
Appendix A

Review of Likelihood Theory

This is a brief summary of some of the key results we need from likelihood
theory.

A.1 Maximum Likelihood Estimation

Let Y1, . . . , Yn be n independent random variables (r.v.’s) with probability
density functions (pdf) fi(yi;θ) depending on a vector-valued parameter θ.

A.1.1 The Log-likelihood Function

The joint density of n independent observations y = (y1, . . . , yn)′ is

f(y;θ) =
n∏

i=1

fi(yi;θ) = L(θ;y). (A.1)

This expression, viewed as a function of the unknown parameter θ given
the data y, is called the likelihood function.

Often we work with the natural logarithm of the likelihood function, the
so-called log-likelihood function:

log L(θ;y) =
n∑

i=1

log fi(yi;θ). (A.2)

A sensible way to estimate the parameter θ given the data y is to maxi-
mize the likelihood (or equivalently the log-likelihood) function, choosing the
parameter value that makes the data actually observed as likely as possible.
Formally, we define the maximum-likelihood estimator (mle) as the value θ̂
such that
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log L(θ̂;y) ≥ log L(θ;y) for all θ. (A.3)

Example: The Log-Likelihood for the Geometric Distribution. Consider a
series of independent Bernoulli trials with common probability of success π.
The distribution of the number of failures Yi before the first success has pdf

Pr(Yi = yi) = (1− π)yiπ. (A.4)

for yi = 0, 1, . . .. Direct calculation shows that E(Yi) = (1− π)/π.
The log-likelihood function based on n observations y can be written as

log L(π;y) =
n∑

i=1

{yi log(1− π) + log π} (A.5)

= n(ȳ log(1− π) + log π), (A.6)

where ȳ =
∑

yi/n is the sample mean. The fact that the log-likelihood
depends on the observations only through the sample mean shows that ȳ is
a sufficient statistic for the unknown probability π.

p

lo
gL

0.1 0.2 0.3 0.4 0.5 0.6

-7
5

-7
0

-6
5

-6
0

-5
5

-5
0

-4
5

Figure A.1: The Geometric Log-Likelihood for n = 20 and ȳ = 3

Figure A.1 shows the log-likelihood function for a sample of n = 20
observations from a geometric distribution when the observed sample mean
is ȳ = 3.2
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A.1.2 The Score Vector

The first derivative of the log-likelihood function is called Fisher’s score
function, and is denoted by

u(θ) =
∂ log L(θ;y)

∂θ
. (A.7)

Note that the score is a vector of first partial derivatives, one for each element
of θ.

If the log-likelihood is concave, one can find the maximum likelihood
estimator by setting the score to zero, i.e. by solving the system of equations:

u(θ̂) = 0. (A.8)

Example: The Score Function for the Geometric Distribution. The score
function for n observations from a geometric distribution is

u(π) =
d log L

dπ
= n(

1
π
− ȳ

1− π
). (A.9)

Setting this equation to zero and solving for π leads to the maximum likeli-
hood estimator

π̂ =
1

1 + ȳ
. (A.10)

Note that the m.l.e. of the probability of success is the reciprocal of the
number of trials. This result is intuitively reasonable: the longer it takes to
get a success, the lower our estimate of the probability of success would be.

Suppose now that in a sample of n = 20 observations we have obtained
a sample mean of ȳ = 3. The m.l.e. of the probability of success would be
π̂ = 1/(1 + 3) = 0.25, and it should be clear from Figure A.1 that this value
maximizes the log-likelihood.

A.1.3 The Information Matrix

The score is a random vector with some interesting statistical properties. In
particular, the score evaluated at the true parameter value θ has mean zero

E[u(θ)] = 0

and variance-covariance matrix given by the information matrix:

var[u(θ)] = E[u(θ)u′(θ)] = I(θ). (A.11)
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Under mild regularity conditions, the information matrix can also be
obtained as minus the expected value of the second derivatives of the log-
likelihood:

I(θ) = −E[
∂2 log L(θ)

∂θ∂θ′
]. (A.12)

The matrix of negative observed second derivatives is sometimes called
the observed information matrix.

Note that the second derivative indicates the extent to which the log-
likelihood function is peaked rather than flat. This makes the interpretation
in terms of information intuitively reasonable.

Example: Information for the Geometric Distribution. Differentiating the
score we find the observed information to be

−d2 log L
dπ2

= −du

dπ
= n(

1
π2

+
ȳ

(1− π)2
). (A.13)

To find the expected information we use the fact that the expected value of
the sample mean ȳ is the population mean (1− π)/π, to obtain (after some
simplification)

I(π) =
n

π2(1− π)
. (A.14)

Note that the information increases with the sample size n and varies with
π, increasing as π moves away from 2

3 towards 0 or 1.
In a sample of size n = 20, if the true value of the parameter was π = 0.15

the expected information would be I(0.15) = 1045.8. If the sample mean
turned out to be ȳ = 3, the observed information would be 971.9. Of course,
we don’t know the true value of π. Substituting the mle π̂ = 0.25, we
estimate the expected and observed information as 426.7. 2

A.1.4 Newton-Raphson and Fisher Scoring

Calculation of the mle often requires iterative procedures. Consider expand-
ing the score function evaluated at the mle θ̂ around a trial value θ0 using
a first order Taylor series, so that

u(θ̂) ≈ u(θ0) +
∂u(θ)

∂θ
(θ̂ − θ0). (A.15)

Let H denote the Hessian or matrix of second derivatives of the log-likelihood
function

H(θ) =
∂2 log L
∂θ∂θ′

=
∂u(θ)

∂θ
. (A.16)
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Setting the left-hand-size of Equation A.15 to zero and solving for θ̂ gives
the first-order approximation

θ̂ = θ0 −H−1(θ0)u(θ0). (A.17)

This result provides the basis for an iterative approach for computing the
mle known as the Newton-Raphson technique. Given a trial value, we use
Equation A.17 to obtain an improved estimate and repeat the process until
differences between successive estimates are sufficiently close to zero. (Or
until the elements of the vector of first derivatives are sufficiently close to
zero.) This procedure tends to converge quickly if the log-likelihood is well-
behaved (close to quadratic) in a neighborhood of the maximum and if the
starting value is reasonably close to the mle.

An alternative procedure first suggested by Fisher is to replace minus
the Hessian by its expected value, the information matrix. The resulting
procedure takes as our improved estimate

θ̂ = θ0 + I−1(θ0)u(θ0), (A.18)

and is known as Fisher Scoring.

Example: Fisher Scoring in the Geometric Distribution. In this case setting
the score to zero leads to an explicit solution for the mle and no iteration is
needed. It is instructive, however, to try the procedure anyway. Using the
results we have obtained for the score and information, the Fisher scoring
procedure leads to the updating formula

π̂ = π0 + (1− π0 − π0ȳ)π0. (A.19)

If the sample mean is ȳ = 3 and we start from π0 = 0.1, say, the procedure
converges to the mle π̂ = 0.25 in four iterations. 2

A.2 Tests of Hypotheses

We consider three different types of tests of hypotheses.

A.2.1 Wald Tests

Under certain regularity conditions, the maximum likelihood estimator θ̂
has approximately in large samples a (multivariate) normal distribution with
mean equal to the true parameter value and variance-covariance matrix given
by the inverse of the information matrix, so that
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θ̂ ∼ Np(θ, I−1(θ)). (A.20)

The regularity conditions include the following: the true parameter value
θ must be interior to the parameter space, the log-likelihood function must
be thrice differentiable, and the third derivatives must be bounded.

This result provides a basis for constructing tests of hypotheses and con-
fidence regions. For example under the hypothesis

H0 : θ = θ0 (A.21)

for a fixed value θ0, the quadratic form

W = (θ̂ − θ0)′var−1(θ̂)(θ̂ − θ0) (A.22)

has approximately in large samples a chi-squared distribution with p degrees
of freedom.

This result can be extended to arbitrary linear combinations of θ, includ-
ing sets of elements of θ. For example if we partition θ′ = (θ′1,θ

′
2), where θ2

has p2 elements,then we can test the hypothesis that the last p2 parameters
are zero

Ho : θ2 = 0,

by treating the quadratic form

W = θ̂2
′
var−1(θ̂2) θ̂2

as a chi-squared statistic with p2 degrees of freedom. When the subset has
only one element we usually take the square root of the Wald statistic and
treat the ratio

z =
θ̂j√

var(θ̂j)

as a z-statistic (or a t-ratio).
These results can be modified by replacing the variance-covariance matrix

of the mle with any consistent estimator. In particular, we often use the
inverse of the expected information matrix evaluated at the mle

v̂ar(θ̂) = I−1(θ̂).

Sometimes calculation of the expected information is difficult, and we
use the observed information instead.
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Example: Wald Test in the Geometric Distribution. Consider again our
sample of n = 20 observations from a geometric distribution with sample
mean ȳ = 3. The mle was π̂ = 0.25 and its variance, using the estimated
expected information, is 1/426.67 = 0.00234. Testing the hypothesis that
the true probability is π = 0.15 gives

χ2 = (0.25− 0.15)2/0.00234 = 4.27

with one degree of freedom. The associated p-value is 0.039, so we would
reject H0 at the 5% significance level. 2

A.2.2 Score Tests

Under some regularity conditions the score itself has an asymptotic nor-
mal distribution with mean 0 and variance-covariance matrix equal to the
information matrix, so that

u(θ) ∼ Np(0, I(θ)). (A.23)

This result provides another basis for constructing tests of hypotheses and
confidence regions. For example under

H0 : θ = θ0

the quadratic form
Q = u(θ0)′ I−1(θ0)u(θ0)

has approximately in large samples a chi-squared distribution with p degrees
of freedom.

The information matrix may be evaluated at the hypothesized value θ0

or at the mle θ̂. Under H0 both versions of the test are valid; in fact, they
are asymptotically equivalent. One advantage of using θ0 is that calculation
of the mle may be bypassed. In spite of their simplicity, score tests are rarely
used.

Example: Score Test in the Geometric Distribution. Continuing with our
example, let us calculate the score test of H0 : π = 0.15 when n = 20 and
ȳ = 3. The score evaluated at 0.15 is u(0.15) = −62.7, and the expected
information evaluated at 0.15 is I(0.15) = 1045.8, leading to

χ2 = 62.72/1045.8 = 3.76

with one degree of freedom. Since the 5% critical value is χ2
1,0.95 = 3.84 we

would accept H0 (just). 2
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A.2.3 Likelihood Ratio Tests

The third type of test is based on a comparison of maximized likelihoods
for nested models. Suppose we are considering two models, ω1 and ω2, such
that ω1 ⊂ ω2. In words, ω1 is a subset of (or can be considered a special
case of) ω2. For example, one may obtain the simpler model ω1 by setting
some of the parameters in ω2 to zero, and we want to test the hypothesis
that those elements are indeed zero.

The basic idea is to compare the maximized likelihoods of the two models.
The maximized likelihood under the smaller model ω1 is

max
θ∈ω1

L(θ,y) = L(θ̂ω1 ,y), (A.24)

where θ̂ω1 denotes the mle of θ under model ω1.
The maximized likelihood under the larger model ω2 has the same form

max
θ∈ω2

L(θ,y) = L(θ̂ω2 ,y), (A.25)

where θ̂ω2 denotes the mle of θ under model ω2.
The ratio of these two quantities,

λ =
L(θ̂ω1 ,y)
L(θ̂ω2 ,y)

, (A.26)

is bound to be between 0 (likelihoods are non-negative) and 1 (the likelihood
of the smaller model can’t exceed that of the larger model because it is nested
on it). Values close to 0 indicate that the smaller model is not acceptable,
compared to the larger model, because it would make the observed data very
unlikely. Values close to 1 indicate that the smaller model is almost as good
as the large model, making the data just as likely.

Under certain regularity conditions, minus twice the log of the likelihood
ratio has approximately in large samples a chi-square distribution with de-
grees of freedom equal to the difference in the number of parameters between
the two models. Thus,

−2 log λ = 2 log L(θ̂ω2 , y)− 2 log L(θ̂ω1 , y) → χ2
ν , (A.27)

where the degrees of freedom are ν = dim(ω2) − dim(ω1), the number of
parameters in the larger model ω2 minus the number of parameters in the
smaller model ω1.
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Note that calculation of a likelihood ratio test requires fitting two mod-
els (ω1 and ω2), compared to only one model for the Wald test (ω2) and
sometimes no model at all for the score test.

Example: Likelihood Ratio Test in the Geometric Distribution. Consider
testing H0 : π = 0.15 with a sample of n = 20 observations from a geometric
distribution, and suppose the sample mean is ȳ = 3. The value of the like-
lihood under H0 is log L(0.15) = −47.69. Its unrestricted maximum value,
attained at the mle, is log L(0.25) = −44.98. Minus twice the difference
between these values is

χ2 = 2(47.69− 44.99) = 5.4

with one degree of freedom. This value is significant at the 5% level and we
would reject H0. Note that in our example the Wald, score and likelihood
ratio tests give similar, but not identical, results. 2

The three tests discussed in this section are asymptotically equivalent,
and are therefore expected to give similar results in large samples. Their
small-sample properties are not known, but some simulation studies suggest
that the likelihood ratio test may be better that its competitors in small
samples.


