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Introduction

The problem of estimating the dimensionality of a model occurs in various
forms in applied statistics: estimating the number of factors in factor analysis,
estimating the degree of a polynomial describing the data, selecting the vari-
ables to be introduced in a multiple regression equation, estimating the order
of an AR or MA time series model, and so on.

In factor analysis, this problem was traditionally solved by eyeballing re-
sidual eigenvalues, or by applying some other kind of heuristic procedure.
When maximum likelihood factor analysis became computationally feasible,
the likelihoods for different dimensionalities could be compared. Most statis-
ticians were aware of the fact that the comparison of successive chi squares
was not optimal in any well-defined decision theoretic sense. With the advent
of the electronic computer, the forward and backward stepwise selection pro-
¢edures in multiple regression also became quite popular, but again there
were plenty of examples around showing that the procedures were not opti-
mal and could easily lead one astray. When even more computational power
became available, one could solve the best subset selection problem for up to
20 or 30 variables, but choosing an appropriate criterion on the basis of which
to compare the many models remains a problem.

But exactly because of these advances in computation, finding a solution
of the problem became more and more urgent. In the linear regression situa-
tion, the C, criterion of Mallows (1973), which had already been around much
longer, and the PRESS criterion of Allen (1974) were suggested. Although
they seemed to work quite well, they were too limited in scope. The structur-
al covariance models of Joreskog and others, and the log linear models of
Goodman and others, made search over a much more complicated set of
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models necessary, and the model choice problems in those contexts could
not be attacked by inherently linear methods. Three major closely related
developments occurred around 1974. Akaike (1973) introduced the informa-
tion criterion for model selection, generalizing his earlier work on time series
analysis and factor analysis. Stone (1974) reintroduced and systematized cross-
validation procedures, and Geisser (1975) discussed predictive sample reuse
methods. In a sense, Stone—Geisser cross-validation is the more general pro-
cedure, but the information criterion (which rapidly became Akaike’s infor-
mation criterion or AIC) caught on more quickly.

There are various reasons for this. Akaike’s many students and colleagues
applied AIC almost immediately to a large number of interesting examples
(compare Sakamoto, Ishiguro, and Kitagawa, 1986). In a sense, the AIC was
more original and more daring than cross-validation, which simply seemed
to amount to a lot of additional dreary computation. AIC has a close connec-
tion to the maximum likelihood method, which to many statisticians is still
the ultimate in terms of rigor and precision. Moreover, the complicated struc-
tural equations and loglinear analysis programs were based on maximum
likelihood theory, and the AIC criterion could be applied to the results with-
out any additional computation. The AIC could be used to equip computer-
ized “instant science” packages such as LISREL with an automated model
search and comparison procedure, leaving even fewer decisions for the user
(de Leeuw, 1989). And finally, Akaike and his colleagues succeeded in con-
necting the AIC effectively to the always mysterious area of the foundations
of statistics. They presented the method, or at least one version of it, in a
Bayesian framework (Akaike, 1977, 1978). There are many statisticians who
consider the possibility of such a Bayesian presentation an advantage of the
method.

Akaike’s 1973 Paper

Section 1. Introduction

We start our discussion of the paper with a quotation. In the very first sen-
tence, Akaike defines his information criterion, and the statistical principle
that it implies.

Given a set of estimates §’s of the vector of parameters fofa probability distri-
bution with density f(x|0) we adopt as our final estimate the one which will give
the maximum of the expected log-likelihood, which is by definition

E(log f(X|0)) = E( f f(x|0)log f(x|) dx),

where X is a random variable following the distribution with the density func-
tion f{x|0) and is independent of 4.
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This is an impressive new principle, but its precise meaning is initially
rather unclear. It is important to realize, for example, that in this definition
the expected value on the left is with respect to the joint distribution of § and
X, while the expected value on the right is with respect to the distribution of
d. It is also important that the expected log-likelihood depends both on the
estimate f and the true value 6,. We shall try to make this more clear by using
the notation 6(Z) for the estimate, where Z is the data, and Z is independent
of X. .

Akaike’s principle now tells us to maximize over a class of estimates, but
it does not tell us over which class, and it also does not tell us what to do
about the problem when 6, is unknown. He points out this is certainly not
the same as the principle of maximum likelihood, which adopts as the esti-
mate the §(Z) that maximizes the log-likelihood log f(z|) for a given realiza-
tion of Z. For maximum likelihood, of course, we do not need to know 6.

What remains to be done is to further clarify the unclear points we men-
tioned above and to justify this particular choice of distance measure. This is
what Akaike sets out to do in the rest of his paper.

Section 2. Information and Discrimination

In this section, Akaike justifies, or at least discusses, the choice of the in-
formation criterion. The model f(-|6) is a family of parametrized probability
densities, with 6 € ®. We shall simply refer to both 0 and © as “models,”
understanding that the “model” @ is a set of simple “models” 6. Suppose we
want to compare a general model § with the “true” model 0,. From general
decision theory, we know that comparisons can be based without loss of
efficiency on the likelihood ratio 7(-) = S(-16)/1(- 16,). This suggests that we
define the discrimination between 0 and 0y at x as ®(t(x)) for some function
®, and to define the mean discrimination between 6 and 0y, if B, is “true,” as

+w0
2(0, 6, ®) = f Jx166)@(x(x)) dx = Ex[®(z(X))],
where Ey is the expected value over X, which has density £(-16,).

Now how do we choose ®? We study 2(8, 6,,®) for 6 close to 6,. Under
suitable regularity conditions, we have

2(9, 8; @) = (1) + 3D(1)(8 — 65)#(65)(0 — 85) + o116 — 6,%),

where
_ [T [ (21og f(x|6) d log f(x|0)Y
J(Oo)—J._m [( 20 )Mo( 20 >o=00]f(xleo)dx

is the Fisher information at 6. Thus, it makes sense to require that @(1) = 0
and @(1) > 0 in order to make 2 behave like a distance. Akaike concludes,
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correctly, that this derivation shows the major role played by log f(-10),
and he also concludes, somewhat mysteriously, that consequently, the choice
@(t) = —2 log(t) makes good sense. Thus, he arrives at his entropy measure,
_ known in other contexts as the negentropy or Kullback—Leibler distance.

+o 0
906,00 =2 [ fisioo tog 2

= 2E,[log f(X16,)] — 2Ex[log f(X16)].

It follows from the inequality In ¢t > 1 + t that the negentropy is always
nonnegative, and it is equal to zero if and only if f(-16) = f(:16,) a.e. The
negentropy can consequently be interpreted as a measure of distance between
f(-16) and the true distribution. The Kullback-Leibler distance was intro-
duced in statistics as early as 1951, and its use in hypothesis testing and model
evaluation was propagated strongly by Kullback (1959). Akaike points out
that maximizing the expected log-likelihood amounts to the same thing as
minimizing E,[2(6(Z), 6,)], the expected value over the data of the Kullback-
Leibler distance between the estimated density f(- |#(Z)) and the true density
f(+16,). He calls 2(6(2), 6,) the probabilistic negentropy and uses the symbol
Z(0,) for its expected value.

The justification given by Akaike for using ®(t) = —2 log(f) may seem 2
bit weak, but the result is a natural distance measure between probability
densities, which has strong connections with the Shannon—Wiener informa-
tion criterion, Fisher information, and entropy measures used in thermody-
namics. One particular reason why this measure is attractive is the situation
in which we have n repeated independent trials according to f(-|6,). This
leads to densities £,(-, 8) and £,(-, 6,) that are products of the densities of the
individual observations. If 2,(6, 6,) is the Kullback-Leibler distance between
these two product densities, then trivially 2,(0, 6,) = n 2(6, 6,). Obviously,
the additivity of the negentropy in the case of repeated independent trials is
an important point in its favour.

dx

Section 3. Information and the Maximum Likelihood
Principle

Now Akaike has to discuss what to do about the problem of the unknown 0.
The solution he suggests is actually very similar to the approach of classical
statistical large sample theory, but because of the context of the information
principle, we see it in a new light.

Remember that the entropy maximization principle tells us to evaluate the
success of our procedure, and the appropriateness of the model ©, by com-
puting the expectation %(6,) of the probabilistic negentropy over the data.
Also remember that

R(6;) = 2Ex[log f(X|6)] — 2Ex 5[log f(X6(2)],



Introduction to Akaike (1973) 603

which means that minimizing the expected probabilistic negentropy does in-
deed amount to the same thing as maximizing the expected log-likelihood
mentioned in Sec. 1. Akaike’s program is to estimate #(6,), and if several
models are compared, to select the model with the smallest value.

Of course, it is still not exactly easy to carry out this program. Because By
is unknown we cannot really minimize the negentropy, and we cannot com-
pute the expectation of the minimum over Z either. There is an approximate
solution to this problem, however, if we have a large number of independent
replications (or, more generally, if the law of large numbers applies). Minus
the mean log-likelihood ratio

Q,,(B, 00) - % Z_V,: log f(xiloo)

i=1 S(x:10) 7

will converge in probability to the negentropy, and under suitable regularity
conditions, this convergence will be uniform in 6. This makes it plausible that
maximizing the mean log- likelihood ratio (i.e., computing the maximum like-
lihood estimate) will tend to maximize the entropy, and that in the limit, the
maximum likelihood estimate is the maximum entropy estimate. We do not
need to know 6, in order to be able to compute the maximum likelihood
estimate. Thus, Akaike justifies the use of maximum likelihood by deriving it
from his information criterion. From now on, we will substitute the maximum
likelihood estimate §(Z) for the unknown 0.

Section 4. Extension of the Maximum Likelihood Principle

This is the main theoretical section of the paper. Akaike proposes to combine
point estimation and the testing of model fit into the single new principle of
comparing the values of the mean log-likelihood or negentropy. This is his
“extension” of the maximum likelihood principle. We have seen in the previ-
ous section that negentropy is minimized, approximately, by using the maxi-
mum likelihood estimate for (Z). What must still be done is to find conve-
nient approximations for #(6,) at the maximum likelihood estimate.

This section is not particular easy to read. It does not have the usual
proof/theorem format, expansions are given without precise regularity cond-
itions, exact and asymptotic identities are freely mixed, stochastic and
deterministic expressions are not clearly distinguished, and there are some
unfortunate notational and especially typesetting choices. This is an “ideas
paper,” promoting a new approach to statistics, not a mathematics paper
concerned with the detailed properties of a particular technique. Although we
follow the paper closely, we have tried to make the notation a bit more
explicit, for instance by using matrices.

Akaike analyzes the situation in which we have a number of subspaces ©,
of ®, with 0 < k < m, ©,,, a subspace of ®,, and @, = ©. Let d, = dim(0,).
Actually, it is convenient to simplify this, by a change of coordinates, to the
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problem in which d = m, d, = k, and ©, is the subspace of R™, which has the
last m — k elements equal to zero. We assume 6, € @,, and we assume we
have n independent replications in Z. Let 6,(Z) be the corresponding maxi-
mum likelihood estimates. Akaike suggests that we estimate the expectation
of the probabilistic entropy #(d,) by using 2,0.(2), 6,(Z)). But 2.06.2),
6,(2)) will be a biased estimator of #(6,), because of the substitution of the
maximum likelihood estimator for 6,.

It is known that n 9,(6,(2), 0,(2)) is asymptotically chi square withm — k
degrees of freedom if 6, € ©,. In general, .@,,(é,,(Z), 0,(2)) will converge in
probability to 2(®,, 6,), i.e., the Kullback—Leibler distance between 6, and
the model closest to 6, in ®,. Now if n 2(0,, 6,) is much larger than m, then
the mean likelihood ratio will be very much larger than expected from the chi
square appoximation. If n 2(®,, 6,) is much smaller than m, then we can do
statistics on the basis of the chi square because the model is “true.” But the
intermediate case, in which the two quantities are of the same order, and the
model @, is “not too false,” is the really interesting one. This is the case
Akaike sets out to study. It is, of course, similar to studying the Pitman power
of large-sample tests by using sequences of alternatives converging to the null
value.

First, we offer some simplifications. Instead of studying 2(6, 6,), Akaike
uses the quadratic approximation #7(6, 6,) = (8 — 6,)1(6,)(6 — 6,) discussed
in Sec. 2. Asymptotically, this leads to the same conclusions to the order of
approximation that is used. He uses the Fisher information matrix 1(6,) to
define an inner product {:, "), and a norm |- ||, on ®, so that #7(6, 6,) =
|6 — 6, ||3. Define 6o, as the projection of 8, on @, in the information metric.
Then, by Pythagoras,

W (OZ), 00) = 160s — Boll* + 16(2Z) — Oyl 1)

The idea is to use E,[# (0.(Z), 8,)] to estimate #(6,).
The first step in the derivation is to expand the mean log-likelihood ratio
in a Taylor series. This gives

1nD,(00(2), o) = nBo(Z) — Bop) #[00(2), 6011 (B0(Z) — Ooye),
19,(0u(2), Boy) = 1O(Z) — 8oy H[OUZ), 0631 (B(Z) — bop),

where

1 & 8%log f(x;|0 -0
#10,01 = i; g f( élea;' p(¢ ))’
for some 0 < p < 1. Subtracting the two expansions gives
nD,(B(Z), 0(Z)) = n(86(2) — o) #[00(Z), 611(B6(2) — Bop)
— n(8(2) — Oo) H[0(Z), 8011 (BZ) — Oop)-

Let n and k tend to infinity in such a way that n*? (6, — 6,) stays bounded.
Then, taking plims, we get
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nD,(042), 64(2)) ~ n1106(2) — Bolz — n11B(2) — Ooyel3. @
This can also be written as
1D, (64Z), 06(2)) = 1l100i — 8113 + 1106(2) — 6112 — 118(Z) — Boyell2
~ 2n¢05(Z) — 65, Ooy — 6o €)
In the next step, Taylor expansions are used again. For this step, we use

the special symbol =,, where two vectors x and y satisfy x =, y if their first k
elements are equal.

n~12 i l:a*k)—gg%(x—ilg]o_o =, n'2of [ék(Z)9 Boie ] (o — 0(2))
=0op

=, n'PH [90(2), o3 (6o — éo(Z))

Then let n and k tend to infinity again in such a way that n'/2 (Bop — 05) stays
bounded and take plims. This gives

?'1/21 (90)(ék(z) - golk) Xy n'?[ (00)(00(2) - 90|k),
and because of the definition of 6, also, ’
12106)(B(Z) — Boy) 4 1*21(6,)(06(Z) — 6y). @)

It follows that (8,(Z) — bo) is approximately the projection of (6,(Z) — 0,)
on ©,.

This implies that n |6,(Z) — 6,13 — n116,(2) — 6oy 113 and 1 [16,(2) — O, |12
are asymptotically independent chi squares, with degrees of freedom m — k
and k. Akaike then indicates that the last (linear) term on the right-hand side
of (3) is small compared to the other (quadratic) terms. If we ignore its contri-
bution, and then subtract (3) from (1), we find

n¥ (6,(2), 6,) — n9,(04(2), 00(2))
= 102) = boul” — nl0(2) — Boll3 — n18(2) — Ooul3.
Replacing the chi squares by their expectations gives
nEz[#°042), 6,)] = n9,(0,(2), 0,(2)) + 2k — m. ®)

This defines the AIC. Of course, in actual examples, m may not be known
or may be infinite (think of order estimation or log-spline density estima-
tion), but in comparing models, we do not actually need m anyway, because
it is the same for all models. Thus, in practice we simply compute —2
Yr, log f(x;0.(2)) + 2k for various values of k. ‘

i=1

Section 5. Applications

In this section, Akaike discusses the possible applications of his principle to
problems of model selection. As we pointed out in the introduction, the sys-



606 J. deLeeuw

tematic approach to these problems and the simple answer provided by the
AIC, at no additional cost, have certainly had an enormous impact. The
theoretical contributions of the paper, discussed above, have been much less
influential than the practical ones. The recipe has been accepted rather uncrit-
ically by many applied statisticians in the same way as the principles of least-
squares or maximum likelihood or maximum posterior probability have been
accepted in the past without much questioning.

Recipes for the application of the AIC to factor analysis, principal compo-
nent analysis, analysis of variance, multiple regression, and autoregressive
model fitting in time series analysis are discussed. It is interesting that Akaike
already published applications of the general principle to time series analysis
in 1969 and to factor analysis in 1971. He also points out the equivalence of
the AIC to C, proposed by Mallows in the linear model context.

Section 6. Numerical Examples

This section has two actual numerical examples, both estimating the order k
of an autoregressive series. Reanalyzing data by Jenkins and Watts leads to
the estimate k = 2, the same as that found by the orginal analysis using partial
autocorrelation methods. A reanalysis of an example by Whittle leads to k =
65, while Whittle has decided on k = 4 using likelihood-ratio tests. Akaike
argues that this last example illustrates dramatically that using successive
log-likelihoods for testing can be quite misleading.

Section 7. Concluding Remarks

Here Akaike discusses briefly, again, the relations between maximum like-
lihood, the dominant paradigm in statistics, and the Shannon—Wiener en-
tropy, the dominant paradigm in information and coding theory. As Sec. 3
shows, there are strong formal relationships, and using expected likelihood
(or entropy) makes it possible to combine point-estimation and hypothesis
testing in a single framework. It also gives “easy”answers to very important
but very difficult multiple-decision problems.

Discussion

The reasoning behind using X, the independent replication, to estimate %(6,),
is the same as the reasoning behind cross-validation. We use 6(Z) to predict
X, using f(X] é(Z) as the criterion. If we use the maximum likelihood estimate,
we systematically underestimate the distance between the data and the model,
because the estimate is constructed by minimizing this distance. Thus, we
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need an independent replication to find out how good our fit is, and plugging
in the independent replication leads to overestimation of the distance. The
AIC corrects for both biases. The precise relationship between AIC and cross-
validation has been discussed by Stone (1977). At a later stage, Akaike (1978)
provided an asymptotic Bayesian justification of sorts. As we have indicated,
AIC estimates the expected distance between the model and the true value.
We could also formulate a related decision problem as estimating the dimen-
sionality of the model, for instance by choosing from a nested sequence of
models. It can be shown that the minimum AIC does not necessarily give a
consistent estimate of the true dimensionality. Thus, we may want to con-
struct better estimates, for instance choosing the model dimensionality with
the highest posterior probability. This approach, however, has led to a pro-
liferation of criteria, among them the BIC criteria of Schwartz (1978) and
Akaike (1977), or the MDL principle of Rissanen (1978 and later papers).
Other variations have been proposed by Shibata, Bozdogan, Hannan, and
others. Compare Sclove (1987), or Hannan and Deistler (1988, Chap. 7), for
a recent review. Recently, Wei (1990) proposed a new “F.I.C.” criterion, in
which the complexity of the selected model is penalized by its redundant
Fisher informations, rather than by the dimensionality used in the conven-
tional criteria. We do not discuss these alternative criteria here, because they
would take us too far astray and entangle us in esoteric asymptotics and ad
hoc inference principles. We think the justification based on cross-validation
is by far the most natural one.

We have seen that the paper discussed here was an expository one, not a
mathematical one. It seems safe to assume that many readers simply skipped
Sec. 4 and rapidly went on to the examples. We have also seen that the argu-
ments given by Akaike in this expository are somewhat heuristic, but in later
work by him, and by his students such as Inagaki and Shibata, a rigorous
version of his results has also been published. Although many people contrib-
uted to the area of model selection criteria and there are now many competing
criteria, it is clear that Akaike’s AIC is by far the most important contri-
bution. This is due to the forceful presentation and great simplicity of the
criterion, and it may be due partly to the important position of Akaike in
Japanese and international statistics. But most of all, we like to think, the AIC
caught on so quickly because of the enormous emphasis on interesting and
very real practical applications that has always been an important compo-
nent of Akaike’s work.

- Biographical Information

Hirotogu Akaike was born in 1927 in Fujinomiya-shi, Shizuoka-jen, in Japan.
He completed the B.S. and D.S. degrees in mathematics at the University of
Tokyo in 1952 and 1961. He started working at the Institute of Statistical
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Mathematics in 1952, worked his way up through the ranks, and became its
Director General in 1982. In 1976, he had already become editor of the Annals
of the Institute of Statistical Mathematics, and he still holds both these func-
tions, which are certainly the most important in statistics in Japan. Akaike
has received many prizes and honors: He is a member of the L.S.I., Fellow of
the .M.S., Honorary Fellow of the R.S.S., and current (1990) president of th
Japanese Statistical Society. :

It is perhaps safe to say that Akaike’s main contribution has been in the
area of time series analysis. He developed in an early stage of his career the
program package TIMSAC, for time series analysis and control, and he and
his students have been updating TIMSAC, which is now in its fourth major
revision and extension. TIMSAC has been used in many areas of science. In
the course of developing TIMSAC, Akaike had to study the properties of
optimization methods. He contributed the first theoretically complete study
of the convergence properties of the optimum gradient (or steepest descent)
method. He also analyzed and solved the identification problem for multi-
variate time series, using basically Kalman’s state-space representation, but
relating it effectively to canonical analysis. And in modeling autoregressive
patterns, he came up with the FPE (or final prediction error) criterion, which
later developed rapidly into the AIC.
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Information Theory and an Extension of
the Maximum Likelihood Principle

Hirotogu Akaike
Institute of Statistical Mathematics

Abstract

In this paper it is shown that the classical maximum likelihood principle
can be considered to be a method of asymptotic realization of an
optimum estimate with respect to a very general information theoretic
criterion. This observation shows an extension of the principle to pro-
vide answers to many practical problems of statistical model fitting.

1. Introduction

The extension of the maximum likelihood principle which we are proposing
in this paper was first announced by the author in a recent paper [6] in the
following form:

Given a set of estimates 6 of the vector of parameters 6 of a probability
distribution with density function f(x|0) we adopt as our final estimate the
one which will give the maximum of the expected log-likelihood, which is by
definition

Elog f(X|0)=E f f(x10) log f(x|6) dx, (LY

where X is a random variable following the distribution with the density
function f(x|6) and is independent of 6.

This seems to be a formal extension of the classical maximum likelihood
principle but a simple reflection shows that this is equivalent to maximizing
an information theoretic quantity which is given by the definition
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fX16) f(xlé)) N 12)

Elog W):Eff(xlo)log Fx10) d

The integral in the right-hand side of the above equation gives the Kullback-
Leibler’s mean information for discrimination between f(x|8) and f (x]6) and
is known to give a measure of separation or distance between the two distri-
butions [15]. This observation makes it clear that what we are proposing here
is the adoption of an information theoretic quantity of the discrepancy be-
tween the estimated and the true probability distributions to define the loss
function of an estimate  of 6. It is well recognized that the statistical estima-
tion theory should and can be organized within the framework of the theory
of statistical decision functions [25]. The only difficulty in realizing this is the
choice of a proper loss function, a point which is discussed in details in a
paper by Le Cam [17].

In the following sections it will be shown that our present choice of the
information theoretic loss function is a very natural and reasonable one to
develop a unified asymptotic theory of estimation. We will first discuss the
definition of the amount of information and make clear the relative merit, in
relation to the asymptotic estimation theory, of the Kullback-Leibler type
information within the infinitely many possible alternatives. The discussion
will reveal that the log-likelihood is essentially a more natural quantity than
the simple likelihood to be used for the definition of the maximum likelihood
principle.

Our extended maximum likelihood principle can most effectively be ap-
plied for the decision of the final estimate of a finite parameter model when
many alternative maximum likelihood estimates are obtained corresponding
to the various restrictions of the model. The log-likelihood ratio statistics
developed for the test of composite hypotheses can most conveniently be used
for this purpose and it reveals the truly statistical nature of the information
theoretic quantities which have often been considered to be probabilistic
rather than statistical [21].

With the aid of this log-likelihood ratio statistics our extended maximum
likelihood principle can provide solutions for various important practical
problems which have hitherto been treated as problems of statistical hypoth-
esis testing rather than of statistical decision or estimation. Among the possible
applications there are the decisions of the number of factors in the factor
analysis, of the significant factors in the analysis of variance, of the number of
independent variables to be included into multiple regression and of the
order of autoregressive and other finite parameter models of stationary time
series.

Numerical examples are given to illustrate the difference of our present
approach from the conventional procedure of successive applications of sta-
tistical tests for the determination of the order of autoregressive models. The
results will convincingly suggest that our new approach will eventually be
replacing many of the hitherto developed conventional statistical procedures.
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2. Information and Discrimination

It can be shown [9] that for the purpose of discrimination between the two
probability distributions with density functions fi(x) (i = 0, 1) all the neces-
sary information are contained in the likelihood ratio T(x) = f; (x)/fo(x) in the
sense that any decision procedure with a prescribed loss of discriminating the
two distributions based on a realization of a sample point x can, if it is
realizable at all, equivalently be realized through the use of T(x). If we
consider that the information supplied by observing a realization of a (set of)
random variable(s) is essentially summarized in its effect of leading us to the
discrimination of various hypotheses, it will be reasonable to assume that the
amount of information obtained by observing a realization x must be a
function of T(x) = f,(x)/fo(x).

Following the above observation, the natural definition of the mean
amount of information for discrimination per observation when the actual
distribution is f(x) will be given by

I(fy, fo; ®) = J (f‘("’)fo(x) dx, @1)

where @(r) is a properly chosen function of r and dx denotes the measure with
respect to which f;(x) are defined. We shall hereafter be concerned with the
parametric situation where the densities are specified by a set of parameters

6 in the form
Sf(x) = f(x|0), 22

where it is assumed that 0 is an L-dimensional vector, 8 = (8, 0,, ..., 0.),
where ' denotes the transpose. We assume that the true distribution under
observation is specified by 6 =06 =(8,,0,,...,0,). We Will denote by
1(0, 6; @) the quantity defined by (2.1) with f;(x) = f(x|6) and fy(x) = f(x|0)
and analyze the sensitivity of I(0, 0; ®) to the deviation of 6 from 0. Assuming
the regularity conditions of f(x|0) and ®(r) which assure the following analyt-
ical treatment we get

) |
5108 00m= [(Go0 ) pexmen [(3) e

o2 d2 or\( or
gz 0000w = [ (G00) () (55) |
d %
+ [ (5 00) (ara) o #
& afy 1 afy 1
= o0 f [(m) (557)]1’ dx

+ d(1) f ( %, 60,..)o (& 24
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fix|6) do@)| d*e()

FO10) |y ar® |, ¢SO
respectively, and the meaning of the other quantities will be clear from the
context. Taking into account that we are assuming the validity of differentia-
tion under integral sign and that j f(x]8) dx = 1, we have

of 2f
I (5671) dx = J (ae,ae ) dx = 235)

1(6,0; ) = ®(1) (2.6

where r, d(1), ®(1) and f, denote

Thus we get

6011(0 0; ®)|pp = 0 2.7

o2 . iy o 1\ (of, 1
56,36, ©: & ®lo=o = O(1) j [(ﬁﬁ) (@ﬁ)].,:of odx. 28)

These relations show that &(1) must be different from zero if 1(6, 6; D) ought
to be sensitive to the small variations of 6. Also it is clear that the relative

®(1)
(1)
®(1) = 0. The integral on the right-hand side of (2.8) defines the (I, m)th
element of Fisher’s information matrix [16] and the above results show that
this matrix is playing a central role in determining the behaviour of our mean
information I(6, 6; ®) for small variations of 6 around 6. The possible forms
of ®(r) are e.g. log r, (r — 1)* and r'? and we cannot decide uniquely at this
stage.
To restrict further the form of ®(r) we consider the effect of the increase of
information by N independent observations of X. For this case we have to
consider the quantity

sensitivity of I(8, 0; @) is high when || is large. This will be the case when

ﬂ S(x:|0)
In(6, 6; @) = f e l_! S(xi|0)dx, ... dxy. (29)

L]lf(X.IG) .

Corresponding to (2.5), (2.6) and (2.7) we have
Iy(0, 0; ®) = I1(0, 0; D) (2.10)
0

6—0,1"(0’ 0; @)|g—6 =0 2.11)
azI()G)(D & ——=—1(0, 0; ® 2.12
66160 N( )lﬂ =6 = 60[60 ( )'0 9 ( . )

These equations show that I,(6, 0; ®) is not responsive to the increase of
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2

information and that WI ~(0, 0; ®)}y_q is in a linear relation with N. It can
1YYm

be seen that only the quantity defined by

N
o1l
06,

_ v (9fxil6) 1 '
_Z< 90, ;’;>9=e @)

8=0 i=1

N
l;]l J(xi19)

is concerned with the derivation of this last relation. This shows very clearly
that taking into account the relation

0f(x|0)1 _ dlog f(x]09)
2, f, 00,

: (2.14)

the functions @ log f(x|8) are playing the central role in the present defini-

tion of information. This observation suggests the adoption of ®(r) =logr
for the definition of our amount of information and we are very naturally led
to the use of Kullback-Leibler’s definition of information for the purpose of
our present study.

It should be noted here that at least asymptotically any other definition of
@(r) will be useful if only ®(1) is not vanishing. The main point of our present
observation will rather be the recognition of the essential role being played
a{; log f(x|0) for the definition of the mean information for
the discrimination of the distributions corresponding to the small deviations
of 6 from 6.

by the functions

3. Information and the Maximum Likelihood
Principle

Since the purpose of estlmatmg the parameters of f(x[0) is to base our
decision on f (xlé) where 8 is an estimate of 0, the discussion in the preceding
section suggests the adoption of the following loss and risk functions:

W, 8) = (—2) J F(x10) o g(ﬁ":gi) dx @3.1)

R(8, 6) = EW(®, ), (3.2

where the expectation in the right-hand side of (3.2) is taken with respect to
the distribution of §. As W(6, §) is equal to 2 times the Kullback-Leibler’s
mformatlon for discrimination in favour of f(x|8) for f(x|9) it is known that
W(O 0) is a non-negative quantity and is equal to zero if and only if f{x|0) =

£(x|0) almost everywhere [16]. This property is forming a basis of the proof
of consistency of the maximum likelihood estimate of 0 [24] and indicates the
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close relationship between the maximum likelihood principle and the infor-
mation theoretic observations.

When N independent realizations x; (i =1, 2, ..., N) of X are available,
(—2) times the sample mean of the log-likelihood ratio

[ f(x;10)

N &8 (/(xi|e)) )
will be a consistent estimate of W(0, 0). Thus it is quite natural to expect that,
at least for large N, the value of 6 which will give the maximum of (3.3) will
nearly minimize W(®, 6). Fortunately the maximization of (3.3) can be real-
ized without knowing the true value of 0, giving the well-known maximum
likelihood estimate @. Though it has been said that the maximum likelihood
principle is not based on any clearly defined optimum consideration [18;
p- 15] our present observation has made it clear that it is essentially designed
to keep minimum the estimated loss function which is very naturally defined
as the mean information for discrimination between the estimated and the
true distributions.

4. Extension of the Maximum Likelihood Principle

The maximum likelihood principle has mainly been utilized in two different
branches of statistical theories. The first is the estimation theory where the
method of maximum likelihood has been used extensively and the second is
the test theory where the log-likelihood ratio statistic is playing a very impor-
tant role. Our present definitions of W (9, 6) and R(0, 6) suggest that these two
problems should be combined into a single problem of statistical decision.
Thus instead of considering a single estimate of 0 we consider estimates
corresponding to various possible restrictions of the distribution and instead
of treating the problem as a multiple decision or a test between hypotheses
we treat it as a problem of general estimation procedure based on the decision
theoretic consideration. This whole idea can be very simply realized by com-
paring R(9, 6), or w(o, 9) if possible, for various s and taking the one with
the minimum of R(6, §) or W(®, 8) as our final choice. As it was discussed in
the introduction this approach may be viewed as a natural extension of the
classical maximum likelihood principle. The only problem in applying this
extended principle in a practical situation is how to get the reliable estimates
of R(8, 6) or W(8, é). As it was noticed in [6] and will be seen shortly, this can
be done for a very interesting and practically important situation of com-
posite hypotheses through the use of the maximum likelihood estimates and
the corresponding log-likelihood ratio statistics.

The problem of statistical model identification is often formulated as the
problem of the selection of f(x|.8) (k =0, 1,2, ..., L) based on the observa-
tions of X, where , 8 is restricted to the space with ,0,,, = 612 = =40, =
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0. k, or some of its equivalents, is often called the order of the model. Its
decision is usually the most difficult problem in practical statistical model
identification. The problem has often been treated as a subject of composite
hypothesis testing and the use of the log-likelihood ratio criterion is well
established for this purpose [23]. We consider the situation where the results
x;(i=1,2,..., N) of N independent observations of X have been obtained.
We denote by ,# the maximum likelihood estimate in the space of ,9, i..,
0 is the value of ,0 which gives the maximum of the likelihood function

N f(x;|:0). The observation at the end of the preceding section strongly

suggests the use of
2 fexild)
o=~ & a5 .-uo)) D

as an estimate of W(0, ,ﬁ). The statistics
=N X 0 4.2

is the familiar log-likelihood ratio test statistics which will asymptotically be
distributed as a chi-square variable with the degrees of freedom equal to
L — k when the true parameter 9 is in the space of 0. If we define

W, ,0) = inf W, ,0), 43)
x0

then it is expected that
oL — W, . 0) wpll

Thus when NW(8, ,0) is significantly larger than L the value of .5, will be very
much larger than would be expected from the chi-square approximation. The
only situation where a precise analysis of the behaviour of .5, is necessary
would be the case where NW(0, ,0) is of comparable order of magnitude with
L. When N is very large compared with L this means that W(, ,0) is very
nearly equal to W(0, 0) = 0. We shall hereafter assume that W(®, 0) is suffi-
ciently smooth at § = 6 and

w®,0)>0 for 0#0. 44

Also we assume that W(0, ,0) has a unique minimum at ,6 = ;0 and that
.0 = 6. Under these assumptions the maximum likelihood estimates 6 and N
will be consistent estimates of 0 and .0, respectively, and since we are con-
cerned with the situation where 6 and , are situated very near to each other,
we limit our observation only up to the second-order variation of W(0, ,ﬂ)
Thus hereafter we adopt, in place of W(8, ,9), the loss function

w,0,0) = ; "g «: — 8, — 8,)C(1, m) @), (4.5)

where C(I, m)(0) is the (I, m)th element of Fisher’s information matrix and is
given by
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~((an1\[of 1 __[(10gf
o= [ (G G)rer= [ Gadaes o

We shall simply denote by C(l, m) the value of C(l, m)(6) at @ = 6. We denote
by |0l the norm in the space of 8 defined by

L L

lenz = .-;1 2 6,6,,C(l, m). 4.7
We have
W0, .0) = 1,6 — 0)2. 48)
Also we redefine ,0 by the relation
16 — 8112 = N.Iain 10 — 01 2. (4.9)

Thus 8 is the projection of 0 in the space of ,8’s with respect to the metrics
defined by C(l, m) and is given by the relations

k L
Y. Clmyb, =Y Cl,mb, 1=1,2,.. k (4.10)
m=} m=1
We get from (4.8) and (4.9)
W50, 0) = 1,0 — 0112 + [0 — ,0]|2. 4.11)

Since the definition of W (8, 8) strongly suggests, and is actually motivated by,
the use of the log-likelihood ratio statistics we will study the possible use of
this statistics for the estimation of W, (9, ,0). Taking into account the relations

dlog f(x;10)
Y= =

a1l N
; Ogafl; fnxil )=

we get the Taylor expansions

0, m=12,..,L,
: 4.12)
0, m=12..,k

3, 108 £ = 3 log fixlf) + 5 3 5 NG~ 860, — 0)

1
N;

9 log f(x;|0 + ¢(8 — 0))
i 06,06,

M=

X

1 k k
log f(x;1:8) + 5 Zl 1;1 NGO, — kém)(kel —0)
« L § 0% log fxiuf + €40 — u6)
N i=1 60,,,60, ’
where the parameter values within the functions under the differential sign
denote the points where the derivatives are taken and 0 < 0w 0 < 1,a conven-

M=

i=1
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tion which we use in the rest of this paper. We consider that, in increasing
the value of N, N and k are chosen in such a way that \/ﬁ (0, — 6,,)
(m=1,2,..., L) are bounded, or rather tending to a set of constants for the
ease of explanation. Under this circumstance, assuming the tendency towards
a Gaussian distribution of \/N (0 — 0) and the consistency of .0 and 9 as the
estimates of .0 and 6 we get, from (4.6) and (4.13), an asymptotic equality in
distribution for the log-likelihood ratio statistic .4, of (4.2)

= N6 — 8112 - N|,f—,0)2. (4.14)
By simple manipulation

L =N[®—0|2+N|6—0|2—N|,0—,012—-2N@B~0,0-09),
(4.15)

where (,), denotes the inner product defined by C(l, m). Assuming the validity
of the Taylor expansion up to the second order and taking into account the
relations (4.12) we getfor I = 1,2,..., k

L $ 2 tog f(xls0)
\/Niﬂ'aﬁl g ilk

- s 1 &% log f(xilké + 09 — ké))

=3 VNG =g 2 50,00, (4.16)
_% 1 X 8 log f(x:|0 + 0(:0 — 8)

=L VN —bog ) 96,06, '

Let C™! be the inverse of Fisher’s information matrix. Assuming the tendency
to the Gaussian distribution N (0, C™) of the distribution of /N(9 — 6)
which can be derived by using the Taylor expansion of the t of (4.16)
at 0 =0, we can see that for N and k with bounded ./N(0,, —0,)
(m=1,2,..., L)(4.16) yields, under the smoothness assumption of C(l, m)(6)

at @ = 0, the approximate equations

k L
Y UNGS — G )Clm =Y /NGO, -8 )CUm) I=1,2,.. k
m=1 m=1
4.17)
Taking (4.10) into account we get from (4.17),for [ = 1,2,..., k,

> NGO —d)Clm = Y /NO—0)CGm. @13
m=1 m=1

This shows that geometrically ,ﬁ — 0 is (approximately) the projection
of & —0 into the space of ,0’s. From this result it can be shown that
N[0 —0]2—N| 6 — 01> and N|.0— 0> are asymptotically indepen-
dently distributed as chi-square variables with the degrees of freedom L — k
and k, respectively. It can also be shown that the standard deviation of the
asymptotic distribution of N(§ — 6, .0 — 0), is equal to \/.IT/' |6 — 8)i.. Thus,
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if N||,0 — 0|2 is of comparable magnitude with L — k or k and these are large
integers then the contribution of the last term in the right hand side of (4.15)
remains relatively insignificant. If N||,0 — 0]|2 is significantly larger than L
the contribution of N (§ — 6, .0 — ), to .5, will also relatively be insignifi-
cant. If N||,0 — 62 is significantly smaller than L and k again the contribu-
tion of N(§ — 0, .0 — 6), will remain insignificant compared with those of
other variables of chi-square type. These observations suggest that from
(4.11), though N1, may not be a good estimate of W, (8, ,8),

r,0)= N"1(n, + 2k — L) (4.19)

will serve as a useful estimate of EW, (9, ,0), at least for the case where N is
sufficiently large and L and k are relatively large integers.

It is interesting to note that in practical applications it may sometimes
happen that L is a very large, or conceptually infinite, integer and may not be
defined clearly. Even under such circumstances we can realize our selection
procedure of ,@’s for some limited number of k’s, assuming L to be equal to
the largest value of k. Since we are only concerned with finding out the ,§
which will give the minimum of r(d, ,0) we have only to compute either

WL =L + 2k (4.20)

or
N A
= —2Y log f(x;|:0) + 2k. 4.21)
=1

and adopt the ,§ which gives the minimum of v, or ;4, (0 < k < L). The
statistical behaviour of ; 1, is well understood by taking into consideration
the successive decomposition of the chi-square variables into mutually inde-
pendent components. In using ;4; care should be taken not to lose significant
digits during the computation.

5. Applications

Some of the possible applications will be mentioned here.

1. Factor Analysis

In the factor analysis we try to find the best estimate of the variance covari-
ance matrix T from the sample variance covariance matrix using the model
X = AA" + D,whereXisa p x p dimensional matrix, Aisa p x m dimension-
al (m < p) matrix and D is a non-negative p x p diagonal matrix. The method
of the maximum likelihood estimate under the assumption of normality has
been extensively applied and the use of the log-likelihood ratio criterion is
quite common. Thus our present procedure can readily be incorporated to
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help the decision of m. Some numerical examples are already given in [6] and
the results are quite promising,

2. Principal Component Analysis

By assuming D = 8I(6 > 0, I; unit matrix) in the above model, we can get the
necessary decision procedure for the principal component analysis.

3. Analysis of Variance

If in the analysis of variance model we can preassign the order in decompos-
ing the total variance into chi-square components corresponding to some
factors and interactions then we can easily apply our present procedure to
decide where to stop the decomposition.

4. Multiple Regression

The situation is the same as in the case of the analysis of variance. We can
make a decision where to stop including the independent variables when the
order of variables for inclusion is predetermined. It can be shown that under
the assumption of normality of the residual variable we have only to compare

the values sz(k)(l + %), where s?(k) is the sample mean square of the

residual after fitting the regression coefficients by the method of least squares
where k is the number of fitted regression coefficients and N the sample size.
k should be kept small compared with N. It is interesting to note that the use
of a statistics proposed by Mallows [13] is essentially equivalent to our
present approach.

5. Autoregressive Model Fitting in Time Series

Though the discussion in the present paper has been limited to the realiza-
tions of independent and identically distributed random variables, by follow-
ing the approach of Billingsley [ 8], we can see that the same line of discussion
can be extended to cover the case of finite parameter Markov processes. Thus
in the case of the fitting of one-dimensional autoregressive model X, =

k _10,X,_ . + &, we have, assuming the normality of the process X, only

2
to adopt k which gives the minimum of sz(k)<1 + Fk> or equivalently
-1
sz(k)(l + %) (1 - 7’;-) , where s?(k) is the sample mean square of the resid-
ual after fitting the kth order model by the method of least squares or some



Information Theory and an Extension of the Maximum Likelihood Principle =~ 621

of its equivalents. This last quantity for the decision has been first introduced
by the present author and was considered to be an estimate of the quantity
called the final prediction error (FPE) [ 1, 2]. The use of this approach for the
estimation of power spectra has been discussed and recognized to be very
useful [3]. For the case of the multi-dimensional process we have to replace
s?(k) by the sample generalized variance or the determinant of the sample
variance-covariance matrix of residuals. The procedure has been extensively
used for the identification of a cement rotary kiln model [4, 5, 19].

These procedures have been originally derived under the assumption of
linear process, which is slightly weaker than the assumption of normality, and
with the intuitive criterion of the expected variance of the final one step
prediction (FPE). Our present observation shows that these procedures are
just in accordance with our extended maximum likelihood principle at least
under the Gaussian assumption.

6. Numerical Examples

To illustrate the difference between the conventional test procedure and our
present procedure, two numerical examples are given using published data.

The first example is taken from the book by Jenkins and Watts [14]. The
original data are described as observations of yield from 70 consecutive
batches of an industrial process [14, p. 142]. Our estimates of FPE are given
in Table 1 in a relative scale. The results very simply suggest, without the help
of statistical tables, the adoption of k = 2 for this case. The same conclusion
has been reached by the authors of the book after a detailed analysis of
significance of partial autocorrelation coefficients and by relying on a some-
what subjective judgement [14, pp. 199-200]. The fitted model produced an
estimate of the power spectrum which is very much like their final choice
obtained by using Blackman-Tukey type window {14, p. 292].

The next example is taken from a paper by Whittle on the analysis of a
seiche record (oscillation of water level in a rock channel) [26; 27, pp. 37-38].
For this example Whittle has used the log-likelihood ratio test statistics in
successively deciding the significance of increasing the order by one and
adopted k = 4. He reports that the fitting of the power spectrum is very poor.
Our procedure applied to the reported sample autocorrelation coefficients
obtained from data with N = 660 produced a result showing that k = 65
should be adopted within the k’s in the range 0 < k < 66. The estimates of

Table 1. Autoregressive Model Fitting.
k 0 1 2 3 4 5 6 7
FPE} 1.029 0899  0.895 0921 0.946 0.097 0.983 1.012

*FPE, = s2(k)<1 + kLNl)(l - %)_l / 52(0) |
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Figure 1. Estimates of the seiche spectrum. The smoothed periodgram of x(rAt)
(n=1,2,..., N)is defined by -

At- i (1 - ?) C...(s) cos(2nfs Ap),
1

N-|s|
where [ = max. lag, C,.(s) = % Y. ®(sl + mx(n),
E ‘n=1

1
N,

M=

where X(n) = x(nAt) — £ and X = x(n At).

H

1

the power spectrum are illustrated in Fig. 1. Our procedure suggests that
L = 66 is not large enough, yet it produced very sharp line-like spectra at
various frequencies as was expected from the physical consideration, while
the fourth order model did not give any indication of them. This example
dramatically illustrates the impracticality of the conventional successive test
procedure depending on a subjectively chosen set of levels of significance.

7. Concluding Remarks

In spite of the early statement by Wiener [28; p. 76] that entropy, the
Shannon-Wiener type definition of the amount of information, could replace
Fisher’s definition [11] the use of the information theoretic concepts in the
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statistical circle has been quite limited [10, 12, 203; The distinction between
Shannon-Wiener’s entropy and Fisher’s information was discussed as early
as in 1950 by Bartlett [7], where the use of the Kullback-Leibler type de-
finition of information was implicit. Since then in the theory of statistics
Kullback-Leibler’s or Fisher’s information could not enjoy the prominent
status of Shannon’s entropy in communication theory, which proved its
essential meaning through the source coding theorem [22, p. 28].

The analysis in the present paper shows that the information theoretic
consideration can provide a foundation of the classical maximum likelihood
principle and extremely widen its practical applicability. This shows that the
notion of informations, which is more closely related to the mutual informa-
tion in communication theory than to the entropy, will play the most funda-
mental role in the future developments of statistical theori¢s and techniques.

By our present principle, the extensions of applications 3) ~ 5) of Section
5 to include the comparisons of every possible kth order models are straight-
forward. The analysis of the overall statistical characteristics of such exten-
sions will be a subject of further study.
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