3.28 3.89 4.71
Difference 0.24 0.64 0.93 1.19 1.41 1.71

The educational differential of 27% between these two groups translates
into a quarter of a child at durations 0–4, increases to about one child around
duration 15, and reaches almost one and a quarter children by duration
25+. Thus, the (absolute) effect of education measured in the original scale
increases with marital duration.

If we had used an ordinary linear regression model for these data we
would have ended up with a large number of interaction effects to accom-
modate the fact that residence and educational differentials increase with
marital duration. In addition, we would have faced a substantial problem of
heteroscedasticity. Taking logs of the response would ameliorate the prob-
lem, but would have required special treatment of women with no children.
The Poisson log-linear model solves the two problems separately, allowing
the variance to depend on the mean, and modeling the log of the mean as a
linear function of the covariates.


