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Introduction

Assume we are dealing with an observation, in time, of a
sample of “n” entities placed on test (be these, devices or
humans). The experimental observation period is defined as
the time elapsed since the experiment begins (time zero) until
it is terminated (time Ty). However, it often occurs that we
need to discontinue our experiment before all the elements in
the sample experience the “event of interest” (e.g., failure or
death). In such cases, we say that the experiment has been
“suspended,” “censored,” or “truncated”.

“Truncation” may not be the most efficient way to conduct
an experiment, from the theoretical standpoint. But, due to
time, economic or practical considerations, it happens so fre-
quently that statistics had to find ways to deal with it in a suc-
cessful manner. In this START sheet we overview some of
these statistical procedures, we illustrate them via several
practical, numerical examples and we provide some refer-
ences for further reading.

Types of Censoring

To better analyze this complex issue, we begin with a char-
acterization of the censoring mechanisms. Such characteri-
zation can be based on several elements, among them, the
status of the entity observed, both at the time we start and at
the time we finish our observation. Censoring mechanisms
can also be characterized based on whether or not the exper-
iment is terminated at the time of the “event of interest” (e.g.,
failure or death).

With respect to the status of the entity observed, censoring
can occur at either extreme (or at both ends) of the entity life.
That is, we may not know exactly at what time the life of the
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entity started or finished. This happens because the entity in
question may have already started operating at the time we
begin our observation. Or the life may have not yet finished
(e.g., failed) by the time we complete our observation period.

Figure 1 illustrates censoring situations. Line “a” shows an
entity that has already been “operating” for some unknown
period of time, before we start monitoring it. This case is
called “left-censoring.” The “X” symbols in Figure 1 repre-
sent the points in time when we actually start or finish mon-
itoring the censored entities, other than the beginning (of
entity life, at time zero) or the end of the experimental obser-
vation period (time Ty).

Experimental Observation Period
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Figure 1. Type I (Time-Truncated) Censoring Cases

Similarly, Line “b” shows an entity that has been monitored
since the beginning of its life (i.e., at the start of the experi-
ment) but which we have ceased to observe before the exper-
iment ends (time Ty) or it fails. That is, we observe the enti-
ty for some time, after which we are not able to monitor it
any more. This other type of truncation is known as “right-
censoring.”

We can stop monitoring all the entities, putting an end to the
experiment, at some pre-specified time Ty, which is inde-
pendent of the event of interest (e.g., death). The entity in
Line “c” has been monitored all along the experiment.
Finally, a more complex example is presented in Line “d”.
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Here, both the beginning and end of the entity “life” are now
unknown (interval censored). We can only monitor such entity
for some intermediate part of its “life” span. Censoring schemes,
where the end of the observation period is not determined by an
event of interest (e.g., failure), are referred to as time censoring,
time truncation, or suspension in time. Such censoring schemes
are not event-driven and are known as Type 1. In these schemes,
the experiment stopping time (Ty) is pre-established and the
number of failures observed (i) during the period of experimen-
tation is random.

On the other hand, we may elect to observe a sample of “n” enti-
ties until the time of occurrence of some pre-specified event of

interest, such as the time of the i™ failure or death (i € n) denot-
ed by the X; in Figure 2. That is:

0<X; <X <X3< ... Xj<o
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Figure 2. Type II (Event-Driven) Censoring Case

At the time of the i" failure (failure times X; are denoted in the
graph by an arrowhead) we discontinue our observation of the
(n-1) sample elements remaining in operation. This other cen-
soring scheme is often referred to as “failure” or “event” trunca-
tion and is known as Type Il censoring. In these cases, the exper-
iment stopping time (Xj) is random and the number of failures (i)
occurred during experimentation is pre-established.

In either censoring scheme (Type I or II) the number “i” of
“events” of interest (e.g., death) observed during the experiment
is less than the total “n” entities on trial. Some times the distri-
bution of the “lives” of the entities is known. Other times, the
probability “p” of occurrence of an event during the observation
period (time Ty), can be calculated. In such cases, we may be
able to model the underlying life (X) distribution and estimate
the parameters of interest such as Mean Time to Failure (MTTF
or W), failure rate (FR or 0), tenth percentile of device life (L-10)
and calculate confidence intervals (CI) for them.

Other times, the problem of modeling “life” is further compli-
cated and, thus, approached differently than we do here. Some
examples of such complications include when failures are (or are
not) replaced at the time they occur, or when the distribution of
the “lives” is not Exponential. In such cases, the hazard function
(instantaneous probability of failure) is time-dependent and there
are several additional parameters than we now need to estimate
from the data. In addition, having more complex censoring
mechanisms, in conjunction with a time-dependent hazard rate,
creates many more theoretical difficulties.

In the rest of this START sheet, we discuss some of the issues
involved in estimating reliability parameters from Exponentially
distributed censored data and present several numerical exam-
ples. We first present the case for time-censored experiments.
Then, we discuss failure censored ones, of which experiments
developed until the first failure occurs, constitute a special case.
We end by giving a short bibliography for further study of time
and failure censored experiments.

Time-Censored (Type 1) Experiments

Time censored experiments (or data collection efforts) take place
if a test is terminated at a pre-specified time (say T,) as opposed
to at the time of a failure. In them, we know the total operating
time “T” of all “n” devices placed in operation, as well as the
total number of failures “k”. However, we may not know all
individual device failure times.

Time-censored experiments occur frequently in practice. For
example when say, “n” aircraft, carrying a given device on
board, simultaneously operate for a total of T hours (Figure 3)
and “k” failed device are detected and replaced. However, we

don’t know the exact times when these devices failed.

In such cases it is convenient that the distribution of the lives are
Exponential. Then, the FR 0 is not dependent on operating time
(the device life). In such cases we can afford to ignore the exact
moment, during the life of the device that a failure has occurred.
Since the FR is constant, the instantaneous probability of a fail-
ure is always the same. This allows us to ignore the exact device
failure times and still estimate the parameters of interest such as
MTTEF, FR, L-10, etc., as well as to obtain CI for them.

But time censored estimation is approached in different ways,
depending on the nature of the data and on the experimental con-

ditions. We now examine some of these cases.

Case 1: devices fail and are “instantaneously” replaced

Assume that the distribution of “n” entity lives (X) is
Exponential, with FR 8 and MTTF (or mean life) u = 1/6.
Assume that all the “n” devices are working under very similar
environmental and user profile conditions. Also assume that all
“failures” (occurring at unknown times) are “immediately”
replaced by identical entities. Finally, assume that we know the




length (total number of hours “T,” of operation) of such experi-
ment or test, and the total number of failures “k” observed dur-
ing this time (Figure 3).
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Figure 3. Representation of Type I Censoring: n = 100
Devices Simultaneously on Test

All “n” devices on test are independent, identically distributed
and operate continuously, being replaced as soon as they fail.
We can then consider two statistically equivalent situations.
First, consider “n” superimposed, identical processes, running
for a time T. Then, concatenate one after the other, all the “n”
independent, identical processes, now running for a test time T =
nxT,. In either case, the probability of observing “k” failures, in
their respective experimental times (T, or T) is the same. Such
probability is obtained via the Poisson distribution (but using FR
A =nb or A = 6, accordingly).

The statistical formulation of the Poisson Process probability, for
a single device having a FR 6, and yielding “k” failures, during
an operating time Ty, is as follows:

-9
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From the preceding, we obtain that “n” independent and identi-
cally distributed devices, each one following the Poisson distri-
bution with rate 0, operating simultaneously, will observe “k”
failures (during time T,) with rate A = nB. The Poisson model
holds because all the FRs remain the same throughout the entire
experiment of length T,.

For example, an aircraft operates for a Time Ty = 100 hours, with
a radio FR per hour of 6 = 0.0005 (hence, MTTF = = 1/6 =
2000 hours). Now, assume that n = 100 aircraft operate simulta-
neously, during these Ty = 100 hours. Then, the overall radio FR
(for the n = 100 concurrently operating devices) is A =n6 = 0.05
per hour. Using the Poisson formula (with rate A = n8 per unit
time) we obtain the probability of observing say more than four

radio failures (denoted P{N(T,) > 4}) during the experimental
time T, (Figure 3):
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For ease in looking up the probability in the Poisson table
(instead of calculating it via the Poisson formula) we multiply
the hourly rate A = nB = 0.05 by 100 hours, obtaining the new
rate \” =5 failures per To= 100 hours (the new unit time) yield-
ing the same results:

4 S5ck
Py=s(N@)=N>4=1- 3

=1-0.4404=0.5596
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For example, assume we detect and replace, say k = 4 failed
devices (e.g., radios) during Tp = 100 hours of simultaneous
operation of n = 100 aircraft that carry these. A sample point
estimate (8") of an individual radio FR, per unit time, is obtained
as:

0" = (Total Failures/Total Time) = k/n x To= 4/ (100*100) =
0.0004

We can use these results to obtain an approximate 90% CI for the
true device (radio) FR (or for its MTTF) using the approach just
presented. We search which FR (A = n0T,) for similar Poisson
Processes yielding up to k = 4 failures, produce coverages close
to 1 - a/2 =0.95 and 0/2 = 0.05. Such two FR induce approxi-
mate upper and lower limits for a 90% CI:

* First, try nOT, = 2: this implies that 8 = 2/nT, = 2/(100 X
100) = 0.0002. Then, searching the Poisson tables for the
trial FR parameter (A = nOT, = 2) we obtain the probability:

Py {N(T( )< 4 =0.9473

* Now, try value n68T, = 9: this implies that 6 = 9/nT, = 9/(100
x 100) = 0.0009. Then, searching the Poisson tables for the
FR trial parameter (A = nBT, = 9) we obtain that:

Py—o{N(Ty )< 4 =0.0550

Since the error probabilities are 1 - a/2 =0.95 and a/2 = 0.05, an
approximate 90% CI for the unknown FR 0 is given by: (0.0002,
0.0009). Likewise, an approximate 90% CI for the MTTF =y =




1/8 is given by the corresponding reciprocal values: (1111.11,
5000).

Notice how, in both cases, the approximate CI covers the true FR
and MTTF.

Case 2: devices failed but are not replaced

[I3%1)

Now, assume that we have “n” devices with lives (X) that are
also Exponential, with MTTF [ and FR 0 (=1/Q) placed on test
for a pre-specified time T,. However, this time we don’t replace
the failed devices. Hence, at the end of our experiment (time T)
we find that “k” of them failed at some unspecified time and only
(n-k) are still operating. The probability “p” of any one device
“failing” before the experiment ends (at the operating time T)
can be obtained by using the definition of the Exponential distri-
bution function, for time T:

To
p = Prob.Device Fails = P(X < To )=1-¢ ¥ =1-¢010

Since all devices are independent and identical, the total number
of failures “k”, out of the possible “n” occurring in the experi-
ment, is distributed Binomial with parameters n and p:

P(Failures =k; Total =n; Fail Prob = p)= Cﬂpk (1 - p)”_k

=B(k; n; p)

Assume, as in the previous example, n =100 aircraft, each oper-
ating for a time Ty = 100. Let each aircraft carry a radio with the
same MTTF = 2000 hours. Assume that we detect, at the end of
the operation, say k = 4 failed radios (but have not replaced

them). Then, we can obtain the exact probability “p,” that any
radio fails this specific “test” of length T:

p=1-e TOH =1 _¢10012000 _ 1 6 9512 =0.0488

And the probability of finding more than, say k = 4 failures, in
this experiment is:

P{Failures > 4} =1- 1{ Failures s}l

4
=1- 3 % (0.0488) (1-0.0488) 20~k
k=0

=1-0.457836=0.5422

[T L]

A point estimate for the radio probability of failure “p,” for mis-
sion time Ty = 100 hours:

p = (Total Failures/Total Devices) = 4/100 = 0.04.

We can also obtain an approximate 90% CI for the true radio FR
(or its MTTF) by using the previous approach. We search, for n
= 100, which values of the proportion “p” of the Binomial prob-
ability, yield up to k = 4 failures, with coverage close to 0.95 and
0.05. The resulting two proportions yield approximate upper and
lower limits for a 90% CI for “p”:

* Try value p=0.02: Then, the Binomial result fork <4;n=
100 and p = 0.02 yields:

P(Failures < 4; Total =100; Fail Prob = 0.02)=0.9492

For a mission time of To= 100 hours, such “p” implies that the
device FR 8 is:

p=1-¢"109 =1 1008 =g o 7 ez-Tlm(l-p)
0

= n(-0.02)=
_-100111(1 0.02)=0.0002

Hence, FR 6 = 0.0002 and the corresponding MTTF =p=1/0 =
4949.8 hours.

* Try now p = 0.09: Then, the Binomial result for k < 4; n =
100 and p = 0.09 yields:

P (Failures < 4; Total =100; Fail Prob =0.09)=0.0474

[ 1)

For a mission time of To= 100 hours, such “p” implies that the
radio FR 0O is:

p :P(XST()):I- e'TOQ =1 _e-1009 =0.090 6
=L 1n(-0.09)=0.00094
100

Therefore, an approximate 90% CI for the FR 6 is (0.0002,
0.00094). The MTTF p for a FR 8= 0.00094 is its reciprocal: [
= 1/8 = 1060.3 hours. The corresponding 90% CI for the MTTF
is (1060, 4949) hours. These results are comparable to the one
for the Poisson.

Following, we show the exact cumulative probabilities for both,
the Poisson and Binomial distributions, corresponding to the two
examples discussed above, and the histogram of a simulation of




10000 Poisson-5 values. Both distributions are close because the
number of devices on test (n = 100) is large and the individual
device probability of failure (p = 0.048) is small. In such cases,
the Binomial results can be approximated by the Poisson results:

Failures Poisson Binomial

0 0.006738 0.006717

1 0.040428 0.041178

2 0.124652 0.128694

3 0.265026 0.275363

4 0.440493 0.457836

5 0.615961 0.637577

6 0.762183 0.783581

7 0.866628 0.884169

8 0.931906 0.944160

9 0.968172 0.975622

10 0.986305 0.990310
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The previous two approaches to deriving CI for the Exponential
mean (MTTF) when only the Total Test Time (T) and total num-
ber of failures (k) are known, are good, illustrative examples, but
are seldom used in real life. Instead, we use more practical pro-
cedures.

Moreover, device operation time is often non-overlapping.
Devices may have well been working in different periods of
time. However, other circumstances being similar, we can rea-
sonably relax, for practical purposes, the preceding assumptions
and work as if the time of operation had occurred simultaneous-
ly. We discuss such implementations next.

Assume that the situation of interest could be construed as an
experiment of the type illustrated in Figure 3. Assume also that
there is an undisclosed number of independent devices on test.
That is, we only know the operation’s total test time “T” and
number of failures “k.” Then, we may assume that the total oper-
ation time T reported is the product n x T, given in Figure 3 (i.e.,
the number of devices on test, times the experiment length).

Then, if the underlying distribution of the lives is Exponential
and the experiment is time terminated (Type I), the distribution

of “twice Total Test Time (T) divided by the Mean ()™

2 xT/n

is approximately distributed as a Chi Square (Xz), with y =2k +
2 degrees of freedom (DF). We can then use the Chi Square dis-
tribution percentiles, with DF = 2k + 2, to derive a pre-specified
CI for the unknown MTTF (or Exponential mean [t) with confi-
dence 1- a:

H 2T 2T H

0> = 0
X )
Hok+2,1:a2 Xok+2:02

where X%i2.1-a/2; X'2k+2.0/2 are the corresponding percentiles of
the Chi Square, with DF = 2k + 2, and o is the pre-specified CI
sampling error that we are willing to absorb.

For example, let some devices operate for T = 1700 hours, with
k = 3 failures recorded. Assume that the total number of devices
operating is either undisclosed or unknown and assume that a
100(1 - a)% = 95% CI for MTTF is sought. From these data we
have:

1. Total Time on Test T = 1700,
2. DF=2k+2=2x3+2=_8and
3. Sampling error a = 0.05 (for, 1-a = 0.95).

Hence, the two Chi Square table percentiles, for a 95% CI for the
MTTEF, are:

X2

2k+2,1-a/2 =2.18

— 2 - 2
- X8,0.975 =17.54; X8,0.025

Based on all the preceding data, a 95% CI for the MTTF (or
Exponential mean L) is:

(2x1700/17.54; 2x1700/2.18) = (193.84; 1559.6)

Finally, and for comparison with the two procedures developed
in the previous sections, we recalculate the corresponding 90%
CI for their data: T = n x Ty = 10000; k = 4 failures and
X?xa12:005: = 3.94; X?909s = 18.31. Hence, the corresponding
CIs are:

For MTTF: (2x10000/18.31; 2x10000/3.94) = (1092.3; 5076.1)
For Rate: (reciprocals of the above): (0.000197; 00092)
In the following table, we summarize the 90% CI values

obtained by the three methods. The real parameters used were:
MTTF = 2000 hours and Failure Rate = 0.0005:

Method Used[MTTF LwBd|MTTF UpBd|F.Rate LwBd|F.Rate UpBd
Poisson 1111.1 5000 0.000200 0.00090
Binomial 1060 4949 0.000200 0.00094
Practical 1092.3 5076.1 0.000197 0.00092




Failure-Censored (Type Il) Experiments

Failure censoring or truncation occurs when we terminate an
experiment of “n” devices at say, the time Xy of the k™" failure.
At such time, (k - 1) devices in the experiment have already
failed (and we know exactly when) and (n - k) are still operating
(see Figure 2). If device life is distributed Exponential with
mean MTTF = i, we can obtain the sampling distribution of the
Total Test Time (T) for the life of the devices in the experiment.
From this information, we can obtain the CI for MTTF and all
other parameters of interest.

To this effect we analyze first the general case, where failure X,
k < n, yields the time of truncation. Let X; denote the time to
failure (i.e., life) of any i" device (1< 1 < k) in the sample of size
“n”. When the experiment is terminated at the time of the k™ fail-
ure, the Total Time on Test “T” of all the “n” devices in the sam-
ple is given by:

T= Zf‘:l Xi+ (n 'k)Xk

Since k <n, time T is the sum of two components: (1) all device
failure times (up to k™ failure) and (2) the product of the trunca-
tion time Xy times the remaining (n - k) operating devices. The
sampling distribution of statistic 2 x T/l is the Chi Square. But
now DF = 2k, twice the number of failures observed during the
life test.

Using this distribution we can test (or obtain the CI) for the per-
formance measures of interest (MTTF, FR, L-10, etc.). In par-
ticular, we can obtain the 100(1 - a)% CI for the Exponential
mean, MTTF (or W) by using the formula:

d oot ot 0

0 >0
H¥ox 1-a2 Xakan H

where X’ 1.a/2: X*2ka2 are the corresponding percentiles of the
Chi Square distribution, with DF = 2k, and a is the sampling
error we are willing to accept. The corresponding CI for FR is
obtained, as before, via the reciprocals of the CI limits for
MTTFE.

We illustrate this method via a numerical example. Assume that
we place n =45 devices in a life test and stop testing at the time
of the one-but-last failure (denoted T4y = 313.88). The test is
failure truncated at the k™ = n - 1 = 44 failure. Assume that the
last failure time (T4s), had we let this experiment run to its com-
pletion, would have occurred at time T45 = 399.07. Assume that
the sum of the lives of the n = 44 failed items were 4097.68. In

such truncated life test, the MTTF point estimator is obtained via
the statistic:

44T (45-44)r

.+ -

Z,IF:lTi + (n 'k)Tk _ El ! 4
k

p=l=
k 44

4097.68+313.88
44

=100.26

For comparison, had we been able to include the 45" failure (ie.,
time T4s = 399.07) we would have obtained a point estimator [
= 2Ti/n = 4496.75/45 = 99.92, not very different. The addition-
al time (85.27 =399 - 313.8) corresponds to the additional unob-
served failure and is compensated by the additional degrees of
freedom (DF = 2(45 - 44)) that are added.

To develop a CI for p, we now use DF =2k = 2 x 44 = 88 (twice
the number of the observed failures) for obtaining the two Chi
Square table values. Assume that the sampling error is o = 0.05
(for a 95% CI). Then, the percentiles from the Chi Square table
are:

X2 =X2

2x44,1-a /2 ~ 88,0975 =63.9409

— .2
=115.8414; X88,0.025

and the corresponding 95% CI for the mean life [ is:
(2x4411.56/115.84; 2x4411.56/63.94) = (76.17; 137.99)

It is important to emphasize that, if the lives (Xj) of the devices
follow another statistical distribution than Exponential (say,
Weibull) then, obtaining these performance measures becomes
much more difficult. The analysis of such cases, due to their
larger complexity, will be the topic of separate START sheet.

The Case of Truncation at the First Failure

We now analyze the case of experiments terminated at the time
of the first “failure”. This technique is very useful when, say, the
device under test is very expensive, or when there are very few
devices and the testing is destructive. Hence, we cannot afford
to have many devices fail, because the cost of the experiment can
then become prohibitive.

In such cases, the cumulative distribution (F) of the time to first
failure (denoted X)), also called the “Unreliability” of X(;), can
be obtained by using the fact that all n - 1 independent and iden-
tically distributed (Exponential) lives (X, ..., X;,) have neces-
sarily outlived this X(;,. We then calculate the probability




(Reliability) that first failure (X)) is greater than an arbitrary
time (say, X) in a sample of size n (and we denote it,(x)):

FX(I) (X)=1-Fx ) () =P(X(1) 2%) =P(X] 2, .., X 2%)
=P(X] 2%)... P(X, 2%) = {P(X 2x)}" =™

From here, the distribution of the time to first failure (X(;)) using
M =1/6, is:

n

_ —X
Fxq) (0 =1-Fx ) (0 =1-P(X 1) >x)=1-e"X =1.cu

Having the distribution of X(;) allows us to obtain all the param-
eters of interest. For all parameters of the distribution of any life
X (our main interest) can be obtained from the parameters of the
distribution of Xy (the time to first failure).

For example, the MTTF of the first failure is p/n (i.e., the origi-
nal MTTF “p” divided by the sample size “n”). Hence, the
MTTF of any life X is just “n” times the MTTF of the first fail-
ure X(iy. Therefore, by placing as many devices (n) as we can
afford on test, we will, with high probability, get a first failure
(and estimations for all the parameters of interest) much sooner,
thus saving calendar time as well as experimental costs.

Assume, for example, that we place n = 10 expensive air condi-
tioning units on a life test and that we observe the first failure
after 1575 hours. From the distribution of Time to First Failure
above, we know that the “average” Xy will occur ten times
sooner than the “average” failure of a single unit (its MTTF is 10
smaller). In addition, by using the Total Test Time T = nxX;, we
can obtain a 95% CI for an air conditioning unit MTTF. Hence,
the standard procedure for deriving a CI for [, with Type II cen-
sored data and k =1 is:

2xnxX 2xnxX
d ‘ (1) :2x1;)>;18575 - 426829, 2 o H
0x . X5, O
0 2k,1-a/2 2k;a/2 0
O O
0= 2X1OXIST5 _ 69647 .06 0
0  0.051 0

= (4268.29, 617,647.06)

Summary and Conclusions

There are still ways in which the probability of failure, MTTF, L-
10, the FR, etc. can be obtained, even when dealing with cen-
sored data, as long as we are able to assume that the device life
follows the Exponential distribution. However, the degree of
difficulty in obtaining such parameters increases as the distribu-
tion of the lives of the test data departs from the Exponential, and
as the censoring mechanisms implemented become even more
convoluted and complex. This START sheet reviews the
Exponential case only. For all the other cases, the reader is
directed to References 5, 6, 7, 8, and 9 of the bibliography.
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