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the problem rather than of statistics, but even if we view it as such, the
consequent difficulty in empirical model building and model selection is
very much part of statistics and a statistician’s life. This discussion also
contains a warning that statisticians cannot work in a vacuum, since most
of the relevant factors that create inductive uncertainties in a problem are
subject matter specific.

1.4 The emergence of statistics
It is impossible to calculate accurately events which are determined by
chance. — Thucydides (¢. 400BC)
There were two strands in the emergence of statistics. One was the devel-
opment of the theory of probability, which had its original motivation in the
calculation of expectation or uncertainties in gambling problems by Pas-
cal (1623-1662) and Fermat (1601-1665). The theory was later developed
on the mathematical side by Huygens (1629-1695), the Bernoulli broth-
ers, in particular James Bernoulli (1654-1705), de Moivre (1667-1754) and
Laplace (1749-1827), and on the logical side by Bayes (1701-1761), Boole
(1815-1864) and Venn (1834-1923).

The growth of probability theory was an important milestone in the
history of science. Fisher liked to comment that it was unknown to the
Greek and the Islamic mathematicians (Thucydides was a historian); Persi
Diaconis once declared that our brain is not wired to solve probability
problems. With probability theory, for the first time since the birth of
mathematics, we can make rigorous statements about uncertain events.
The theory, however, is mostly deductive, which makes it a true branch
of mathematics. Probability statements are evaluated as consequences of
axioms or assumptions rather than specific observations. Statistics as the
child of probability theory was born with the paper of Bayes in 1763 and
was brought to maturity by Laplace.

The second strand in the emergence of statistics was an almost paral-
lel development in the theory of errors. The main emphasis was not on
the calculation of probabilities or uncertainties, but on summarizing ob-
servational data from astronomy or surveying. Gauss (1777-1855) was the
main contributor in this area, notably with the principle of least squares
as a general method of estimation. The important ingredient of this sec-
ond line of development was the data-rich environment. In this connection
Fisher noted the special role of Galton (1822-1911) in the birth of modern
statistics towards the end of the 19th century. A compulsive data gath-
erer, Galton had a passionate conviction in the power of quantitative and
statistical methods to deal with ‘variable phenomena’.

Further progress in statistics continues to depend on data-rich environ-
ments. This was first supplied by experiments in agriculture and biom-
etry, where Fisher was very much involved. Later applications include:
industrial quality control, the military, engineering, psychology, business,
medicine and health sciences. Other influences are found in data gathering
and analysis for public or economic policies.
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Bayesians and frequentists

The Bayesian and frequentist schools of statistics grew in response to prob-
lems of uncertainty, in particular to the way probability was viewed. The
early writers in the 18th and 19th centuries considered it both a (subjec-
tive) degree of belief and (objective) long-run frequency. The 20th century
brought a strong dichotomy. The frequentists limit probability to mean
only a long-run frequency, while for the Bayesians it can carry the subjec-
tive notion of uncertainty.

This Bayesian—{frequentist divide represents the fundamental tension
between the need to say something relevant on a specific instance/dataset
and the sense of objectivity in long-run frequencies. If we toss a coin, we
have a sense of uncertainty about its outcome: we say the probability of
heads is 0.5. Now, think about the specific next toss: can we say that
our sense of uncertainty is 0.5, or is the number 0.5 meaningful only as a
long-term average? Bayesians would accept both interpretations as being
equally valid, but a true frequentist allows only the latter.

Since the two schools of thought generate different practical method-
ologies, the distinction is real and important. These disagreements do not
hinder statistical applications, but they do indicate that the foundation of
statistics is not settled. This tension also provides statistics with a fruitful
dialectical process, at times injecting passion and emotion into a poten-
tially dry subject. (Statisticians are probably unique among scientists with
constant ponderings of the foundation of their subject; physicists are not

expected to do that, though Einstein did argue with the quantum physicists' "

about the role of quantum mechanics as the foundation of physics.) -

Inverse probability: the Bayesians

The first modern method to assimilate observed data for quantitative in-
ductive reasoning was published (posthumously) in 1763 by Bayes with his
Essay towards Solving a Problem in the Doctrine of Chances. He used an
inverse probability, via the now-standard Bayes theorem, to estimate a bi-
nomial probability. The simplest form of the Bayes theorem for two events
Aand B is

P(AB) P(B|A)P(A)

PAIB) = 55 = BEIAP@A) + PBIAPA)

(1.1)

Suppose the unknown binomial probability is  and the observed number
of successes in n independent trials is . Then, in modern notation, Bayes’s

solution is £(2.0) Fl6)£(0)
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where f(0|z) is the conditional density of § given z, f(8) is the so-called
prior density of @ and f(z) is the marginal probability of 2. (Note that we
have used the symbol f(-) as a generic function, much like the way we use
P(-) for probability. The named argument(s) of the function determines
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what the function is. Thus, f(#,z) is the joint density of § and z, f(z|9)
is the conditional density of = given 8, etc.)

Leaving aside the problem of specifying f(6), Bayes had accomplished
a giant step: he had put the problem of inductive inference (i.e. learning
from data x) within the clean deductive steps of mathematics. Alas, ‘the
problem of specifying f(8)’ a priori is an equally giant point of controversy
up to the present day.

There is nothing controversial about the Bayes theorem (1.1), but (1.2)
is a different matter. Both A and B in (1.1) are random events, while
in the Bayesian use of (1.2) only z needs to be a random outcome; in a
typical binomial experiment 6 is an unknown fixed parameter. Bayes was
well aware of this problem, which he overcame by considering that  was
generated in an auziliary physical experiment — throwing a ball on a level
square table — such that 6 is expected to be uniform in the interval (0,1).
Specifically, in this case we have f(0) = 1 and

6% (1 — o)

Jiur(1 — uyn—2du’ (1-3)

f(Olz) =

Fisher was very respectful of Bayes’s seeming apprehension about using an
axiomatic prior; in fact, he used Bayes’s auxiliary experiment to indicate
that Bayes was not a Bayesian in the modern sense. If 6 is a random
variable then there is nothing ‘Bayesian’ in the use of the Bayes theorem.
Frequentists do use Bayes theorem in applications that call for it.

Bayes did, however, write a Scholium (literally, a ‘dissertation’; see
Stigler 1982) immediately after his proposition:

... the same rule [i.e. formula (1.3) above] is a proper one to be used in

the case of an event concerning the probability of which we absolutely
know nothing antecedently to any trial made concerning it.

In effect, he accepted the irresistible temptation to say that if we know
nothing about 6 then it is equally probable to be between zero and one.
More significantly, he accepted that the uniform prior density, which now
can be purely axiomatic, can be processed with the objective binomial
probability to produce a posterior probability. So, after all, Bayes was a
Bayesian, albeit a reluctant one. (In hindsight, probability was then the
only available concept of uncertainty, so Bayes did not have any choice.)
Bayes’s paper went largely unnoticed until Pearson (1920). It was
Laplace, who, after independently discovering Bayes theorem, developed
Bayesian statistics as we understand it today. Boole’s works on the prob-
ability theory (e.g. Laws of Thought, published in 1854), which discussed
Bayes theorem in the ‘problem of causes’, clearly mentioned Laplace as
the main reference. Laplace’s Théorie Analytique des Probabilités was first
published in 1812 and became the standard reference for the rest of the
century. Laplace used the flat or uniform prior for all estimation problems,
presented or justified as a reasonable expression of ignorance. The princi-
ple of inverse probability, hence Bayesian statistics, was an integral part of
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the teaching of probability until the end of the 19th century. Fisher (1936)
commented that that was how he learned inverse probability in school and
“for some years saw no reason to question its validity’.

Statistical works by Gauss and others in the 19th and early 20th cen-
turies were largely Bayesian with the use of inverse probability arguments.
Even Fisher, who later became one of the strongest critics of axiomatic
Bayesianism, in his 1912 paper ‘On an absolute criterion for fitting fre-
quency curves’, erroneously called his maximum likelihood the ‘most prob-
able set of values’, suggesting inverse probability rather than likelihood,
although it was already clear he had distinguished these two concepts.

Repeated sampling principle: the frequentists

A dominant section of statistics today views probability formally as a long-
run frequency based on repeated experiments. This is the basis of the
frequentist ideas and methods, where the truth of a mathematical model
must be validated through an objective measure based on externally ob-
servable quantities. This feels natural, but as Shafer (1990) identified, ‘the
rise of frequentism’ in probability came only in the mid-19th century from
the writings of empiricist philosophers such as John Stuart Mill. Popula-
tion counting and classification was also a factor in the empirical meaning
of probability when it was used for modelling.

- The repeated sampling principle specifies that procedures should be eval-
uated on the basis of repeat experimentation under the same conditions.
The sampling distribution theory, which expresses the possible outcomes
from the repeated experiments, is central to the frequentist methodology.
Many concepts in use today, such as bias, variability and standard error of
a statistic, P-value, type I error probability and power of a test, or confi-
dence level, are based on the repeated sampling principle. The dominance
of these concepts in applied statistics today proves the practical power of
frequentist methods. Neyman (1894-1981) and Wald (1902-1950) were the
most influential exponents of the frequentist philosophy. Fisher contributed
enormously to the frequentist methodology, but did not subscribe fully to
the philosophy.

True frequentism states that measures of uncertainties are to be inter-
preted only in a repeated sampling sense. In areas of statistical application,
such as medical laboratory science or industrial quality control, where pro-
cedures are naturally repeated many times, the frequentist measures are
very relevant.

The problem arises as the requirement of repeat experimentation is
allowed to be hypothetical. There are many areas of science where experi-
ments are unlikely to be repeated, for example in archaeology, economics,
geology, astronomy, medicine, etc. A reliance on repeated sampling ideas
can lead to logical paradoxes that appear in common rather than esoteric
procedures. '

Extreme frequentism among practical statisticians is probably quite
rare. An extremist will insist that an observed 95% confidence interval,



12 1. Introduction

say 1.3 < # < 7.1, either covers the parameter or it does not, we do not
know which, and there is no way to express the uncertainty; the 95% applies
only to the procedure, not to the particular interval. That is in fact the
orthodox interpretation of the confidence interval. It neglects the evidence
contained in a particular interval/dataset, because measures of uncertainty
are only interpreted in hypothetical repetitions.

Most scientists would probably interpret the confidence interval intu-
itively in a subjective/Bayesian way: there is a 95% probability the interval
contains the true parameter, i.e. the value 95% has some evidential attach-
ment to the observed interval.

Bayesians versus frequentists

A great truth is a truth whose opposite is also a great truth. — Thomas
Mann (1875-1955)

In Bayesian computations one starts by explicitly postulating that a pa-
rameter 6 has a distribution with prior density f(8); for example, in a
problem to estimate a probability 6, one might assume it is uniformly dis-
tributed on (0,1). The distinguishing attitude here is that, since 0 does
not have to be a random outcome of an experiment, this prior can be spec-
ified axiomatically, based on thinking alone. This is the methodological
starting point that separates the Bayesians from the frequentists, as the
latter cannot accept that a parameter can have a distribution, since such a
distribution does not have an external reality. Bayesians would say there is
an uncertainty about 6 and insist any uncertainty be expressed probabilis-
tically. The distribution of @ is interpreted in a subjective way as a degree
of belief. :

Once one accepts the prior f(6) for 6 and agrees it can be treated as
a regular density, the way to proceed is purely deductive and (internally)
consistent. Assuming that, given 6, our data z follows a statistical model
po(z) = f(x|8), then the information about 6 contained in the data is given
by the posterior density, using the Bayes theorem as in (1.2),

S0l = 1)

f(x)
In Bayesian thinking there is no operational difference between a prior
density f(6), which measures belief, and f(z|f), which measures an ob-
servable quantity. These two things are conceptually equal as measures of
uncertainty, and they can be mixed using the Bayes theorem.

The posterior density f(6|z), in principle, captures from the data all
the information that is relevant for §. Hence, it is an update of the prior
f(#). In a sequence of experiments it is clear that the current posterior
can function as a future prior, so the Bayesian method has a natural way
of accumulating information. ‘

When forced, most frequentists would probably admit that a degree of
belief does exist subjectively. The disagreement is not that a parameter
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can assume a density, since frequentists could also think of f(8) as a prior
likelihood (the likelihood of the parameter before we have any data). Two
genuine concerns exist:

(i) the practical problem of choosing an appropriate prior. Leaving aside
the problem of subjective interpretation, there is an ongoing contro-
versy on how we should pick f(6). Several early writers such as Boole
(1854, pages 384, 392) and Venn (1876) had criticized the arbitrari-
ness in the axiomatic choice of f(f); Fisher was also explicit in his
rejection of any axiomatic prior, although he did not rule out that
some applications, such as genetics, may have physically meaningful
f(8). Modern Bayesians seem to converge toward the so-called ‘objec-
tive priors’ (e.g. Gatsonis et al. 1997), but there are many shades of
Bayesianism (Berger 2000).

(ii) the ‘rules of engagement’ regarding a subjective degree of belief. There
is nothing really debatable about how one feels, and there is nothing
wrong in thinking of probability in a subjective way. However, one’s
formal action based on such feeling is open to genuine disagreement.
Treating a subjective probability density like a regular density function
means, for example, that it can be integrated out, and it needs a
Jacobian term when transformed to a different scale. The latter creates
a lack of invariance in the choice of prior: seeming ignorance in one
scale becomes information in another scale (see Section 2.8).

Efron (1998) compares the psychological differences between the two
schools of thought. A comparative study highlights the strengths and weak-
nesses of each approach. The strength of the Bayesian school is its unified
approach to all problems of uncertainty. Such unity provides clarity, espe-
cially in complex problems, though it does not mean Bayesian solutions are
practical. In fact, until recently Bayesians could not solve complex prob-
lems because of computational difficulties (Efron 1986a). While, bound by
fewer rules, the strength of a frequentist solution is usually its practicality.

Example 1.2: A new eye drug was tested against an old one on 10 subjects.
The two drugs were randomly assigned to both eyes of each person. In all cases
the new drug performed better than the old drug. The P-value from the observed
data is 27'% = 0.001, showing that what we observe is not likely due to chance
alone, or that it is very likely the new drug is better than the old one. O

Such simplicity is difficult to beat. Given that a physical randomization
was actually used, very little extra assumption is needed to produce a valid
conclusion. And the final conclusion, that the new drug is better than the
old one, might be all we need to know from the experiment. The achieved
simplicity is a reward of focus: we are only interested in knowing if chance
alone could have produced the observed data. In real studies, of course, we
might want to know more about the biological mechanism or possible side
effects, which might involve more complicated measurements.
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The advent of cheap computer power and Monte Carlo techniques (e.g.
Gilks et al. 1995) have largely dismantled the Bayesian computational wall.
Complex problems are now routinely solved using the Bayesian method-
ology. In fact, being pragmatic, one can separate the Bayesian numerical
methods from the underlying philosophy, and use them as a means of ob-
taining likelihood functions. This is a recent trend, for example, in molec-
ular genetics. In Section 10.6 we will see that the Bayesian and likelihood
computations have close numerical connections.

Luckily, in large-sample problems, frequentist and Bayesian computa-
tions tend to produce similar numerical results, since in this case the data
dominate the prior density and the level of uncertainty is small. In small-
to medium-sized samples, the two approaches may not coincide, though in
real data analysis the difference is usually of smaller order of magnitude
than the inductive uncertainty in the data and in the model selection.

The following ‘exchange paradox’, discussed in detail by Christensen
and Utts (1992), illustrates how our handling of uncertainty affects our
logical thinking. To grasp the story quickly, or to entertain others with it,
replace x by 100.

Example 1.3: A swami puts an unknown amount of money in one envelope
and twice that amount in another. He asks you to pick one envelope at random,
open it and then decide if you would exchange it with the other envelope. You
pick one (randomly), open it and see the outcome X = z dollars. You reason
that, suppose Y is the content of the other envelope, then Y is either z/2 or 2z
with probability 0.5; if you exchange it you are going to get (z/2+2z)/2 = 5z /4,
which is bigger than your current z. ‘With a gleam in your eye’, you would
exchange the envelope, wouldn’t you?

The reasoning holds for any value of z, which means that you actually do
not need to open the envelope in the first place, and you would still want to
exchange it! Furthermore, when you get the second envelope, the same reasoning
applies again, so you should exchange it back. A discussion of the Bayesian and
frequentist aspects of this paradox is left as an exercise. O

1.5 Fisher and the third way

The likelihood approach offers a distinct ‘third way’, a Bayesian-frequentist
compromise. We might call it Fisherian as it owes most of its conceptual
development to Fisher (1890-1962). Fisher was clearly against the use of
the axiomatic prior probability fundamental to the Bayesians, but he was
equally emphatic in his rejection of long-run frequency as the only way
to interpret probability. Fisher was a frequentist in his insistence that
statistical inference should be objectively verifiable; however, his advocacy
of likelihood inference in cases where probability-based inference is not
available puts him closer to the Bayesian school.

In a stimulating paper on Fisher’s legacies, Efron (1998) created a sta-
tistical triangle with Fisherian, Bayesian and frequentist nodes. He then
placed various statistical techniques within the triangle to indicate their
flavour. ’
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Fisher’s effort for an objective inference without any use of prior prob-
ability led him to the idea of fiducial probability (Fisher 1930, 1934). This
concept prompted the confidence interval procedure (Neyman 1935). It ap-
pears that Fisher never managed to convince others what fiducial probabil-
ity was, despite his insistence that, conceptually, it is ‘entirely identical with
the classical probability of the early writers’ (Fisher 1973, page 54). In some
models the fiducial probability coincides with the usual frequentist/long-
run-frequency probability. The problems occur in more complex models
where exact probability statements are not possible.

From his last book Statistical Methods and Scientific Inference (1973,
in particular Chapter III) it is clear that Fisher settled with the idea that

o whenever possible to get exact results we should base inference on
probability statements, otherwise it should be based on the likelihood;

o the likelihood can be interpreted subjectively as a rational degree of
belief, but it is weaker than probability, since it does not allow an
external verification, and

¢ in large samples there is a strengthening of likelihood statements where
it becomes possible to attach some probabilistic properties (‘asymp-
totic approach to a higher status’ — Fisher 1973, page 78).

These seem to summarize the Fisherian view. (While Fisher’s probability
was fiducial probability, let us take him at his own words that it is ‘entirely
identical with the classical probability’.) About 40 years elapsed between
the explicit definition of the likelihood for the purpose of estimation and
Fisher’s final judgement about likelihood inference. The distinguishing
view is that inference is possible directly from the likelihood function; this
is neither Bayesian nor frequentist, and in fact both schools would reject
such a view as they allow only probability-based inference.

These Fisherian views also differ from the so-called ‘pure likelihood
view’ that considers the likelihood as the sole carrier of uncertainty in
statistical inference (e.g. Royall 1997, although he would call it ‘evidence’
rather than ‘uncertainty’). Fisher recognized two ‘well-defined levels of log-
ical status’ for uncertainty about parameters, one supplied by probability
and the other by likelihood. - A likelihood-based inference is used to ‘ana-
lyze, summarize and communicate statistical evidence of types too weak to
supply true probability statements’ (Fisher 1973, page 75). Furthermore,
when available, a probability statement must allow for an external verifica-
tion (a verification by observable quantities), so it is clear that frequentist
consideration is also an important aspect of the Fisherian view.

Fisher’s requirement for an exact probability inference is more strin-
gent than the so-called ‘exact inference’ in statistics today (Fisher 1973,
pages 69-70). His prototype of an exact probability-based inference is the
confidence interval for the normal mean (even though the term ‘confidence
interval’ is Neyman’s). The statement

P(Z —1.960//n < u < T + 1.960//n) = 0.95
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is unambiguous and exactly/objectively verifiable; it is an ideal form of
inference. However, the so-called ‘exact 95% confidence interval’ for the
binomial proportion (see Section 5.8) in fact does not have exactly 95%
coverage probability, so logically it is of lower status than the exact interval
for the normal model. 1t is for this situation the likelihood is indicated.

For Fisher, both likelihood and probability are measures of uncertainty,
but they are on a different footing. This is a non-Bayesian view, since for
Bayesians all uncertainty is measured with probability. The subjective ele-
ment in the interpretation of likelihood, however, is akin to a Bayesian/non-
frequentist attitude. It is worth noting that; .when backed up with large-
sample theory to supply probability statements, the mechanics and numer-
ical results of likelihood inference are generally acceptable to frequentist
statisticians. So, in their psychology, Fisherians’are braver than the fre-
quentists in saying that inference is possible from the likelihood function
alone, but not as brave as the Bayesians to admit an axiomatic prior into
the argument.

Legacies

By 1920 the field of statistics must have been a confusing place. Yates
(1990) wrote that it was the age of correlation and coeflicients of all kinds.
To assess association in 2x 2 tables there were the coefficient of association,
coefficient of mean square contingency, coeflicient of tetrachoric correlation,
equiprobable tetrachoric correlation, and coefficient of colligation, but the
idea of estimating the association and its test of significance were mixed up.
There were many techniques available, such as the least squares principle,
the method of moments, the inverse probability method, the x2 test, the
normal distribution, Pearson’s system of curves, the central limit theorem,
etc., but there was no firm logical foundation.

The level of confusion is typified by the title of Edgeworth’s paper
in 1908 and Pearson’s editorial in Biometrika in 1913: ‘On the probable
errors of frequency constants’, which in modern terminology would be ‘the
standard error of fixed parameters’. There was simply no logical distinction
or available terms for a parameter and its estimate. On the mathematical
side, the x? test of association for the 2x2 tables had 3 degrees of freedom!

A more serious source of theoretical confusion seems to be the implicit
use of inverse probability arguments in many early statistical works, no
doubt the influence of Laplace. The role of the prior distribution in inverse
probability arguments was never seriously questioned until early 20th cen-
tury. When explicitly stated, the arbitrariness of the prior specification was
probably a stumbling block to a proper appreciation of statistical questions
as objective questions. Boole (1854) wrote in the Laws of Thoughts (Chap-
ter XX, page 384) that such arbitrariness

seems to imply, that definite solution is impossible, and to mark the
point where inquiry ought to stop.

Boole discussed the inverse probability method at length and identified its
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weakness, but did not see any alternative; he considered the question of
inductive inference as

second to none other in the Theory of Probabilities in importance, [I
hope it] will receive the careful attention which it deserves.

In his works on the theory of errors, Gauss was also aware of the problem,
but he got around it by justifying his method of estimation in terms of
the least-squares principle; this principle is still central in most standard
introductions to regression models, which is unfortunate, since (i) in itself
it is devoid of inferential content and (ii) it is not natural for general prob-
ability models, so it creates an unnecessary conceptual gap with the far
richer class of generalized linear models.

Fisher answered Boole’s challenge by clearly identifying the likelihood
as the key inferential quantity that is free of subjective prior probabilities.
He stressed that if, prior to the data, we know absolutely nothing about
a parameter (recall Bayes’s Scholium in Section 1.4) then all of the infor-
mation from the data is in the likelihood. In the same subjective way the
Bayesians interpret probability, the likelihood provides a ‘rational degree
of belief’ or an ‘order of preferences’ on possible parameter values; the
fundamental difference is that the likelihood does not obey probability laws.
So probability and likelihood are different concepts available to deal with
different levels of uncertainty.

There were earlier writers, such as Daniel Bernoulli or Venn, who had
used or mentioned the idea of maximum likelihood in rudimentary forms
(see Edwards 1992, Appendix 2). It usually appeared under the name
of ‘most probable value’, indicating the influence of inverse probability
argument. Even Fisher in 1912 used that name, even though it was clear
from the discussion he had likelihood in mind. The confusion was only
cleared in 1921 when Fisher invented the term ‘likelihood’.

In a series of the most influential papers in statistics Fisher (in particular
in 1922 and 1925) introduced order into the chaos by identifying and nam-
ing the fundamental concepts such as ‘parameter’, ‘statistic’, ‘variance’,
‘sufficiency’, ‘consistency’, ‘information’, and ‘estimation’,'maximum like-
lihood estimate’, ‘efficiency’ and ‘optimality’. He was the first to use Greek
letters for unknown parameters and Latin letters for the estimates. He set
up the agenda for statistical research by identifying and formulating the
important questions.

‘He ‘fixed’ the degree of freedom of the x? test for the 2x2 tables in
1922. He recognized the paper by ‘Student’ in 1908 on the t-test, which
was ignored by the large-sample-based statistical world at the time, as
a milestone in the history of statistics: it was the first exact test. He
emphasized the importance of inference based on exact distribution and
identified ‘the problem of distribution’ as a respectable branch of theoretical
statistics. Fisher was unsurpassed in this area, being the first to derive the
exact distribution of the ¢ and F' statistics, as well as that of the sample
correlation and multiple correlation coefficient.
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Fisher’s influence went beyond the foundation of statistics and the like-
lihood methods. His Statistical Methods for Research Workers, first pub-
lished in 1925, brought the new ideas to generations of practical research
workers. Fisher practically invented the field of experimental design, in-
troducing the fundamental ideas of randomization, replication, blocking,
factorial experiments, etc., and its analysis of variance. His Design of Fz-
periments, first published in 1935, emphasized the importance of carefully
collected data to simplify subsequent analysis and to arrive at unambigu-
ous conclusions. He contributed significantly to areas of sampling distribu-
tion theory, regression analysis, extreme value theory, nonparametric and
multivariate analysis. In a careful study of Fisher’s legacy, Savage (1976)
commented that it would be a lot faster to list areas in statistics where
Fisher did not contribute fundamentally, for example sequential analysis
and time series modelling.

Outside statistics, many geneticists consider Fisher as the most impor-
tant evolutionary biologist after Darwin. In 1930 Fisher was the first to
provide a key synthesis of Mendelian genetics and Darwin’s theory of evo-
lution, thus giving a quantitative basis for the latter. Fisher was never a
professor of statistics: he was Galton Professor of Eugenics at University
College London, then Balfour Professor of Genetics at Cambridge Univer-
sity.

For a statistician, his writings can be inspirational as they are full of
conviction on the fundamental role and contributions of statistical methods
in science and in ‘refinement of human reasoning’. Fisher (1952) believed
that

Statistical Science was the peculiar aspect of human progress which
gave to the twentieth century its special character. ... it is to the

statistician that the present age turns for what is most essential in all
its more important activities.

The ‘important activities’ include the experimental programmes, the ob-
servational surveys, the quality control engineering, etc. He identified the
crucial contribution of statistical ideas to the fundamental scientific ad-
vances of the 19th century such as in Lyell’s Principles of Geology and
Darwin’s theory of evolution.

It is an unfortunate turn of history that Fisher’s articles and books are
no longer standard reading in the study of statistics. Fisher was often crit-
icized for being obscure or hard to read. Savage (1976), however, reported
that his statistical mentors, which included Milton Friedman and W. Allen
Wallis, gave the advice: ‘To become a statistician, practice statistics and
mull Fisher over with patience, respect and scepticism’. Savage closed his
1970 Fisher Memorial Lecture with ‘I do hope that you won’t let a week
go by without reading a little bit of Fisher’.

Fisher’s publications were collected in the five-volume Collected Papers
of R.A. Fisher, edited by Bennett and Cornish (1974). His biography,
entitled R.A. Fisher, The Life of a Scientist, was published by his daughter
Joan Fisher Box in 1978. Other notable biographies, memoirs or reviews
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of his works were written by Barnard (1963), Bartlett (1965), Yates and
Mather (1963), Kendall (1963), Neyman (1961, 1967), Pearson (1974) and
Savage (1976). Recent articles include Aldrich(1997), Efron (1998) and
Hald (1999). Edwards’s (1992) book on likelihood was largely influenced
by Fisher and the Appendices contain useful accounts of the history of
likelihood and Fisher’s key contributions. Fienberg and Hinkley (1980)
contains a wide-ranging discussion of Fisher’s papers and his impact on
statistics.

1.6 Exercises

Exercise 1.1: Discuss the stochastic and inductive uncertainty in the following
statements:

(a) A study shows that children of mothers who smoke have lower IQs than
those of non-smoking mothers.

(b) A report by Interpol in 1994 shows a rate of (about) 55 crimes per 1000
people in the USA, compared to 100 in the UK and 125 in Sweden. (‘Small’
note: the newspaper that published the report later published a letter by an
official from the local Swedish Embassy saying that, in Sweden, if a swindler
defrauds 1000 people the case would be recorded as 1000 crimes.)

(c) Life expectancy in Indonesia is currently 64 years for women and 60 years
for men. (To which generation do these numbers apply?)

(d) The current unemployment rate in Ireland is 4.7%. (What does ‘unemployed’
mean?)
(e) The total fertility rate for women in Kenya is 4.1 babies.

(f) The population of Cairo is around 16 million people. (Varies by a few million
between night and day.)

(g) The national clinical trial of aspirin, conducted on about 22,000 healthy male
physicians, established the benefit of taking aspirin. (To what population
does the result apply?)

Exercise 1.2: What is wrong with the reasoning in the exchange paradox in
Example 1.37 Discuss the Bayesian and frequentist aspects of the paradox, first
assuming the ‘game’ is only played once, then assuming it is played repeatedly.
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