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Abstract
Inverse problems can be viewed as special cases of statistical 
estimation problems.  From that perspective, one can study 
inverse problems using standard statistical measures of 
uncertainty, such as bias, variance, mean squared error and other 
measures of risk, confidence sets, and so on. It is useful to 
distinguish between the intrinsic uncertainty of an inverse 
problem and the uncertainty of applying any particular technique
for “solving” the inverse problem.  The intrinsic uncertainty 
depends crucially on the prior constraints on the unknown 
(including prior probability distributions in the case of Bayesian 
analyses), on the forward operator, on the statistics of the 
observational errors, and on the nature of the properties of the
unknown one wishes to estimate.  I will try to convey some 
geometrical intuition for uncertainty, and the relationship 
between the intrinsic uncertainty of linear inverse problems and
the uncertainty of some common techniques applied to them.
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Inverse Problems as Statistics
• Measurable space X of possible data.

• Set Θ of possible descriptions of the world—models.
• Family P = {Pθ : θ 2 Θ} of probability distributions on 
X, indexed by models θ. 

•Forward operator θ a Pθ maps model θ into a 
probability measure on X . 

Data X are a sample from Pθ.
Pθ is whole story: stochastic variability in the “truth,” 
contamination by measurement error, systematic error, 
censoring, etc.



Models
• Set Θ usually has special structure. 
• Θ could be a convex subset of a separable
Banach space T. (geomag, seismo, grav, MT, …)
• Physical significance of θ generally gives θaPθ

reasonable analytic properties, e.g., continuity.



Forward Problems in Geophysics
Composition of steps:

– transform idealized description of Earth into 
perfect, noise-free, infinite-dimensional data 
(“approximate physics”)

– censor perfect data to retain only a finite list of 
numbers, because can only measure, record, and 
compute with such lists

– possibly corrupt the list with measurement error.
Equivalent to single-step procedure with 
corruption on par with physics, and mapping 
incorporating the censoring.



Inverse Problems
Observe data X drawn from distribution P? for 
some unknown θ∈Θ. (Assume Θ contains at 
least two points; otherwise, data superfluous.)

Use data X and the knowledge that θ∈Θ to 
learn about θ; for example, to estimate a 
parameter g(θ) (the value g(?) at ? of a 
continuous G-valued function g defined on Θ).



Geophysical Inverse Problems

• Inverse problems in geophysics often “solved” 
using applied math methods for Ill-posed 
problems (e.g., Tichonov regularization, 
analytic inversions)

• Those methods are designed to answer different 
questions; can behave poorly with data (e.g., 
bad bias & variance)

• Inference ≠ construction: statistical viewpoint 
more appropriate for interpreting geophysical 
data.



Elements of the Statistical View

Distinguish between characteristics of the 
problem, and characteristics of methods used to 
draw inferences.
One fundamental property of a parameter:
g is identifiable if for all ?, ζ ∈ T,

{g(?) ≠ g(ζ)} ⇒ {Pη ≠ Pζ}.
In most inverse problems, g(?) = ? not 
identifiable, and few linear functionals of ? are 
identifiable.



Deterministic and Statistical Perspectives: Connections

Identifiability—distinct parameter values yield 
distinct probability distributions for the 
observables—similar to uniqueness—forward 
operator maps at most one model into the 
observed data.
Consistency—parameter can be estimated with 
arbitrary accuracy as the number of data grows—
related to stability of a recovery algorithm—small 
changes in the data produce small changes in the 
recovered model.
∃ quantitative connections too. 



More Notation

Let T be a separable Banach space, T * its 
normed dual.
Write the pairing between T and T * 

<•, •>: T * x T → R.



Linear Forward Problems
A forward problem is linear if
• T is a subset of a separable Banach space T
• X = Rn

• For some fixed sequence (? j)j=1
n of elements of T*, 

is a vector of stochastic errors whose distribution does not 
depend on ?.



Linear Forward Problems, contd.
•Linear functionals {? j} are the “representers”
•Distribution P? is the probability distribution of 
X. Typically, dim(T) = ∞; at least, n < dim(T), so 
estimating ? is an underdetermined problem.
Define

K : T → Rn

T a (<? j, ?>)j=1
n .

Abbreviate forward problem by X = K? + e, ? ∈
T.



Linear Inverse Problems

Use X = K? + e, and the knowledge ? ∈ T
to estimate or draw inferences about g(?).
Probability distribution of X depends on ?
only through K?, so if there are two points

?1, ?2 ∈ T such that K?1 = K?2 but 
g(?1)≠g(?2), 

then g(?) is not identifiable.



Ex: Sampling w/ systematic and random error

Observe 
Xj = f(tj) + ρj + εj,    j = 1, 2, …, n,

• f 2 C,  a set of smooth of functions on [0, 1]
• tj 2 [0, 1]

• |ρj|≤ 1, j=1, 2, … , n
• εj iid N(0, 1)

Take Θ = C £ [-1, 1]n, X = Rn, and θ = (f, ρ1, …, ρn).  

Then Pθ has density 

(2π)-n/2 exp{-∑j=1
n (xj – f(tj)-ρj)2}.



R

X = RnΘ

Sketch: Identifiability

θ

Kθ
X = Kθ+ε

Kζ

ζ

g(θ)

η

Pθ
Pζ = Pη

g(η) g(ζ)

{Pζ = Pη} ; {g(η) = g(ζ)}, so g not identifiable

{Pζ = Pη} ; {η = ζ}, so θ not identifiable

g cannot be estimated with bounded bias



Backus-Gilbert Theory
Let Θ = T be a Hilbert space.

Let g 2 T = T* be a linear parameter.

Let {κj}j=1
n µ T*. Then:

g(θ) is identifiable iff g = Λ ¢ K for some 1 £ n matrix Λ.

If also E[ε] = 0, then Λ ¢ X is unbiased for g.

If also ε has covariance matrix Σ = E[εεT], then the MSE 
of Λ ¢ X is Λ ¢ Σ ¢ ΛT.



R

X = RnΘ

Sketch: Backus-Gilbert

θ

Kθ
X = Kθ+ε

g(θ) = Λ ¢ Kθ

Pθ

Λ ¢ X



Backus-Gilbert++: Necessary conditions

Let g be an identifiable real-valued parameter. 
Suppose ∃ ?0∈T, a symmetric convex set T ⊆ T, 
c∈R, and g: T → R such that:

1. ?0 + T ⊆ T
2. For t ∈T, g(?0 + t) = c + g(t), and g(-t) = -g(t)
3. g(a1t1 + a2t2) = a1g(t1) + a2g(t2),  t1, t2 ∈ T,   a1, a2
≥ 0,  a1+a2 = 1, and
4. supt ∈ T | g(t)| <∞.
Then ∃ 1×n matrix ? s.t. the restriction of g to T is 
the restriction of ? .K to T.



Backus-Gilbert++: Sufficient Conditions

Suppose g = (gi)i=1
m is an Rm-valued parameter 

that can be written as the restriction to T of ? .K 
for some m×n matrix ? .
Then 
1. g is identifiable.
2. If E[e] = 0, ? .X is an unbiased estimator of g.
3. If, in addition, e has covariance matrix S = 
E[eeT], the covariance matrix of ? .X is ? .S.? T

whatever be P?.



Decision Rules
A (randomized) decision rule

d: X → M1(A)
x a dx(.),

is a measurable mapping from the space X of possible data 
to the collection M1(A) of probability distributions on a 
separable metric space A of actions. 

A non-randomized decision rule is a randomized decision 
rule that, to each x ∈X, assigns a unit point mass at some 
value 

a = a(x) ∈ A.



Estimators
An estimator of a parameter g(?) is a 
decision rule for which the space A of 
possible actions is the space G of possible 
parameter values.
g=g(X) is common notation for an 
estimator of g(?).
Usually write non-randomized estimator as 
a G-valued function of x instead of a 
M1(G)-valued function.



Comparing Decision Rules

∃Infinitely many decision rules and 
estimators.

Which one to use?
The best one!

But what does best mean?



Loss and Risk
• 2-player game: Nature v. Statistician. 
• Nature picks ? from T. 

? is secret, but statistician knows T.
• Statistician picks d from a set D of rules. 

d is secret.
• Generate data X from P?, apply d.  
• Statistician pays loss l (?, d(X)). l should be 

dictated by scientific context, but…
• Risk is expected loss: r(?, d) = Eθl (?, d(X))
• Good rule δ has small risk, but what does small

mean?



Strategy

Rare that one δ has smallest risk 8θ∈Θ. 

• δ is admissible if not dominated.
• Minimax decision minimizes 

supθ∈Θr (?, d) over δ∈D
• Bayes decision minimizes                           

over δ∈D for a given prior probability 
distribution π on Θ. ?)( pd)?,( dr∫

Θ



Minimax is Bayes for least favorable 
prior

If minimax risk >> Bayes risk, prior p
controls the apparent uncertainty of the 
Bayes estimate.

Pretty generally for convex Θ, D, concave-
convexlike r, 



Common Risk: Mean Distance Error 
(MDE)

Let dG denote the metric on G.  
MDE at ? of estimator g of g is

MDE?(g, g) = Eθ [d(g, g(?))].

When metric derives from norm, MDE is 
called mean norm error (MNE).
When the norm is Hilbertian, (MNE)2 is 
called mean squared error (MSE).



Bias
When G is a Banach space, can define bias at ? of

g:
bias?(g, g) = Eθ [g - g(?)]

(when the expectation is well-defined).
• If bias?(g, g) = 0, say g is unbiased at ? (for g).
• If g is unbiased at ? for g for every ?∈Θ, say g

is unbiased for g.  If such g exists, g is 
unbiasedly estimable.

• If g is unbiasedly estimable then g is 
identifiable.



R

X = RnΘ

Sketch: Regularization

θ
Kθ

X = Kθ+εKζ

ζ

g(θ)

0
error

g(ζ)

bias



Minimax Estimation of Linear parameters: 
Hilbert Space, Gaussian error

•Observe X = Kθ + ε 2 Rn,   with
θ 2 Θ µ T,  T a separable Hilbert space

Θ convex
{εi}i=1

n iid N(0,σ2).

•Seek to learn about g(θ): Θ ! R, linear, bounded on Θ

For variety of risks (MSE, MAD, length of fixed-length 
confidence interval), minimax risk is controlled by 
modulus of continuity of g, calibrated to the noise level.
(Donoho, 1994.)



R

X = RnΘ

Modulus of Continuity

ζ
η

g(η) g(ζ)

χ

Kη

Kζ



Distinguishing two models
Data tell the difference between two 
models ζ and η if the L1 distance between 
Pζ and Pη is large:



L1 and Hellinger distances



Consistency in Linear Inverse Problems

• Xi = κiθ + εi, i=1, 2, 3, …
θ∈Θ subset of separable Banach
{κi}⊂ Θ* linear, bounded on Θ
{εi} iid µ

• θ consistently estimable w.r.t. weak 
topology iff ∃{Tk}, Tk Borel function of 
X1, . . . , Xk, s.t. ∀θ∈Θ, ∀η>0, ∀κ ∈Θ*, 

limk Pθ{|κTk - κθ|>η} = 0



• µ a prob. measure on ℜ; 
µa(B) = µ(B-a), a∈ ℜ

• Pseudo-metric on Θ**: 

• If restriction to Θ converges to metric 
compatible with weak topology, can 
estimate θ consistently in weak topology.

• For given sequence of functionals {κi}, µ
rougher → consistent estimation easier.

Importance of the Error Distribution
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Summary
• Statistical viewpoint is useful abstraction.  

Physics in mapping θ a Pθ
Prior information in constraint θ∈Θ. 

• Separating “model” from parameters of interest 
is useful: Sabatier’s “well posed questions.”

• “Solving” inverse problem means different 
things to different audiences.  Thinking about 
measures of performance is useful.

• Difficulty of problem ≠ performance of specific 
method.


