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Abstract 

 

Environmental decision-making is complex and often based on multiple lines of evidence.  

Integrating the information from these multiple lines of evidence is rarely a simple process. We 

present a quantitative approach to the combination of multiple lines of evidence through 

calculation of weight of evidence, with reference conditions used to define a not impaired state. 

The approach is risk-based with measurement of risk computed as the probability of impairment.  

When data on reference conditions are available, there are a variety of methods for calculating 

this probability.  Statistical theory and the use of odds ratios provide a method for combining the 

measures of risk from the different lines of evidence.  The approach is illustrated using data from 

the Great Lakes to predict the risk at potentially contaminated sites. 

 

Keywords: Bayesian statistics, odds ratio, hazard ranking, combining information, risk 

assessment, reference conditions 
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Introduction 

 

Environmental decision-making is often based on multiple sets of information or lines of 

evidence.  By line of evidence we mean a set of information that pertains to an important aspect 

of the environment.  For example, in the sediment quality triad (Chapman 1996), there are three 

lines of evidence, the toxicity line, the biological field line and the chemistry line.  It is difficult 

to combine the information from these multiple sources into a single measure for decision-

making.  Weight of evidence (WOE) is sometimes used as an approach for combining the 

information, however it is rarely used in a quantitative manner.  This paper discusses a 

quantitative approach to WOE.  A statistical approach is taken in which the likelihood of the data 

is calculated under two different scenarios and a decision made based on the ratio of the 

likelihood.  Our view is that there are two states, and we must decide which of the states is true.  

Examples of pairs of states common to environmental decision making are (impaired, not 

impaired), (remediate, don’t remediate), (list, don’t list), etc. The view we take is that interest is 

in a single site, we collect a sample at that site and based on the sample, the site is impacted or 

the site is not impacted.  For practical reasons, we assume the simple case that there is ample 

information on reference conditions and interest is in evaluating a single new location.  This 

gives us the ability to obtain a precise estimate of the probability. 

 

Estimating weight of evidence (WOE) 

 

A quantitative approach to WOE is based on the concept of statistical weight of evidence. 

This idea dates back to work by Alan Turing in World War II (for a more general discussion of 

history and concepts of statistical weight of evidence, see Good 1988).  In this approach, there 

are two states and we must decide which state is more likely given the data.  We can view the 

outcomes as the site is or is not impacted.  Without observing the information, we may have 

opinions or insights into the condition of the locations.  This insight might be based on previous 

data (condition in previous years) or be from sites that are close in space.  This information may 

be used to form a prior opinion or probability of impairment.  After the data are collected, we 

process the data to evaluate the site.  This leads to a Bayesian approach in which the data are 
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used to update the prior information.  The lack of prior information suggests a frequentist 

approach where the data alone are used to make a decision.  The approach may be based on a 

single line of evidence or multiple lines.  The individual lines of evidence are usually evaluated 

separately and by combining them we hope to make a stronger inference.   

Statistical WOE is based on a quantitative evaluation of the data and requires a model 

that describes the data. In the simplest approach, there are two states and we must decide which 

state is more likely given the data.  Because it is not always easy to describe impact, an 

alternative approach is to evaluate the risk of impairment of a site considering the baseline risk of 

a not impaired site.  If we view the possible outcomes as the site is or is not impacted, the risk is 

then the probability that the site is impacted or P(impact) where we evaluate this probability after 

information is collected.   

The odds are a way to evaluate how big the probability is relative to the baseline risk.  

Odds of impact are defined as  

 

odds(impact) = P(impact)/P(no impact)      (1)  

 

Although this problem is analogous to tossing a coin, estimating the probability of impact is not 

easy since “impact” is not an observable attribute of a sample.  The state (impact or no impact) 

must be inferred based on information that is collected on both impacted and unimpacted sites.  

A reasonable approach is based on Bayes rule.  With no data the probabilities would be 

estimated based on prior information that may come from previous studies.  We more generally 

would collect data to improve these estimates.  Given data we have to calculate probabilities of 

impact or no impact.  However, even with data we do not have probabilities of impact, only 

probabilities associated with observations given a model for impacted sites and not impacted 

sites.  For example, if there is ample information on sites that are not impacted we may compare 

our data to that and estimate the probability the data come from that distribution.  We do not 

have the probability of no impact only the probability that the data come from that distribution.  

A representation of what we want to calculate is 
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)|(

dataimpact noP
dataimpactP
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Given data and information about the different groups we can calculate how likely the data are 

given they are from one of the groups.  This probability is written as P(data|impact) or P(data|no 

impact) and must be computed based on a statistical model for the data (possibly different 

models for each group). For example, we might specify that the model for the impact sites for 

dissolved oxygen is normal with mean 4 and for no impact sites is normal with mean 7.  If we 

obtain a sample with dissolved oxygen equal to 6 and we know the variance of the dissolved 

oxygen measurements, we can calculate how likely the observation is to have come from each 

group by calculating the value of the density under each model.  Bayes theorem may be used to 

calculate the ratio in terms of the probability of the data since 

 

)()|(
)()|(

)|(
)|(

impact noPimpact nodataP
impactPimpactdataP

dataimpact noP
dataimpactP

=

 

where P(impact) is the probability the site is an impact site before collecting the measurements 

and is referred to as the prior probability.  If the prior probabilities are taken to be equal the result 

is 

)|(
)|(

)|(
)|(

impact nodataP
impactdataP

dataimpact noP
dataimpactP

=

 

The quantity on the right hand side of the equation is referred to as the likelihood ratio or 

a Bayes Factor in this case and measures the likelihood of the data given the site is in the impact 

class versus the no impact class. (More generally the Bayes Factor also involves parameters that 

are treated as random and integrated out of calculations, see Kass and Raftery, 1995).  For 

environmental problems there may not be simple approaches for estimating these quantities.  

Building a model for the impacted or unimpacted sites requires information on how data are 

distributed for these types of sites and other factors that might influence the observations.  Sites 

classified as unimpacted are often viewed as reference sites.  It may not be possible to obtain 

these sites or there may be covariates that must be considered. Calculation of the likelihood of 

the data under impact requires a definition of the impact or model of the data that we might 

expect if the observation came from the impact group.  One would have to have different models 
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for different types of impacts (for example chemical toxicity versus sedimentation).  The models 

should depend on the strength of the impact, and may vary in space and time.  These models may 

involve a good deal of work to describe.  One approach to calculating the ratio given a lack of 

information on impact is to calculate the odds as p/(1-p) where p is the probability of the data 

given there is an impact. 

WOE is a measure of how much an observed feature in the data adds to or subtracts from 

the evidence of impact.  Numerically it has been defined as (Good 1988) 

 

Weight of evidence = 10 log(likelihood ratio). 

 

In our applications, this would correspond to the weight of evidence for one line of evidence.  A 

natural consequence of using logs of ratios is that the weight of evidence from different lines 

may be added together to get an overall weight of evidence.  For an individual line of evidence 

values of the ratio are interpreted as follows (Good, 1988): 

Bayes Factor Weight of Evidence Strength of Evidence 

<5 <6.9 Weak 

5-10 6.9-10 Moderate 

10-100 10-20 Moderate to strong 

>100 >20 Strong 
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These rules are guidelines in much the same way that p-values are guidelines and other authors 

have suggested alternative views (see Kass and Raftery, 1995).  From a hypothesis testing 

perspective the weight of evidence measures the strength of the evidence against the null 

hypothesis.   

Numerical calculation of weight of evidence is not common to statistics.  The reason is 

that testing of hypotheses and interpretation more common approach of likelihood ratio testing 

and calculation of Bayes Factors.  Using the natural log scale and twice the log of the Bayes 

Factor leads to the same scale as likelihood ratio testing in general statistical theory (where –

2log(likelihood ratio) is used to test hypotheses) and deviance measures in generalized linear 

models (McCullagh and Nelder, 1989).  Thus, for applications of WOE in environmental 

problems a user may choose to summarize results in terms of a WOE measure that is based on 

the probability of impairment.  Alternatively the user may simply calculate and report the actual 
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probability.   The value of the use of Bayes Factors and odds is that these may be combined 

easily over the different lines of evidence. 

The calculation of WOE for multi-attribute environmental studies involves three general 

stages of analysis.  We assume that the researcher has available the information required for 

making the decision.  Thus decisions have been made about what information needs to be 

collected or this information has already been collected.  The three stages of the analysis are the 

preprocessing stage, the processing stage and the combination of the information over the lines 

of evidence. 

 

Data preprocessing 

 

The initial step in the analysis is the preprocessing of the data.  Preprocessing involves 

selection of the variables to be used in the analysis and scaling or transforming these variables.  

Variables are selected to provide relevant statistical and scientific information on differences 

between control and impact.  Scaling and transformation are often used to meet assumptions 

required for analysis. The assumptions needed depend on the model used to calculate the 

probability.  Two methods for this calculation are to assume a model (parametric approach) or to 

calculate the probability using a nonparametric approach.  In the parametric approach we select a 

probability model for the data.  Here we use a normal or Gaussian model to estimate the risk.  

Then there are a several assumptions that need to be evaluated for the statistical model to provide 

a good estimate: 

 

1. Normality of the reference data.    

2. Independence of samples in the reference set. 

3. Homogeneity of variance in the reference set. 

 

Since a normal distribution is used to calculate probability of impairment the validity of this 

assumption is required for the estimate of risk to be accurate.  In the normal model, probability is 

directly related to the standardized distance to the mean.  If the normal model is not reasonable 

then the estimate may be poor and misleading.  Problems such as skewness and outliers may lead 

to inaccuracies in the probability estimate.  As environmental data often are not normal, we try to 
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achieve normality via choice of a suitable transformation of the variables or use a method based 

on the distribution of the data (i.e. logistic regression assumes a binomial distribution).  The 

logarithm is typically used as a transformation with contaminant concentrations.  Independence 

of the reference data is required to provide a good estimate of the variances and covariances in 

the contaminants.  This assumption is best met through choice of the reference locations and 

sampling occasion.  Sites that are spatially close and repeated samples at the same site that are 

temporally close should be avoided.  Homogeneity of the variance in the reference set is required 

to produce a good estimate of the variances and covariances.  An alternative approach would be 

to allow heterogeneity but include this in the model in some manner.  A potential concern here is 

with multiple sets of reference sites.  If the multiple sets are treated as a single set then the 

estimates of the variances are likely to be smaller than data collected from different sites. Hence 

detection of impairment is potentially overly sensitive.  A useful strategy with multiple samples 

from a collection of sites is to try to match the test site with similar reference sites rather than to 

use all of the sites.   This might involve forming clusters of reference sites and matching the test 

site with a cluster or using an auxiliary set of measurements (such as sediment type).   Other 

potential problems include measuring a single site multiple times and the time of sampling.  

Selecting reference sites is a difficult and important problem. 

The data transformation need not be a transformation of individual contaminants but may 

also be on the set of measurements.  For example, it is common to analyze composites of 

variables rather than individual variables.  Two common approaches are to use principal 

components (PC) or correspondence analysis (CA) to form new variables. These two methods 

are useful when the dimensionality of variable space is high and variables are highly correlated. 

In the case of the sediment quality triad, the PC transformation would typically be applied to the 

sediment toxicity and metal chemical variables, while correspondence analysis axes can be used 

for species composition data.   Another possible data transformation could be computing some 

univariate index.  For example, composition data can be represented by diversity measures or an 

index of biological integrity. 

When the normal assumption is not valid a possible approach is to use a distance measure 

and build a nonparametric estimate of the probability of impairment (details are given below).  

When a nonparametric method is used, there are also assumptions that must be considered.  The 

nonparametric approach that we use involves a measure of the distance from the site to the 
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reference sites.  A probability model is then developed based on how close reference sites are to 

each other.  For this approach to work we have similar assumptions: 

 

1. The reference site data are from a common distribution 

2. The reference sites are independent 

3. The distance measure is appropriate for detecting change. 

 

If the data for the reference sites come from a common distribution, then a single distance 

measure will produce reasonable estimates of how similar the test site is to the reference sites.  

When there are different sets of reference conditions the distance measure would have to be 

computed with respect to the different distributions or with respect to the set of reference 

conditions most similar to the test site.  Independence of samples implies that equal weight may 

be given to each of the samples from the reference sites.  The choice of distance measure is a 

critical step as the distance measure defines the measure of impact.  One important consideration 

in the selection of the distance measure is the weight given to the variables used in computing 

the distance (Smith 1998). 

The choice of how to preprocess the information is critical to the analysis as it defines the 

deviations that are of interest.  One should be aware of the limitations associated with these 

choices.  For example, if information on a large number of variables is collected then one has a 

better chance of detecting a broad scale impact.  If the impact is only observed through one 

variable, the other information becomes of low utility for the detection of impact.  Thus there is a 

need to have a clear idea of what types of impact are to be detected.  For example, if a chemical 

is only toxic to fish then measuring abundance of benthic macroinvertebrates will not be risk 

informative.  It is critical in selecting an approach to be aware of what types of changes will or 

will not be well detected in the analysis and how likely the analysis is to detect changes of 

important magnitude.  Methods such as power analysis are useful for evaluating variables and 

their importance in the decision process.  Also transformation of the variables is often needed.  

For example, chemical data are often collected in environmental studies.  The user needs to 

decide if the original or standardized data are used.  If standardized the method of 

standardization needs to be chosen.  Options might include an overall standardization, 
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standardization relative to a reference group or standardization in terms of toxic units.  Choice of 

standardization will change the magnitude of distances between observations. 

 

Data processing: Estimating probability of impact  

 

In the data processing step, the test site is compared with reference conditions in order to 

obtain a measure of the degree of impairment.  This may be an indirect or direct evaluation.  For 

example, with biotic indices (Smoger and Angermeier 1999), there is often a calibration step in 

which the metrics that make up the index are scaled based on reference conditions.  A direct 

evaluation is based on comparing the reference and test measurements.  A statistical approach is 

to compute the probability of impairment through the use of the distance between reference and 

test measurements.  The use of distance in ecological and environmental impact assessment has a 

long history that will not be explored here.  For example, distance from control forms the basis 

of outlier detection methods and control chart approaches that view water quality analysis as a 

quality control problem.  Distance also is central to many multivariate methods used to assess 

ecological change such as correspondence analysis (using chi-square distance, Legendre and 

Legendre, 1998) or multidimensional scaling (Smith et al, 1990, Gray et al, 1990). 

The estimation of the probability of impact is based on comparison of the site in question 

with reference sites and for certain statistical models, the probability is directly related to 

distance from the reference.  For example, with a single measurement and mode of evaluation, 

the calculation of WOE requires estimation of the distribution and calculating the probability that 

the observation is from that distribution.  In the simplest case, the probability distribution of the 

measurement is treated as a normal distribution.  Then the two-tailed probability may be 

calculated by first computing 

 

0 0( , ) ( ) /d x xµ µ σ= −  26 

27 

28 

29 

 

Next, the quantity is used to calculate the probability.  Since the parameters are unknown, they 

are estimated so one would use 

0 0
ˆ( , ) ( ) /d x x x sµ = −  30 

31  
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This idea then suggests a more general approach: first transform the measurement to try to obtain 

a normal distribution for the reference site data, then use the estimated parameters from the 

normal distribution to compute the distance and then the probability.  This approach is useful in 

that the direction of deviation may be taken into account.  The disadvantage is that when there 

are several variables, the individual estimates may be correlated and this correlation is not taken 

into account in the distance measure. 
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The possibility of correlated measurements suggests a multivariate distance measure be 

used.  Suppose the measurements at a particular site are given by x0 where the convention of 

bold indicates a vector or set of measurements.  This vector may be chemical measurements, 

toxicity information or biological information.  The measurements are typically manipulated or 

transformed in such a way that the distribution of similar vectors for the reference sites follows a 

normal distribution.  Then the squared distance is calculated as the Mahalanobis (Rencher 1995) 

distance 

 
2 -( ) ( ) ' (Rd Σ0 R 0 R 0 Rx ,µ = x - µ x - µ  15 

16  

where Rµ  is the mean for the reference sites and RΣ   is the covariance matrix for the reference 

sites.  The squared distance is estimate by (provided the variance covariance matrix is invertible) 

17 

18 

19  
2 -ˆ ( ) ( ) ' (Rd S0 R 0 R 0 Rx , 1 )µ = x - x x - x  20 

21  

where the sample mean from the reference sites Rx  and the sample covariance matrix SR are 

substituted into the distance measure. This distance measure gives less weight to variables that 

have high variance.  Similarly, highly correlated variables do not contribute as much to the 

variance as uncorrelated variables (Rencher 1995). 
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From the distance measure a probability is calculated.  This is easy for multivariate 

normal data as the probability is determined from the distance to the mean.  Other distance 

measures are also feasible.  The advantage to using the Mahalanobis distance is the relationship 

with the multivariate normal model.  From the distance measure, the probability of obtaining a 

more extreme measurement is easily obtained (as described below).  The disadvantage to the 
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2 -( ) ( ) ' (Rd m m mΣ0 R 0 R 0 Rx , = x - x -  

 

where mR is the smallest possible value in the reference set (such as the detection limit or zero).  

Then the distance would not be large for sites with small concentrations of contaminants.  This 

approach would make sense when the mean does not represent optimal or good conditions.  A 

model based estimate of probability associated with this distances is difficult to obtain although a 

model free estimate (nonparametric) is possible given an adequate sample size for reference 

sites.  When the lower value is zero analytical approaches are possible. The distribution of 

is related to the non-central T2
0 ' Rd −= x S x 2 distribution and the non-central F distribution so 

probabilities may be evaluated when the observations are normal. 

The impairment probabilities for each line of evidence can be computed based on the 

multivariate normal model or, if sample sizes are sufficient, through a data based estimate.  If 

multivariate normality is assumed, then the probability associated with the distance measure may 

be calculated using a chi-squared approximation or through Hotelling’s T2 distribution (Rencher 

1995). The squared distance is estimated by  

 
2 -ˆ ( ) ( ) ' (Rd S0 R 0 R 0 Rx , 1 )µ = x - x x - x  20 

21  

where Rx , is the mean for the reference sites and  is the within cluster variance-covariance 

matrix for the reference sites (when no clusters are specified, we of course just use the common 

mean and variance matrix). The probability of impairment is then defined as one minus the right 

tail probability of the chi-squared distribution with number of degrees of freedom equal to the 

number of variables. The probability of impairment is then approximated based on the chi-

squared distribution of  

RS22 

23 

24 

25 

26 

2 1( ) ' ) ~
1 o R R R

nX
n

2
r( o χ−= − −

+
x x x xΣ  where ΣR is the true covariance 

matrix for the reference set, and r is number of degrees of freedom equal to the rank of Σ

27 

28 

29 
R 

(typically equal to the number of variables, p)   
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A more accurate estimate of the probability is obtained using Hotelling T2 distribution.  The 

statistic used is 2 ( ) ' (
1obs o R R o R

nT
n

−= − −
+

x x S x x1 )3 

4 

5 

, where k is number of groups and n is the 

number of reference sites. To compute the p-values we can use the relationship between T2 and F 

distribution 

α+−−α +−−
−

= ,1,
2

,, 1
)(

kpnpnp F
kpn
knpT  6 

7 

8 

9 

 

(Mardia et al. 1979, p. 74).  To estimate the probability of impact we first compute  

 

21
( )obs obs

n p kF T
p n k
− − +

=
−
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then calculate the probability of a more extreme F value using the Fp,n-p-k+1  distribution (i.e 

compute the probability of impairment as Pr(impairment)=Pr(Fp,n-p-k+1>Fobs). 

An alternative approach is to use a nonparametric estimate of the probability based on the 

empirical distribution of distances in the reference set. If there is a large enough set of reference 

sites then an individual reference site may be compared with the other reference sites to build an 

empirical or data based probability model.  The idea is to treat one reference site as a test site and 

compare it with the other reference sites.  By repeating this for all reference sites a distribution of 

distances is obtained and then the actual test site may be evaluated with that distribution.  The 

distances are defined as above except that the cluster means and within cluster variance matrix 

are computed with removal of the observation for which the distance is computed. Thus, for the 

jth observation, we compute 

 
2 -1

, , ,
ˆ ( ) ( ) ' (j j j R j jd S− − −R Rx ,µ = x - x x - x )jR24 

25 

26 

27 

28 

 

 

where the term –j indicates that the observation was removed from the reference set prior to the 

computation of the parameter estimate.  Although the statistically savvy reader will recognize 

this analysis as computationally intensive, it is possible by employing the fast updating formulas 
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for the variance-covariance matrix and its inverse (for details see Thisted 1988, p. 52). The 

probability of impairment is computed as the proportion of reference sites whose “leave-one-out” 

distance is smaller than that of the test site in question. 

 

Combining estimates 

 

Given estimates of probability of impairment for each line of evidence the problem now 

becomes combining these together to produce a single weight of evidence estimate.  We again 

assume that the estimate of impact is based on the reference conditions.  There are several 

options available for making the combined estimate. Two approaches involve combining the 

probabilities for the lines and combining the odds for each of the lines.  There are several 

possibilities for combining information across the different lines by combining the probabilities.  

The general equation for this over the k lines of measurement is calculated as the probability of 

the union of impairment events (in sediment toxicity k=3 corresponding to lines of evidence 

associated with toxicity, chemistry and biology).  A site is declared impaired if it is impaired on 

any of the modes.  Thus, 

 
k

line=1

(site impaired)=1 (1 (site impaired, line i))P P− −∏  

 

For our weight of evidence problem,  

P(site impaired) = 1 – P(site not impaired on any of the 3 lines of evidence) 
= 1 – { [1-P(species composition” impaired”)] 

x [1-P(toxicity” impairment”)]  
x [1-P(chemical ” impairment”)] 

 

 

The formula indicates that the overall probability of site impairment is based on first calculating 

the probability that the site is not impaired over the different lines, multiplying these together to 

get an overall probability the site is not impaired, then subtracting from one to get the probability 

of impairment.  Note that with two lines this is the more familiar equation that gives the 

probability as the union of events (under independence) 
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P(site impaired) = P(impaired line 1) + P(impaired line 2) – P(impaired both lines) 

 

and is based on computing the individual probabilities and subtracting off the joint probability.  

There are also some variations on this approach that might be used, similar to that used to 

estimate joint toxicity using individual estimates of toxicity.  The above product approach works 

if the measurements are independent, which is a difficult assumption.  One adjustment is to make 

bounding assumptions.  The most extreme estimate of impairment is to assume no intersection 

and results in simply a sum i.e., 

 

lines
(site impaired) = P(site impaired, line i)sumP ∑  11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

 

A drawback to the use of this equation is that the probability may exceed one.  An 

average represents an alternative.  The least extreme case occurs when there is complete 

dependence.  In this case, one or more of the events is contained inside another event.  The 

estimate of the impairment probability is then greater or equal to the maximum probability across 

the lines 

 

max (site impaired) = max( )iP P  

 

where Pi is the probability of impairment on line i. 

Another approach is based on combining odds ratios.  We can convert the individual 

probability of impairment from each line into an odds ratio, 
i

i
i P

P
−

=
1

O  and compute the final 

odds ratio by using the Bayes rule of updating evidence as the product of the odds ratios 

corresponding to each line, i.e., 

23 

24 

1 1

k
i

i i

PO
P=

=
−∏ . The advantage of this approach is that it allows 

one to easily incorporate the prior odds of impairment (O

25 

26 

27 

prior) of the site by simply multiplying 

. We can account for the effect that the evidence from different sources (lines) 
1

k

prior i
i

O O O
=

= ∏
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may overlap by introducing weights as follow. Let 
1

i

k
W

prior i
i

O O O
=

= ∏ , where the weight Wi for a 

given line should be the number between 0 and 1, with smaller values reducing the influence of 

the corresponding odds ratio. The weight factors can be computed as 

, where  is the coefficient of multiple correlation 

for the regression of the reference distance matrix (extended in a single vector with only upper 

diagonal elements) associated with i-th line regressed on similarly defined distance matrices 

associated with the lines already accounted for in the combined odds ratio product. Therefore, 

the weights will account for the relationships among various sources of evidence and effectively 

down-weight the evidence that does not add much to the information about the disparity between 

the test and reference sites that was already taken into account. The computations obviously will 

depend on the order of lines of evidence in the product of odds ratios; therefore we have to use 

some expert information about relative importance of different lines. For example, with our three 

lines of comparison, we can use first the species composition data, then toxicity and finally 

chemistry data. 
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−−= iii DDDRW )1−i,..,|( 1
2

i DDDR

0 0( , ) (d x x xµ = −

m

1

d) 1- (1 (

) / s

site impaired, varia(site
i

P P
=

= −∏

In cases where univariate scores are calculated for each measurement within a line of 

evidence, these would first have to be combined.  Estimating impairment probability based on 

multivariate distances makes deviations from the center of reference sites (or the reference 

clusters) equally unfavorable in any direction. In many cases however, the underlying univariate 

measures (for example in the case of metals data) have well-defined directions that would cause 

impairment of the sites. For such a data set we can compute the impairment probability as one 

minus upper tail probabilities from the underlying univariate tests based on normal 

approximation for the quantities ˆ . These univariate probabilities are then 

combined using the intersection principle 

22 

23 

24  

 impaire ble ))  i25 

26 

27 

28 

29 

 

This probability however should be adjusted so as to take into account the effect of multiple 

testing as follows   
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2
2(site impaired) 1 ( 2 (1- (site impaired)))adj mP Log Pχ= − − ,  1 

2  

where 2
2mχ  is the cumulative distribution function of a chi-squared distribution with 2m degrees 

of freedom. This is a standard meta-analytic procedure based on the fact that the null 

distributions of individual p-values from m independent tests are independent Uniform(0,1) 

random variables (for details see Hedges and Olkin 1985, p.37). 
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Example 

 

As an example we consider data from the Great Lakes that was obtained via the BEAST 

software (Reynoldson et al. 1998; 2000).  The reference data consisted of 146 reference samples 

collected in 1992.  Although more data are available on different lines of evidence, these data 

have information from all three lines of evidence.  In addition, there were twenty-five samples 

taken from Collingwood Harbour that we use as the predictive or test sample.  These twenty-five 

samples were taken at nine locations in 1992, 1995 and 1997 (Table 1).  Collingwood Harbour is 

located in the south shore of Nottawasaga Bay, in the southern extension of Lake Huron’s 

Georgian Bay.  The site is of interest as it was identified as an Area of Concern (AOC) by the 

International Joint Commission but was then de-listed in November 1994, following remediation 

(for details, see http://www.on.ec.gc.ca/glimr/raps/huron/collingwood/intro.html). Contaminants in the 

sediment resulted from use of the harbor as a location for ship repair with greatest contamination 

near the shipyard and in the east and west slips.  The nine sampling locations are located as 

follows: 6703, 6704 and 6705 are located in the harbor with 6703 being farthest from the 

shipyard and 6705 closest.  Sites 6706-6708 are located in the east slip and sites 6709-6711 are 

located in the west slip. For a map of the locations and additional details on remediation history 

see http://www.ijc.org/boards/wqb/cases/collingwood/collingwood.html. 

 Several analyses are provided below.  The different analyses are compared to illustrate 

how different assumptions will lead to different estimates of impairment.  This is to show the 

importance of the assumptions and models used for the analysis.  First, we consider comparisons 

of test sites with the entire group of reference sites.  No transformations are made.  The second 

model uses transformed chemistry variables.  The third model is similar to the second but uses 

scores from the first two (nontrivial) correspondence analysis axes for the biological data.  
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Additional models are based on principal components reductions, transformations of the toxicity 

data and empirical measures of probability.  Descriptions of each model are in Table 1.  We first 

comment on the choices that were made.  

  

Chemical Data 

 

Graphical displays of the chemical data for the reference sites suggested the data were not 

normal.  Distributional plots suggested skewness of the distributions and odd observations.  The 

chemical data were preprocessed using a log transformation for all variables.  Figure 1 displays 

the scatterplot matrix for the transformed data.  We note that there is evidence of correlations 

between the chemicals.  Also, there are some locations that have very low or non-detectable 

concentrations.  This suggests groupings may be useful for analysis.  Two approaches for further 

processing the data were considered.  The first uses the Mahalanobis distance measure and the 

multivariate normal distribution.  An alternative is to first combine the chemical data into a 

single number.  This may be done using toxic units or a principal components analysis.  In the 

principal components analysis, a linear combination is formed and the combination used as the 

principal variable for analysis.  The data from the Great Lakes reference sites were standardized 

treating the data as one group, to give each chemical equal weight.  A principal components 

analysis of the log transformed standardized chemistry data resulted in two components.  The 

two components explained 75% of the variation in the data.  A plot of the loadings is given in 

Figure 2 and suggests the first component consists of all the chemicals except arsenic while the 

second was comprised primarily of arsenic.  Note the loadings are not as high for lead and 

cadmium.  The model might not accurately describe impairment probability at sites with high 

levels of these contaminants.  The test sites were scored on the components using the 

standardization from the reference sites.  The site scores are graphed in Figure 3.  A symbol is 

used to separate the test sites from the references sites.  In addition, the reference sites were 

divided into six different groups and the group is also indicated in the graph.  Note that most of 

the test sites fall to the upper end of the plot suggesting extreme chemical composition.  Also 

there is a split in the display of points.  This is associated with the arsenic variable that is at the 

limits of detection for many of the sites. 
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There were several possibilities considered for the analysis of the biological data.  First 

one could use the original or transformed data and then use the distance measure approach.  

Second, the data could be converted to an index then the index used with the distance approach.  

A third approach is to compute multivariate axes using correspondence analysis and then 

compute distances using scores from these axes.  In the analysis below, we used the first 

approach only in model 1 and third approach in the remainder of the models.  The reason for 

discarding the first approach was that the effect of the contaminants is to decrease abundance of 

the majority of the taxa.  Due to large variances, the method is only capable of detecting large 

increases rather than large decreases.  A more detailed description is described below.  

 

Toxicity Data 

 

Plots of the toxicity data suggested skewness of the measurements.  As with the chemical 

data, the log transformation greatly reduced the skewness.  We did not consider combining the 

toxicity data into a single component, as the correlations between the different tests were not 

high.  Analysis was based on T2 tests or distances with probabilities computed based on 

empirical distances.  We also considered analyses using log transformed variables. 

 

Combined Estimates 

 

Table 1 compares overall impairment estimates from six different models.  What is 

apparent is that considerable differences in the estimates can occur as a result of different 

analysis options.  For example, for the first sample, the probability is estimated as zero using the 

first model while the second model estimates probability of impairment as close to 1.0.  The 

difference in estimates is a result of the way the species data are treated.  In the first model, the 

biological data are treated as normal while in the second model, the biological data are first 

transformed using correspondence analysis and the first two components used in the analysis.  

The new variables from the correspondence analysis are treated as having a normal distribution 

and the T2 approach applied.  It is instructive to compare the individual estimates of impairment 
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probability from the different lines of evidence for the two models.  For model 1, the individual 

estimates are 0.99 for toxicity, 0.49 for chemistry and 0.00 for community structure.  Note that 

even though the estimate for toxicity is practically 1.0, the community structure estimate is close 

to 0 and dominates the weight of evidence analysis.  For model 2, the estimates are 0.99 for 

toxicity, 0.43 for chemistry and 0.25 for community structure.  In this case, the toxicity measure 

dominates the analysis and results in an overall estimate of 0.99. The difference in the overall 

estimate is mostly a result of the contribution from the biological data.  This example also 

illustrates the importance of considering the individual components as well as the overall 

estimate.  The overall estimate for model 2 reflects a different view of the biological data.  The 

distance measure based on untransformed data (model 1) will detect change if the abundance at 

the test site is different from the reference mean relative to the variance.  Variance in abundance 

tends to be relatively large for most taxa hence detection of change is made difficult.  The 

coefficient of variation for individual taxa abundance ranges from 1.5 to 15 with a mean of 7.5.  

Since the standard deviation is greater than the mean, it will be difficult to detect a difference 

unless there is a large change in abundance for a single taxon.  Since it might be expected that 

the effect of metals contamination is to reduce abundance, the problem is made more difficult as 

zero is less than one standard deviation away from all the mean abundances.  For example, the 

high probability for 6704 in 1997 results from high abundance of Tubificidae.  The high value 

for 6711 in 1992 results from a high value of Caenidae.  Interestingly the mean abundance at this 

site is only 0.6.  While this is not high, the mean for that taxon in the reference sites is only 0.11.  

Sample 6708 in 1992 (which is similar to 6711 in 1992) is not considered impaired even though 

almost all taxa have zero abundance (only two taxa are present)!  Thus, this modeling approach 

may be useful for detecting effects that cause an increase in abundance (perhaps due to sewage 

or deposition) but is poor for detecting change due to toxicity.   

Correspondence analysis tends to produce better results, as it will produce “average” 

taxa.  Because the primary effect of the metals is reduction in abundance, the effect is more 

readily detected using the correspondence analysis scores, as the sites with low abundance tend 

to have smaller scores than the correspondence analysis reference site scores. 

Another factor that seems to be important is whether or not the variables are transformed.  

For example, compare samples 6704 in 1997 and 6706 in 1995 for models 3 and 3a.  The 

difference in models is only a transformation of the toxicity data.  Thus the increase in 
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probability results from higher probability from the toxicity results.  In the first case, the 

probability associated with the toxicity changes from 0.76 to 1.0 and in the second from 0.62 to 

0.99.  The increased probability of impairment from the toxicity line of evidence results in a 

large change in the overall probability of impairment for these two samples.  Similar results hold 

when chemistry variables are transformed. Other modeling changes do not seem to have as great 

an effect on the estimates.  For example, model 4 uses a subset of the reference sites for 

comparisons.  Estimates for this model are not that different from those for model 3.  The use of 

empirical estimates of probability rather than model based (i.e. based on T
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2) results in a moderate 

change for some of the samples.  The use of principal components in the analysis of the metals 

data can lead to differences.  For example, sample 6706 in 1995 suggests much lower 

impairment using the component approach than the full variables approach (compare estimates 

for model 2 and 3). 

A difference in the estimates from different models suggests the importance of 

considering how different lines of evidence contribute to the estimate. Probabilities of 

impairment for the three lines of evidence and the combined estimate are displayed in Figure 4 

for the twenty-five samples in the test set using model 6. In model 6, the probabilities for metals 

were calculated by combining probabilities calculated from principal component (two 

components) distances.  The distances were calculated by first selecting a cluster of reference 

observations based on covariates and the estimates of probability were based on distances within 

the reference cluster.  For the toxicity data we calculated the multivariate distance and computed 

the probability based on the overall empirical distance distribution using all reference distances.  

Finally, for the biological (community structure) data, correspondence analysis was used and 

distance and probability evaluated on the first two axes using the empirical distance approach.  

Figure 4 displays the overall impairment probabilities as well as estimates from individual lines.  

We note that for most of the sites, the probability of impairment is high.  Exceptions are for 6703 

in 1995, 6704 in 1992, 6704 in 1995, 6705 in 1995 and 6706 in 1995.  Sites 6707 through 6711 

appear impaired in all years.  The individual impairment probabilities are highest for metals and 

sediment toxicity tests.  The 1992 estimates are variable across the different lines of evidence.  

The biological impairment probabilities are not generally high and perhaps are a result of not 

comparing abundance with a more closely matched subset of reference sites.  Most of the metal 

data indicate high levels for 6703 and 6704 but are generally high for the other sites.   
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The results given here are summaries of the different components of each line of 

evidence.  A further, valuable component of an analysis would be to study which components 

were important to the individual line of evidence.  For example, the ten toxicity tests are all not 

equally important to the impairment estimate for toxicity.  One approach would be to remove 

individual components then to evaluate the effect on the impairment probability.  In this way the 

components may be evaluated in terms of importance to the probability estimate (see for an 

example, Smith et al. 1990). 

 

Discussion 

 

We have presented an approach for estimation of the probability or risk of impairment for 

a site based on multiple lines of evidence.  Many variations on the approach are possible based 

on different distances and different summarization of the information.  Decisions about distance 

measures and summarization are best made in the initial stages of the study. Although the results 

of the weight of evidence analysis summarize impairment in terms of a single number, this 

approach is generally restrictive.  A single measure attempts to summarize the multivariate 

degree of impairment.  It is certainly possible that several different scenarios will lead to the 

same or similar measure of impairment.  Hence it is important to consider the individual lines of 

evidence as well as the data themselves.  Graphical display of the data is necessary to check for 

problems and assess assumptions.  Biological and environmental evaluation of the collected data 

is also necessary to verify that the evaluation is scientifically correct as well as statistically valid.  

We envision the above approach to be most useful for comparing and ranking sites.  As 

Figure 4 illustrates, it is possible to display the estimates of impairment for different lines and a 

combined estimate for several sites/times in a single display.  The information plotted may be 

ordered in time or space to look for change in impairment probabilities.  This might be useful for 

restoration/recovery studies.  The information for different sites may also be compared to 

identify sites with greatest risk or trends in impairment.  For example, if the sites were located 

along a toxic gradient, then one would expect to see increases in the toxicity estimate of 

impairment and this could be displayed on the diagram. 

Although we have focused on a statistical approach based on estimation of the probability 

of impairment, other approaches are available for obtaining a combined estimate of impairment.  
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One common approach is an index-oriented method.  In this approach, the numerical values are 

combined, possibly after a transformation.  One example of this approach is Wildhaber and 

Schmitt (1996).  They combine data over biological, toxicological and chemical lines.  To do this 

the chemistry data are standardized by calculating the ratio of the bioavailable component of the 

contaminant to the chronic toxicity water quality criterion.  The toxicological data are 

standardized by adjusting the test endpoint for the control endpoint.  Values may then be 

averaged over each of the lines of evidence.  The biological data are not evaluated in that 

manner, rather tolerance values are used and a biological index is computed as a tolerance 

weighted average.  The values are then combined over the three lines of evidence.  A variation 

on this approach is given in Soucek et al. (2000) and Cherry et al. (2001).  In these papers the 

data are not combined within each line of evidence.  Rather, important metrics from each line are 

selected then the metrics are combined into an overall index.   

An important aspect of the analysis is the choice of distance measure.  Our approach is to 

use a distance measure that is directly related to a probability distribution.  It is therefore 

important that the assumptions of the distribution be checked so the distance measure is directly 

related to probability.  It is also important that the distance measure reflects impairment in that 

the farther away from the center, the more impaired the site.  One approach to achieve this is to 

base distance on ordinated data rather than on actual observations.  For example, when dealing 

with chemical data an approach is to calculate principal components for the data from the 

reference sites.  Then decide if the location of the test site is indicative of impairment.  A 

distance measure that reflects a directional distance would be appropriate.  Distance might be 

calculated as zero if the site is on the safe side of the distribution and the ordinary distance 

measure used if the site is located on the not-safe side.  Principal components would be 

computed based on standardized data to give all the chemicals equal weight in the derivation of 

the components. 
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Figure 1.  Scatterplot matrix of log transformed chemical reference measurements.  The 

following abbreviations are used: LAS=log(arsenic), LCD=log(cadmium), LCR=log(chromium), 

LCU=log(copper), LNI=log(nickel), LPB=log(lead) and LZN=log(zinc). 
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Figure 2. Plot of loading for the principal components for the metal data.  The coordinates (loadings) are: 

LAS (0.36, 0.92), LCD (0.70, -0.06), LCR (0.89, 0.04), LCU (0.86, -0.22), LNI (0.87, -0.11), LPB (0.73, 

0.03) and LZN (0.93, -0.05).  
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Figure 3. Plot of site scores for reference and test sites.  Symbols are coded based on whether 

they are reference or test (r=reference, test=test) and the number after the “r” indicates the 

reference cluster. 
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Figure 4.  Plot of probabilities for three lines of evidence and overall estimate for sites in test data set.  The center corresponds to zero and tick marks 

represent tenths.  The first four numbers in the site/sample label indicate the site number while the last 2 provide the year of sampling. 
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Table 1. Comparison of impairment probabilities using different analysis options.  Hotelling T2 

used in procedure 1-4, empirical distance approach used for models 5 and 6. 
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Procedure 1: No transformations  

Procedure 2: Log transformation for metals, correspondence analysis (2 axes)  for biological 

data,  

Procedure 3: Principal components on log transformed metals (2 axes), correspondence 

analysis for biological data, no transformation for toxicity data 

Procedure 4: Same as 3 except that log transformed toxicity data used 

Procedure 5: Same as 3 except metals data are compared with a subset of the controls 

Procedure 6: Same as 4 using empirical distances to determine probabilities 

Procedure 7: Same as 5 but using log transformed toxicity data and 3 correspondence 

analysis axes. 

 

Site-year Procedure 
1 

Procedure 
2 

Procedure 
3 

Procedure 
4 

Procedure 
5 

Procedure 
6 

Procedure 
7 

6703-92 0.0000 0.9928 0.9910 0.9999 0.9909 0.8602 0.9993 
6703-95 0.0000 0.6670 0.6290 0.4040 0.6412 0.6558 0.8461 
6704-92 0.1535 0.8469 0.8609 0.9712 0.8631 0.6707 0.9933 
6704-97 0.9997 0.7485 0.3586 0.9998 0.3849 0.3527 0.9856 
6704-95 0.0000 0.5664 0.0126 0.0064 0.0146 0.0210 0.9999 
6705-92 0.0000 1.0000 0.9997 1.0000 0.9996 0.9887 1.0000 
6705-95 0.0000 0.5570 0.1745 0.1745 0.1624 0.3282 0.9829 
6706-92 0.0000 1.0000 0.9998 1.0000 0.9998 0.9989 1.0000 
6706-97 0.0005 1.0000 0.9974 1.0000 0.9972 0.9882 0.9992 
6706-95 0.0000 0.8196 0.0184 0.9449 0.0095 0.0068 1.0000 
6707-92 0.0000 1.0000 1.0000 1.0000 1.0000 0.9995 1.0000 
6707-97 0.0000 1.0000 0.9953 1.0000 0.9948 0.9902 1.0000 
6707-95 0.0000 1.0000 0.9983 1.0000 0.9981 0.9951 1.0000 
6708-92 0.0000 1.0000 0.9998 1.0000 0.9998 0.9992 1.0000 
6708-97 0.9976 1.0000 1.0000 1.0000 1.0000 0.9998 1.0000 
6708-95 0.0001 1.0000 0.9999 0.9999 0.9999 0.9984 1.0000 
6709-92 0.0000 1.0000 0.9009 0.9148 0.8937 0.9468 1.0000 
6709-97 0.0000 1.0000 0.9762 0.9957 0.9735 0.9653 1.0000 
6709-95 0.0000 1.0000 0.9732 1.0000 0.9699 0.9407 0.9999 
6710-92 0.0000 0.9972 0.6238 0.7503 0.5986 0.9019 0.9964 
6710-97 0.9500 0.9999 0.9844 0.9999 0.9827 0.9377 1.0000 
6710-95 0.0002 0.9998 0.9363 1.0000 0.9231 0.7486 1.0000 
6711-92 1.0000 0.9875 0.6084 0.9936 0.5837 0.7876 0.9996 
6711-97 0.9977 0.9999 0.7001 0.5816 0.6761 0.8147 1.0000 
6711-95 0.0000 0.9997 0.9298 0.9996 0.9165 0.7990 0.9996 
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Table 2. Prediction of impairment from different lines of evidence using empirical distances with 

log transformed metals, log transformed toxicity data and two correspondence analysis axes 

(Procedure 7 from Table 1). 

 
 
 
 

Site-year Odds Ratio 
Estimate 

Sediment Toxicity  
(Toxicity, log 

transformed values, 
test: Empirical 

distances) 

Metal Chemicals  (log 
transformed values, 

test: Empirical 
distances) 

Species Composition 
(Community, first 3 CA , test: 

Empirical distances) 
6703-92 0.9993 0.9863 0.5622 0.9399 
6703-95 0.8461 0.7397 0.5579 0.6052 
6704-92 0.9933 0.9315 0.4635 0.9270 
6704-97 0.9856 0.4521 0.8670 0.9270 
6704-95 0.9999 0.9863 0.8326 0.9657 
6705-92 1.0000 0.9932 0.9700 0.9614 
6705-95 0.9829 0.5068 0.8798 0.8841 
6706-92 1.0000 0.8630 1.0000 0.4378 
6706-97 0.9992 0.9795 0.8755 0.7897 
6706-95 1.0000 0.9863 1.0000 0.9528 
6707-92 1.0000 0.8836 1.0000 0.3519 
6707-97 1.0000 0.9863 1.0000 0.9270 
6707-95 1.0000 0.9932 1.0000 0.9399 
6708-92 1.0000 0.9247 1.0000 0.6738 
6708-97 1.0000 0.8151 1.0000 0.7639 
6708-95 1.0000 0.9932 1.0000 0.9270 
6709-92 1.0000 0.6233 1.0000 0.8970 
6709-97 1.0000 0.9932 0.9828 0.9485 
6709-95 0.9999 0.9247 0.9871 0.9528 
671-92 0.9964 0.6233 0.9742 0.8155 
671-97 1.0000 0.9932 0.9700 0.9571 
671-95 1.0000 0.9863 0.9700 0.9528 

6711-92 0.9996 0.9315 0.9614 0.8841 
6711-97 1.0000 0.9863 0.9700 0.9657 
6711-95 0.9996 0.6849 0.9785 0.9657 
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