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       THE FRAMEWORK OF INFERENCE

I.  I.  INTRODUCTION

uncertainty, for it appears that even the most random of events,
such as the results of a penny-tossing experiment, exhibit, in the
aggregate, certain regularities. The greater the regulari ty or
pattern in a sequence of events, the more we feel compelled
to seek an ‘explanation’ in terms of a law. In physics, the clarity
of relations between measured quantities, such as mass, force,
and acceleration, in comparison with the experimental uncertainty
of measurement, has made a deterministic approach practically
sufficient, but between such cases and the extreme uncertainties
of penny-tossing, card-shuffling, and Mendelian segregation, lies a
complete spectrum of events requiring scientific explanation. It is
our task to detect regularity in the presence of confusion, order
in the presence of chaos. It will not be sufficient, when faced
with a mass of observations, to plead special creation, even though,
as we shall see, such a hypothesis commands a higher numerical
likelihood than any other. We prefer more general and more
simple hypotheses, and in later chapters we shall see how this and
other preferences may be taken into account.

Thus our general problem is to assess the relative merits of
 hypotheses in the light of observational or experimental

data that bear upon them, in statistical situations where each
 does not have a single set of consequences, but rather

a  set, the members of which may occur with 
indicated bv the 

Traditionally, elementary statistical texts, having disposed of
the purely deductive and descriptive elements of the probability
calculus and distribution theory, emphasize the role of tests of
significance whilst neglecting the subject of estimation, in which
acceptable values for the parameters of distributions, specified by
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hypotheses, are sought. The great advances in these subjects
which this century has seen have obscured the essential unity of
statistical inference, and the accompanying deep controversies
have absorbed much intellectual effort which might better have
been directed elsewhere. at we are able to 

at the problem of estimation
, tor  almost all situations we

know that the  whose significance we are 
  however small; what is at 

An insignificant result, far from telling us that the effect is non-
existent. merely   the    to

reveal it.
Ideally, we would like a method of inference which would allow

us to compare, on some scale, the merits of different possible para-
meter values, or of rival simple hypotheses. The need for some
measure of ‘belief’ for this purpose was felt in the latter half of
the eighteenth century, and led  to develop the theory
of inverse probability, by means of which the probabilities of
causes, or hypotheses, could be deduced from the frequencies of
events. Earlier, Bayes,  besides providing the basic theorem
required, had shown what assumptions had to be made before
any such theory could be accepted. But his doubts were over-
shadowed by the authority of  and for some time the
practice of using probability as a measure of belief in hypotheses
was not questioned. It had the great attraction of appearing to
render all problems in statistical inference open to attack by the
methods of mathematical analysis, an appeal which many cannot
resist today.

But when the logical foundations of probability began to be
examined apart from games of chance, the error of applying pro-
babilities to hypotheses, and hence of using Bayes’ Theorem to
compute them, became apparent. In the middle of the nineteenth
century Cournot,  and  condemned the practice
on grounds which have since become well known, but which
need not be entered into here. The rejection of the theory led to
the flowering of alternative methods of inference, particularly
significance-testing and estimation, to which we are heirs today.

In recent years the theory of inverse probability has returned as
part of a general theory of ‘subjective’ probability. The motives
are much the same as before, namely, a desire for a quantitative
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measure of belief and the irresistible appeal of the ensuing mathe-
matics. Though it has been convincingly demonstrated that an
absolute measure of belief, in order to be consistent, must satisfy
the laws of probability, this is no argument for the existence of
any such absolute measure, and the modern theory must, I believe,
be rejected, like its predecessor.

From 1921 until his death,  in addition to promoting the
fiducial argument and his methods of estimation and 
testing, quietly and persistently espoused an alternative measure by
which he claimed rival hypotheses could be weighed. He called it
likelihood, and it is my contention that this is the concept which
eluded Bayes and  and which is, at present, the only
fitting foundation for a unified treatment of statistical inference.
By abandoning any  that we can in general make state-
ments of absolute belief, and confining our attention to relative
su ort, much can be achieved, as the following pages will, I

ope, show.
It has often been argued that some problems in statistical

inference are so structured as to permit stronger statements
about unknowns than are allowed by a calculus devoted to the
mere weighing of alternative hypotheses, whilst others are so
unstructured that the hypotheses cannot all be formulated suf-
ficiently explicitly for the calculus to be applied. The fiducial
argument has been propounded for the former class of problems,
and ‘classical’ significance tests and non-parametric methods for
the latter. As will be made clear in chapters 9 and I O,  I believe
both approaches fail; or, rather, that their limited success is
entirely due to their similarity with the likelihood methods
adopted in this book.

1 . 2 .  T H E  S T A T I S T I C A L  H Y P O T H E S I S

A sufficient framework for the drawing of inductive inferences
is provided by the concepts of a statistical model and a statistical

  the two concepts provide a description, in
 terms, of the process by which it is supposed the
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 of a statistical description, for what is on one occasion re-
garded as given, and hence part of the model, may, on another
occasion, be a matter for dispute, and hence part of a hypothesis.
Every statistical inference is-conditional on some model. and the

 with which it is accepted deoends  the . .
  i tself  is but a model

neral acceptance when applied to events,
though not  when applied to stat is t ical  hypotheses.  Indeed,
until the matter is more widely discussed in chapter 4, we will
assume that a statistical hypothesis is never the subject of a
probability statement; that is, it may not be regarded as drawn
at random from a population of hypotheses, a certain proportion
of which is true.

Given the model, we may refer to the consequences of a statistical
hypothesis, the part played by the model being understood. An
essential feature of a statistical hypothesis is that its consequences
may be described by an exhaustive set of mutually-exclusive
outcomes, to each of which a definite probability is attached. A
further feature is that the subject of the hypothesis cannot be
directly observed, and inferences about it may only be made from
the knowledge that a particular consequence has in fact occurred.
In degenerate cases it may be possible to rule out a hypothesis
completely, because the observations are not included in the set of
possible consequences. Thus on mating a black mouse of unknown
genotype (BB or Bb) to a known heterozygote Bb, the occurrence
of one or more brown (bb) mice among the offspring excludes the
hypothesis that the mouse of unknown genotype was in fact
homozygous (BB). The hypothesis is degenerate in only having
one consequence, namely, that all the offspring are black, but
it is sometimes convenient to contemplate such hypotheses in a
statistical context. Generally, however, the rival hypotheses we
wish to assess on given evidence will each have a set of multiple
consequences, each set including the observations, the two sets
coinciding. Sometimes the two sets will not completely coincide,
but the observations will then occur in their intersection, that is,
the set of consequences common to both original sets, if one
hypothesis is not to be definitely excluded.

It should be noted that the class of hypotheses we call ‘statistical’
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is not necessarily closed with respect to the logical operations
of alternation (‘or’) and negation (‘not’). For a hypothesis resulting
from either of these operations is likely to be composite, and com-
posite hypotheses do not have well-defined statistical consequences,
because the probabilities of occurrence of the component simple
hypotheses are undefined. For example, if p is the parameter
of a binomial model, about which inferences are to be made from
some particular binomial results,  =  is a statistical hypothesis
because its consequences are well-defined in probability terms,
but its negation,    is not a statistical hypothesis, its con-
sequences being ill-defined. Similarly, ‘p =  or  is not a statisti-
cal hypothesis, except in the trivial case of each simple hypothesis
having identical consequences. Statisticians have paid much
attention to composite hypotheses, but they do not seem to be of
great value in pure science, and in this book they will be treated
solely on the merits of their component parts.

Conventional statistical estimation theory has been developed
round the concept that there exists a ‘true’ hypothesis or para-
meter-value which it is our aim to identify. In some applications
this may be an acceptable concept, as in the above case of the black
mouse, but if the statistical model is phrased entirely in terms of
probabilities, as with radioactive decay or the distribution of the
sexes in families, the concept of a ‘true’ value for the probability
parameter is vacuous. The model and hypothesis are then no
more than a description, in probability terms, of an aggregate of
phenomena that defy more exact analysis. The description may be
more or less adequate, but there is no sense in asserting that one
particular description is true and all others are false. The probability
of heads of the fairest penny yet devised is still only governed by
the proportion of heads experienced in a sequence of tosses. It is
perfectly reasonable to anticipate, on grounds of symmetry,
that one half will be rather a good value to account for the results
of any imagined tossing experiment, but only experience will
show whether it is in any particular case the best value, and even
if it is very similar values will certainly be almost as good. I do
not see any meaning in the assertion that p is  The questions of the
allocation of probabilities on the basis of symmetry (by the Prin-
ciple of  and of the extent to which a statistical model
is a true mirror of reality will be taken up again in chapter 4,
on Bayes’ Theorem.
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In those cases in which the subject of the model has some physi-

cal reality, such as the  of a ball, the genotype of a mouse, or
possibly the refractive index of a crystal, truth is only a useful
concept if we can observe the subject directly and without error.
But when we are limited, as in the present context, to observing
statistical consequences, the most we can hope to do is to weigh the
competing hypotheses  to the adequacy  
in  terms. thev describe those 

The two hypotheses  the genotype of a black mouse, in
the example given earlier, are instances of exhaustive and 
exclusive statistical hypotheses, embedded in a statistical model of
Mendelian genetics. But frequently there will be 
of infinitely many hypotheses, such as ‘the refra,  index of
this crystal is  where  may take any value within a specified
range. A Normal distribution of error will probably be acceptable
as the probability model, possibly after some transformation of
the observations, but this model may itself be brought into ques-
tion in the light of the observations, in which case it will assume
the status of a hypothesis. Sometimes there will be a very large
number of hypotheses which it is convenient to treat as a con-
tinuum, such as ‘the frequency of the Rh- blood-group gene
in the population of Cambridge is  and it will be necessary
to bear in mind that a continuous approximation to an essentially
discrete quantity has been made.

1.3. DATA

The data will invariably be either discrete or grouped. In the
first and third examples of the previous section, the data consist
of simple counts  of black and brown mice in a litter, and of
Rhesus positive and Rhesus negative individuals in a random
sample of citizens but in the second example the experimental
data will be grouped into classes, the fineness of the grouping
reflecting the resolving power of the experimental technique.
It may at times be useful to consider such data as continuous, if
the resolving power is very high in relation to the scatter of the
observations, but we must always remember that in reality there
can be no such thing as continuous data, a fact of great importance
in chapter 8. It is reasonable to suppose that the refractive index
itself may differ from 1.30 by as small a quantity as we like,
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but it is not reasonable to suppose the same thing about a measure-
ment of the refractive index. Continuous probability models must
be regarded with some degree of suspicion.

  model, the set of statistical hypotheses, and the
data, form a triplet which is the foundation of statistical inference.
Of the many outcomes, each with a specified probability given
the  which could have occurred on the basis of 
accepted model, one has  can thev reveal
a out the hypotheses?

I  SUMMARY

The need to assess the relative merits of hypotheses in the light
of data that bear upon them is felt throughout science. Attempts
to establish absolute measures of belief in hypotheses have not
found wide acceptance, yet the alternative methods of induction
by estimation and significance-testing do not adequately satisfy
the need. The concept of likelihood, by contrast, bids fair to
provide an acceptable system of inference.

The statistical model and the statistical hypothesis are defined,
and the forms which data may take are considered.
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