
C H A P T E R  2

THE CONCEPT OF LIKELIHOOD

2 .  I .  I N T R O D U C T I O N

We have seen in the last chapter how the reaction from the use of

the theory of inverse probability, according to which it is mean-

ingful to speak of the probability of a hypothesis being true,

led to the development of alternative means of inference. The

search for a scale on which support for hypotheses could be

expressed was temporarily abandoned in favour of he significance

test.

As an interim procedure the concept of statistical significance

has undoubtedly been of great value to science, but on closer

examination either the logical validity, or the relevance, of the

many standard procedures leaves much to be desired. Apart from

some rather difficult questions of interpretation, the argument

revolves about such issues as the relevance of repeated sampling

to the interpretation of a single set of observations, and the pro-

priety of contemplating whether a hypothesis is ‘right’ or ‘wrong’.

I have given my reasons  for preferring to seek alterna-

tive procedures, and the crit ical arguments of  and

Hacking
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 should be examined by the interested reader. We may

defer consideration of these arguments until later chapters, and

pass immediately to the description of a procedure, based on

Fisher’s concept of likelihood, which is open to none of the objec-

tions which may be  at significance tests. It will, I believe,

be seen to supply precisely those elements which many hold to be

essential in a scheme of inference, without any of the Bayesian

features to which many object.

It has long been recognized and accepted that the probability

of realizing a particular outcome in a trial is a rational measure of

belief, expressed before the trial, that the specified outcome will

occur. Furthermore, it is a rational measure of belief expressed

after the trial by someone ignorant of the outcome. (By contrast,

it is not then a rational measure of surprise that the specified

outcome has occurred, because surprise is also dependent on the

probabilities of the other outcomes that might have been realized.)
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Introduction

The error that  and his successors made was to sup-

pose that scientific hypotheses could be treated as though they

were outcomes to trials. ‘What has now appeared’, wrote Fisher

i n  

is that the mathematical concept of probability is inadequate to express
our mental confidence or diffidence in making such inferences, and that
the mathematical quantity which appears to be appropriate for measuring
our order of preference among different possible populations does not in
fact obey the laws of probability. To distinguish it from probability,
I  h a v e  u s e d  t h e  t e r m  ‘ L i k e l i h o o d ’  t o  d e s i g n a t e  t h i s  q u a n t i t y .

In order to assess whether or not likelihood will supply a

satisfactory basis for the assessment of hypotheses it is necessary

to define it and examine its properties in some detail.

2 . 2 .  L I K E L I H O O D  D E F I N E D

We have seen that he set of statistical

hypotheses, and the is the foundation of

‘statistical  be the probability of obtaining  

results R given the hypothesis H, according to the probability 

model. This probability is defined for any member of the set of
 

 

possible results given any one hypothesis. It may be regarded as a 

function of both R and  but  usually used as a function of R
alone, for some specific H. As such, its mathematical properties

are well known, and covered in any elementary book on probabi-

lity. A fundamental axiom is that if  and  are two of the pos-

sible results, mutually exclusive, then

   = 

D E F I N I T I O N

The likelihood,  of the hypothesis H given data R, and a

specific model,  proportional to  the constant of pro-
-   ,  
portionamy  

Whereas with probability, R is the variable and H is constant,

 

us to use the same definition of likelihood for discrete and con-

tinuous variables alike, and is no impediment to its use, which

invariably involves the comparison of likelihoods. Though it is a

constant in any one application, involving many different
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The concept of likelihood
hypotheses but the same data and probability model, it is, of course,

not necessarily the same constant in another application. This,

too, is no hindrance, for we shall not be attempting to make an

absolute comparison of  hypotheses on  data.

EXAMPLE 2.2 .1

Consider a binomial model for the occurrence of boys and girls in a
family of two children, and suppose there are two sets of data:  a
family of one boy and one girl, and  a family of two boys. Let  be the
probability of a birth being male, and consider two hypotheses:  that

 =  and  that  =  Then the four probabilities,  etc.,
are as follows:      

Data  3
 

  boy  a
I girl

Hypotheses   =  

 = 

Being probabilities, these numbers are subject to the addition axiom for
each hypothesis. Thus on the hypothesis  =  the probability of getting
a boy and a girl or two boys is  But we may not use the addition axiom
over different hypotheses, and we may not invert the probability state-
ments to conclude, for example, that  = 

A p p l y i n g  t h e  d e f i n i t i o n  o f  l i k e l i h o o d ,  t h e  l i k e l i h o o d s  o f  t h e  h y p o t h e s e s
given the data are as follows:

D a t a

  boy
I girl

 2 boys

Hypotheses  =   

 =  .  . 

where  and  are arbitrary constants. They remind us forcefully that
with likelihoods the hypotheses are the variables, and the data are
fixed. We cannot compare  with  but we can state
that on data  the likelihood  hypothesis    the likelihood of
hypothesis  whilst on data  the likelihood  is  that of 

DEFINITION

The likelihood ratio of two hypotheses on some data is the ratio

of their likelihoods on that data. It IS generally quoted as a 

 and may be denoted by  

I O

Likelihood dejined
THEOREM 2.2 .1

Likelihood ratios of two hypotheses on independent sets of

data may be  together to form the  ratio on

 combined data.   ror two sets of data, 

   =     
(2 .2 .1 )

Proof. The left-hand side is, by definition,

     
 

 
    

by the multiplication rule for probabilities. But this is also the

right-hand side, by definition. The proof readily extends to

number of independent sets of data.
 ,

\

In example the likelihood ratio on the joint data is  x  = 

We have already noted the convenience of regarding some

observed variables as continuous. The continuous distribution,

relevant to the adopted probability model, asserts that the pro-

 

bability of obtaining a result which lies in the interval (R, R + 
of the sample space is   as   o.  is then a

probability  according to the model. the 

 an  result R is thus  The like-

lihood, however, since it is determined only down to an arbitrary

constant,  not embarrassed  this continuous approximation.

 element  not being dependent on the likelihood’s variable

H, is simply absorbed into the constant. In terms of the likeli-

hood ratio, since this is only formed for two hypotheses on the

same data R, the two elements  cancel.

In many cases it is convenient to contemplate a whole family

of hypotheses rather than just two. Instead of forming all the

 likelihood ratios it is simpler to present the same  

tion in terms of the likelihood ratios for the several hypotheses

versus one of their number, which may be chosen quite arbitrarily

for this purpose. Sometimes the family of hypotheses under

consideration will be infinite in number, such as in the case of a

I I



binomial parameter which may take any value from o to I. 

likelihood ratio may then be quoted for each value versus that

value for which the likelihood is a  or, what is the same

 the  for each value may be quoted after the

Arbitrary constant has been adjusted so that the  of 

likelihood is I .  Under this convention  continuous parameters

the  the likelihood ratio become the same, and

 word ‘ratio’ is often omitted.

   thus  be  found for each value of

a continuous. parameter, or for each set of values in the case

of many parameters, it is a mathematical function of the para-

meters, and may be graphed. The function is known as the likeli-
hood function and the  likelihood curve. They are defined

only down to a constant multiplier unless the convention of the

previous paragraph, or some other convention, is in force, and

they obey the multiplication theorem over independent sets of

data. Examples of likelihood functions are given in the next

section.

The distinction between probability and likelihood is vital to

an understanding of the role played by each in inductive inference.

 is the probability or probability density of results R on a

fixed hypothesis H. When considered as a function of R it defines

a statistical distribution, either discrete or continuous. AS such,

if we sum or integrate (as appropriate) over all possible results R
we will obtain unity, by one of the axioms of probability. 

hood, on the other hand, is predicated on fixed data R, and for

may be regarded as a function of the 

on in no 

meaning attaches to under a likelihood

curve, or to the sum of the likelihoods of two or more hypotheses.

It will sometimes be convenient to refer to the natural logarithm

of the likelihood or likelihood ratio, principally in order to change

multiplicative properties into additive ones. The term 

hood is normally used, but we shall introduce the word 

On taking logarithms the arbitrary multiplicative constant becomes,

of course,

  
 statistics n !

2 . 3 .  SUFFICIENT STATISTICS   

Suppose that in a series of binomial trials, each with unknown

probability  of success, a, successes and  failures are observed,

in an unspecified order. The probability of this event, given p, is
 

    
 

and hence the likelihood of p, given the observed sequence, is

    
where  is the arbitrary constant. For the case a, = 4 and  = IO,

the likelihood curve is shown in figure I, k being chosen so that

the maximum value of L is I. From zero at the terminals of the

range   to a maximum at p =  = 0.2857. Although the

likelihood function, and  the curve, has the mathematical

form of a beta-distribution, it does not represent a statistical

distribution in any sense.

Suppose now that there is a further series of trials, with 

successes and  failures. The likelihood of p on these data is

 =   

For the case  = 29 and   37 the curve is shown alongside

the earlier curve in figure I. The maximum is at p =  = 0.4394.
By the rule which allows us to compound likelihoods by

multiplication, the combined likelihood of p on the joint data is

   =  

which, on adjusting the arbitrary constant, is the value expected by

a direct argument. The combined likelihood for the numerical

values adopted  is also shown in figure I, and has a maximum

at  =  = 0.4125. The corresponding log-likelihood curves

are given in figure 2, the maxima, of course, being at the same

values of  as in figure I.

Seeing the likelihood function in this form serves to remind us

that, on the binomial model of independent trials, the order in

which the successes and failures occurred is immaterial. Provided

the total number of successes, a, +  is the same, the likelihood

is indifferent to changes in a, and  In the next cha ter we shall
be arguing that the likelihood function contains all the information
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Any function of the data which defines the likelihood function

up to an arbitrary constant  called a   

hypothesis involved and under the probability model assumed.

A    a  of every other sufficient

statistic,  thus corresponds to the greatest reduction of a set of

data that can  whilst still defining the likelihood.

I I I

L 

The concept of likelihood
about  that the sample possesses, and since, in the present example,

the likelihood is a function of the numbers of successes and

failures, and not of their order, these numbers themselves convey

all the relevant information. For this reason they are referred to as

 statistics.

D E F I N I T I O N

I I I
0

Figure  Likelihood L as a function of  for (a) 4 successes
and IO failures in a binomial experiment,  2.9 successes

and 37 failures, and (c) the combined results.

 statistics
Such a statistic is not unique, since any one-to-one function of

it is also minimal-sufficient.

A common method of expressing the condition for a statistic, 

to be sufficient, is to say that the likelihood can be expressed

in the form

 

where  is the parameter and  some function of the data

which is independent of

Constant.

EXAMPLE 

In section  it was suggested that a Normal distribution of error
might be adopted as the probability model when the refractive index

Figure 2. The curves of figure I plotted on a logarithmic
s c a l e ,  s h o w i n g  ‘ l o g - l i k e l i h o o d s ’ .
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The concept of likelihood
of a crystal was being investigated experimentally. That is, if  be the
true value and  the theoretical variance of the distribution of error,
the probability of a single observation lying in the interval (x, x + dx) is

  =   exp ( - (x    d x ,

and hence the probability of obtaining a sequence of n observations in the
interval    +        .  .  .     dx,)  is

 =  exp        .

The likelihood of   given the sample is thus

N W

  =   e x p    (x      ( 2 . 3 . 2 ), 
 

    =      +    

Figure 3. Likelihood curves for the parameter  of a binomial
distribution for samples of size IO with I, 2, 3, . . . 9 successes.

1 6

 statistics
where

    

the sample mean. The first term of this expression being n times the
sample variance, it follows that the likelihood may be expressed in terms
of the sample mean  and variance and hence that these two are jointly
sufficient statistics:

  =   e x p     .
(2.3.3)

Note that they are not, however, severally sufficient: if  is known 
is sufficient for  but if  is known  is not sufficient for  since the
likelihood for  still involves 

0

- 2

- 3

--I

1

P
Figure 4. The curves of figure 3 plotted on a logarithmic scale,

showing ‘log-likelihoods’.
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The concept of likelihood
EXAMPLE 2.3.2

A gamma variate  with mean  has the probability distribution
  

  I)! 

where   I)! stands for  whether  be integral or not. The likeli-
hood for  given a sample  . . .  . . .  is

 = k     I)!)",
 

(2.3.4)

and hence   is sufficient for  Thus in this case the geometric mean
 

of t h e  o b s e r v a t i o n s  is   for the parameter, rather than the arithmetic
mean. ’

In discussing sufficient statistics it is tacitly assumed, as in the

foregoing examples, that the sample size is given. Thus when we

say that  and  are jointly sufficient for  and  in the Normal

case, we mean that the joint likelihood function can be completely

expressed in terms of   and the sample size 

It is important to remember that the sufficiency of a statistic

in a particular situation is dependent on the adopted probability

model. If we were certain tha no other model would ever be

contemplated, then the statistic could replace the original

data as raw material for indu ive inference; but since we are

never quite certain on this poi t, the original data should always

be preserved. For example, a though the order of occurrence

of successes and failures in a sequence of binomial trials is unin-

formative about  when a model of independent trials is adopted,

it does provide some information about p when dependent trials

are postulated, as will be shown in example 6.5.1.
One further’ property of likelihood may be mentioned at

this stage: the likelihood is independent of the rule for ending

the experiment, even if this depends on the results so far obtained.

We shall see in section 3.6 that this is not in conflict with our

requirements of a measure of relative support.

2 . 4 .  LI K E L I H O O D  F O R  A  M U L T I N O M I A L  S A M P L E

In applications to data on frequencies, it will generally be true

that the number of classes will exceed two, so that the appropriate

distribution will be the multinomial rather than the binomial.

If there be  classes, and the probability of a trial falling in the

Likelihood for a multinomial sample
 class is  then the probability of obtaining a, out of a sample

of  in the first class,  in the second class, and, in general, 

in the  class, is

n!

 . . . a,!. . . a,!
        

The  will be functions of some parameter or parameters, which

we may symbolize by  and the likelihood for  on this particular

sample will therefore be

 =    .        

where the coefficient has been absorbed into the arbitrary constant

k.

EXAMPLE 2.4.x

In genetics, a population is said to be in Hardy-Weinberg equilibrium
if the genotypic proportions of AA, Au and  are  :    :
(I   where  is the frequency of the A gene. What is the likelihood
for  when genotypic numbers  and  respectively are observed?

U s i n g  t h e  a b o v e  f o r m u l a ,  t h e  l i k e l i h o o d  i s

We may note that this is the same as the likelihood for a binomial para-
meter  for a sample of    successes and  +  failures.
This is to be expected, because in the sample the actual numbers of A
genes and a genes may be counted, and found to be  +  and

 +  respectively: the assortment of the genes into genotypes does
not affect the information available about the gene frequency.

2.5. TRANSFORMATION OF VARIABLES

Under a transformation of the observed variable R, the likelihood

ratio remains unaltered, being independent of  When a con-

tinuous parameter  is being considered, the transformation to a

new parameter  given by  =  where f is a one-to-one

transformation, may be achieved by the simple substitution of

 for  in the likelihood function, since that function is indepen-

dent of any element  This is, of course, in marked contrast

to the situation where  is the variate of a continuous probability

distribution, say  = P(0)  For then the same transforma-

t i o n  g i v e s   =    s i n c e   =    T h e

presence off’(#) in the transformed distribution and not in the

‘9



The concept of likelihood
transformed likelihood function turns out to be one of the most

telling points against the use of probability as a measure of belief

in hypotheses.

E X A M P L E  

Suppose that, in the binomial case considered in section 2.3, we were
interested in a function of  rather than in  itself. Thus we might express
an interest in  =  since  is then the expected number of trials
required to produce one success (all the preceding trials  if any  being
failures). As we have seen, the new likelihood curves may be plotted
simply by transforming the scale of the parameter. This has been done
for the binomial example in figure  The transformation involves a
complete inversion of the scale, large  corresponding to small  The
maxima are, of course, simply the old maxima transformed, a fact that
will be treated formally in section 5.4. The corresponding log-likelihood
curves are given in figure 7 (note the different horizontal scale).

It is instructive, as an aside, to compare the shapes of the curves with
those that would have appeared had the original curves represented
beta-distributions. Suppose we had

     dp.

With  =   =  dz, and the transformed distri

 a    dz
or

 a   

u t i o n  i s

,

The three transformed distributions corresponding/to the three trans-
f o r m e d  l i k e l i h o o d s  o f  f i g u r e   are  given in  f igure  6 . or comparative pur-
poses they have been scaled to have unit height.he maxima are no
longer the old maxima transformed.

E X A M P L E  2 . 5 . 2

If the frequency of a recessive gene in a large population is given by
the proportion  and the genotype’frequencies obey the Hardy-Weinberg
law, the proportion exhibiting the recessive phenotype is  Using
this model for the Rhesus blood-group system, the probability of obtain-
ing  Rh- individuals in a random sample of  unrelated people from a
l a r g e  p o p u l a t i o n  i s

   
the  gene being dominant to the  gene.

T h u s      and this is also  If we have a
sample of 14 of which 4 are Rh-, the likelihood for  =  will be the
same as that of an earlier binomial example, shown in figure I. On

2 0

Transformation of variables

1 2 3 4 6

Figure  The likelihood curves of figure I following the
parameter transformation z = 

I 2 3 6 7 8

Figure 6. Beta-distributions, of the same form as the likelihood
curves of figure I, transformed by the variate-transformation
z =  Compare the shapes with the transformed likelihood

curves in figure 

21



The concept of likelihood

- 4  

I 9 IO II 12    

Figure 7. The log-likelihood curves of figure  following the
parameter transformation a =  The horizontal scale is not

the same as in figure 5. S stands for support.

t r a n s f o r m i n g  s o  t h a t   i s  t h e  v a r i a b l e ,  t h e  l i k e l i h o o d  c u r v e  a d o p t s  t h e  n e w
shape  shown in  f igure  8 .

2 .6 .  L I K E L I H O O D , I N F O R M A T I O N  A N D  E N T R O P Y

Log-likelihood is in intimate relation to information as defined in

 theory, and to entropy, as 

 in the statistical sense was defined  Fisher in 

and will be covered in chapter 7. In the context of communica-

tion theory the word was given a different meaning in  a

meaning which has found an application in statistics. Thus 

back, in his book Information Theory and  defines

information as the log-likelihood ratio, which we shall be calling

support, following Jeffreys and Hacking, to avoid any possibility

of confusion with Fisher’s information. From time to time various

other terms have been promoted, such as ‘credibility’, ‘plausibi-

lity’, ‘weight of evidence’ and ‘lod-score’ (‘lod’ for ‘log odds’),

often in connection with Bayesia inference.

The information-theory arose out of the concept of

entropy in thermodynamics a d statistical mechanics. I do not

think the similarities of th physical and statistical situations

2 2

Likelihood, information and entropy

0

Figure 8. Curve (a) of figure I following the square-root
transformation of the variable, to illustrate example 2.5.2.

lead to any greater understanding of the latter, except perhaps

for physicists already familiar with entropy, for whom any

further comment would be superfluous. I shall remark on the

 when we have considered Fisher’s information at

greater length in chapter 7. There is an expanding literature on

these topics, but it is inclined to neglect statistical 

2 .7 .  SUMMARY

The likelihood  of the hypothesis  given data R and a

specific model is defined as being proportional to  and it

is shown that the likelihood ratio for two hypotheses  and 

  may be combined multiplicatively over different

bodies of data. The likelihood function is defined for a continuum

2 3



The concept of likelihood
of hypotheses, such as provided by a binomial model with un-

known parameter   is used for the natural logarithm

of the likelihood.

Any contractron of the data which leaves the likelihood un-

changed except for a constant is referred to as a sufficient statistic.

The behaviour of the likelihood function under parameter trans-

formation is discussed, and contrasted with that of probability

distributions. Information and entropy are mentioned in relation

to support.


