
Appendix C

Modelling Over-Dispersed
Count Data

C.1 Extra-Poisson Variation

A key assumption of the Poisson regression model is that the variance equals
the mean

var(Y ) = E(Y ) = µ.

However, count data often exhibit over-dispersion, with a variance larger
than the mean. We now consider models that accommodate the excess
residual variation.

An interesting feature of the IRSL algorithm used in generalized linear
models is that it depends only on the mean and variance of the observations.
Nelder and Wedderburn proposed specifying just the mean and variance and
then applying the algorithm. The resulting estimates are called maximum
quasi-likelihood estimates (MQLE), and have been shown to share many
of the nice properties of maximum likelihood estimates (MLE) under fairly
general conditions.

In the present context, suppose we were to assume that the variance is
proportional to the mean, say

var(Y ) = φE(Y ) = φµ.

If φ = 1 then the variance equals the mean. If φ > 1, we have over-dispersion.
It turns out that applying the IRLS algorithm with this variance struc-

ture leads to exactly the same estimates as Poisson maximum likelihood.
This implies that Poisson estimates are consistent when the variance is pro-
portional (not just equal) to the mean.
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However, the variance of the estimator in the more general case is

var(β̂) = φ(X ′WX)−1.

Under the Poisson assumption φ = 1. Thus, Poisson standard errors tend
to be conservative in the presence of over-dispersion.

If we knew φ we could, of course, correct the standard errors. Several
authors have proposed estimating φ using Pearson’s chi-squared statistic
divided by its degrees of freedom:

φ̂ =
χ2

p

n− p
.

A word of caution in using this approach is in order. Normally one would
consider a large χ2

p as evidence of lack of fit. What we are doing here,
put rather crudely, is relabelling lack of fit as extra-Poisson variation, and
inflating our standard errors accordingly.

This suggests that one should be reasonably sure that the lack of fit is
not due to poor specification of the systematic part of the model.

C.2 Negative Binomial Regression

An alternative approach to modelling over-dispersion is to start from a stan-
dard Poisson regression model and add a random effect θi to represent un-
observed heterogeneity.

Suppose then, that the conditional distribution of the outcome Yi given
θi is indeed Poisson with mean (and variance) θiµi,

Yi ∼ P (θiµi).

The idea is that if we observed θi the data would be Poisson. Unfortunately,
we do not observe θi. Instead, we assume that it has a given distribution.
It turns out to be convenient to assume that θi has a gamma distribution
with parameters α = β = 1/σ2, where σ2 represents the variance of the
unobservable.

With this information we can compute the unconditional distribution of
the outcome, which happens to be a negative binomial distribution, with
density

Pr{Y = y} =
Γ(α + y)
y!Γ(α)

βαµy

(µ + β)α+y
,
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where α = β = 1/σ2.
The negative binomial distribution is best known as the distribution of

the number of failures before k successes in a series of Bernoulli trials with
common probability of success π. The resulting density can be obtained
from the expression above setting α = k and π = β/(µ + β).

The negative binomial distribution with α = β = 1/σ2 has mean

E(Y ) = µ

and variance

var(Y ) = µ(1 + σ2µ)

If σ2 is zero we obtain the Poisson variance. If σ2 > 0 then the variance
is larger than the mean. Thus, the negative binomial distribution is over-
dispersed relative to the Poisson.

Interestingly, one can derive the same mean and variance without assum-
ing that the unobservable has a gamma distribution. One can then proceed
to estimate the parameters affecting µ for a fixed value of σ2 using maxi-
mum quasi-likelihood. This strategy has been implemented in Stata’s glm
procedure. This doesn’t solve the problem of estimating σ2 itself. Breslow
has proposed a strategy based on Pearson’s chi-square, but we won’t pursue
this further.

The alternative is to use maximum likelihood, which requires assuming
a gamma distribution for the unobservable, so that the outcome has a nega-
tive binomial distribution. This strategy, which makes stronger assumptions
but yields estimates of both σ2 and the parameters affecting µ, has been
implemented in Stata’s nbreg procedure.

Because the Poisson model is a special case of the negative binomial,
namely the case with σ2 = 0, one can use a standard likelihood ratio test to
compare them. There is, however, one small difficulty. Because the Poisson
model is in a boundary of the parameter space, the test statistic does not
have the standard χ2 distribution with one d.f. Some research suggests that
the distribution is better approximated as a 50:50 mixture of zero and a
chi-squared with one d.f., and this is what Stata does.

We note in closing that there are alternative formulations of the negative
binomial model that lead to slightly different models, including one that
leads to the over-dispersed Poisson of the previous section. The formulation
given here, however, is the one in common use.


