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Could Fisher, Jeffreys and Neyman Have
Agreed on Testing?
James O. Berger

Abstract. Ronald Fisher advocated testing using p-values, Harold Jeffreys
proposed use of objective posterior probabilities of hypotheses and Jerzy
Neyman recommended testing with fixed error probabilities. Each was quite
critical of the other approaches. Most troubling for statistics and science is
that the three approaches can lead to quite different practical conclusions.

This article focuses on discussion of the conditional frequentist approach to
testing, which is argued to provide the basis for a methodological unification
of the approaches of Fisher, Jeffreys and Neyman. The idea is to follow Fisher
in using p-values to define the “strength of evidence” in data and to follow
his approach of conditioning on strength of evidence; then follow Neyman by
computing Type I and Type II error probabilities, but do so conditional on the
strength of evidence in the data. The resulting conditional frequentist error
probabilities equal the objective posterior probabilities of the hypotheses
advocated by Jeffreys.

Key words and phrases: p-values, posterior probabilities of hypotheses,
Type I and Type II error probabilities, conditional testing.

1. INTRODUCTION

1.1 Disagreements and Disagreements

Ronald Fisher, Harold Jeffreys and Jerzy Neyman
disagreed as to the correct foundations for statistics,
but often agreed on the actual statistical procedure
to use. For instance, all three supported use of the
same estimation and confidence procedures for the
elementary normal linear model, disagreeing only on
the interpretation to be given. As an example, Fisher,
Jeffreys and Neyman agreed on (x̄ − 1.96 σ√

n
, x̄ +

1.96 σ√
n
) as the 95% confidence interval for a normal

mean, but insisted on assigning it fiducial, objective
Bayesian and frequentist interpretations, respectively.
While the debate over interpretation can be strident,
statistical practice is little affected as long as the
reported numbers are the same.
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The situation in testing is quite different. For many
types of testing, Fisher, Jeffreys and Neyman dis-
agreed as to the basic numbers to be reported and
could report considerably different conclusions in ac-
tual practice.

EXAMPLE 1. Suppose the data, X1, . . . ,Xn, are
i.i.d. from the N (θ, σ 2) distribution, with σ 2 known,
and n = 10, and that it is desired to test H0 : θ = 0
versus H1 : θ �= 0. If z= √

nx̄/σ = 2.3 (or z= 2.9):

• Fisher would report the p-values p = 0.021 (or p =
0.0037).

• Jeffreys would report the posterior probabilities
of H0, Pr(H0|x1, . . . , xn) = 0.28 [or Pr(H0|x1, . . . ,

xn) = 0.11], based on assigning the hypotheses
equal prior probabilities of 1/2 and using a conven-
tional Cauchy(0, σ ) prior on the alternative.

• Neyman, had he prespecified Type I error probability
α = 0.05, would report α = 0.05 in either case (and
a Type II error probability β or power function).

The discrepancy between the numbers reported by
Fisher and Jeffreys are dramatic in both cases, while
the discrepancy between the numbers reported by
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Fisher and Neyman are dramatic primarily in the sec-
ond case. Even if one goes past the raw numbers
and considers the actual “scales of evidence” recom-
mended by the three, significant differences remain
(see, e.g., Efron and Gous, 2001).

The disagreement occurs primarily when testing a
“precise” hypothesis as above. When testing a one-
sided hypothesis, such as H0 : θ ≤ 0, the numbers re-
ported by Fisher and Jeffreys would often be simi-
lar (see Casella and Berger, 1987, for discussion—but
see Berger and Mortera, 1999, for an alternative per-
spective). Here precise hypothesis does not necessarily
mean a point null hypothesis; the discussion applies
equally well to a small interval null hypothesis (see
Berger and Delampady, 1987). Also, the null hypoth-
esis can have nuisance parameters that are common to
the alternative hypothesis.

We begin, in Section 2, by reviewing the approaches
to testing espoused by Fisher, Jeffreys and Neyman
and the criticisms each had of the other approaches.
The negative impact upon science that has resulted
from the disagreement is also discussed. In Section 3,
we describe the conditional frequentist testing para-
digm that is the basis of the unification of the three
viewpoints. Section 4 discusses how this would have
allowed Fisher, Jeffreys and Neyman to simply dis-
agree—that is, to report the same numbers, though as-
signing them differing interpretations. Section 5 dis-
cusses various generalizations of the unified approach.

Before beginning, a few caveats are in order. The
first is about the title of the article. Fisher, Jeffreys
and Neyman all held very strong opinions as to the
appropriateness of their particular views of statistics,
and it is unlikely that they would have personally
reached agreement on this issue. What we are really
discussing, therefore, is the possibility of a unification
being achieved in which the core principles of each of
their three schools are accommodated.

Another caveat is that this is not written as a his-
torical work and quotations justifying the stated posi-
tions of Fisher, Jeffreys and Neyman are not included.
Key books and publications of the three that outline
their positions and give their criticisms of the other
approaches include Fisher (1925, 1935, 1955, 1973),
Neyman and Pearson (1933), Neyman (1961, 1977)
and Jeffreys (1961). Other references and much use-
ful historical discussion can be found, for instance, in
Morrison and Henkel (1970), Spielman (1974, 1978),
Carlson (1976), Savage (1976), Hall and Selinger
(1986), Zabell (1992), Lehmann (1993), Johnstone

(1997), Barnett (1999) and Hubbard (2000). Further-
more, Fisher, Jeffreys and Neyman were statisticians
of great depth and complexity, and their actual view-
points toward statistics were considerably more subtle
than described herein. Indeed, the names Fisher, Jef-
freys and Neyman will often be used more as a label for
the schools they founded than as specific references to
the individuals. It is also for this reason that we discuss
Neyman testing rather than the more historically appro-
priate Neyman–Pearson testing; Egon Pearson seemed
to have a somewhat eclectic view of statistics (see, e.g.,
Pearson, 1955, 1962) and is therefore less appropriate
as a label for the “pure” frequentist philosophy of test-
ing.

A final caveat is that we mostly avoid discussion of
the very significant philosophical differences between
the various schools (cf. Braithwaite, 1953; Hacking,
1965; Kyburg, 1974; Seidenfeld, 1979). We focus less
on “what is correct philosophically?” than on “what is
correct methodologically?” In part, this is motivated
by the view that professional agreement on statistical
philosophy is not on the immediate horizon, but this
should not stop us from agreeing on methodology,
when possible, and, in part, this is motivated by the
belief that optimal general statistical methodology
must be simultaneously interpretable from the differing
viewpoints of the major statistical paradigms.

2. THE THREE APPROACHES AND
CORRESPONDING CRITICISMS

2.1 The Approaches of Fisher, Jeffreys
and Neyman

In part to set notation, we briefly review the three
approaches to testing in the basic scenario of testing
simple hypotheses.

Fisher’s significance testing. Suppose one observes
data X ∼ f (x|θ) and is interested in testing H0 :
θ = θ0. Fisher would proceed by:

• Choosing a test statistic T = t (X), large values of T
reflecting evidence against H0.

• Computing the p-value p = P0(t (X) ≥ t (x)), re-
jecting H0 if p is small. (Here, and throughout the
paper, we let X denote the data considered as a ran-
dom variable, with x denoting the actual observed
data.)

A typical justification that Fisher would give for this
procedure is that the p-value can be viewed as an index
of the “strength of evidence” against H0, with small
p indicating an unlikely event and, hence, an unlikely
hypothesis.
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Neyman–Pearson hypothesis testing. Neyman felt
that one could only test a null hypothesis, H0 : θ = θ0,
versus some alternative hypothesis, for instance, H1 :
θ = θ1. He would then proceed by:

• Rejecting H0 if T ≥ c and accepting otherwise,
where c is a pre-chosen critical value.

• Computing Type I and Type II error probabilities,
α = P0(rejecting H0) and β = P1(accepting H0).

Neyman’s justification for this procedure was the fre-
quentist principle, which we state here in the form that
is actually of clear practical value. (See Neyman, 1977.
Berger, 1985a and b contain discussions relating this
practical version to more common textbook definitions
of frequentism.)

FREQUENTIST PRINCIPLE. In repeated practical
use of a statistical procedure, the long-run average
actual error should not be greater than (and ideally
should equal) the long-run average reported error.

The Jeffreys approach to testing. Jeffreys agreed
with Neyman that one needed an alternative hypothesis
to engage in testing and proceeded by:

• Defining the Bayes factor (or likelihood ratio)
B(x)= f (x|θ0)/f (x|θ1).

• RejectingH0 (acceptingH0) asB(x)≤1 [B(x)>1].
• Reporting the objective posterior error probabilities

(i.e., the posterior probabilities of the hypotheses)

Pr(H0|x)= B(x)

1 +B(x)
(1) (

or Pr(H1|x)= 1

1 +B(x)

)

based on assigning equal prior probabilities of 1/2 to
the two hypotheses and applying the Bayes theorem.

Note that we are using “objective” here as a label to
distinguish the Jeffreys approach to Bayesian analysis
from the subjective approach. Whether any approach to
statistics can really claim to be objective is an issue we
avoid here; see Berger and Berry (1988) for discussion.

2.2 Criticisms of the Three Approaches

The discussion here will be very limited: Fisher,
Jeffreys and Neyman each had a lot to say about the
other approaches, but space precludes more than a
rather superficial discussion of their more popularized
criticisms.

Criticisms of the Bayesian approach. Fisher and
Neyman felt that it is difficult and/or inappropriate to
choose a prior distribution for Bayesian testing. Some-
times criticism would be couched in the language of
objectivity versus subjectivity; sometimes phrased in
terms of the inadequacy of the older inverse probabil-
ity version of Bayesianism that had been central to sta-
tistical inference since Laplace (1812); and sometimes
phrased in terms of a preference for the frequency
meaning of probability.

The comments by Fisher and Neyman against the
Bayesian approach were typically quite general, as op-
posed to focusing on the specifics of the developments
of Jeffreys. For instance, the fact that the methodology
proposed by Jeffreys can lead to Bayesian confidence
intervals that are also asymptotically optimal frequen-
tist confidence intervals (Welch and Peers, 1963) did
not seem to enter the debate. What could be viewed as
an analogue of this result for testing will be central to
our argument.

Criticisms of Neyman–Pearson testing. Both Fisher
and Jeffreys criticized (unconditional) Type I and
Type II errors for not reflecting the variation in evi-
dence as the data range over the rejection or accep-
tance regions. Thus, reporting a prespecified α = 0.05
in Example 1, regardless of whether z = 2 or z = 10,
seemed highly unscientific to both. Fisher also criti-
cized Neyman–Pearson testing because of its need for
an alternative hypothesis and for the associated diffi-
culty of having to deal with a power function depend-
ing on (typically unknown) parameters.

Criticisms of p-values. Neyman criticized p-values
for violating the frequentist principle, while Jeffreys
felt that the logic of basing p-values on a tail area
(as opposed to the actual data) was silly [“. . . a hy-
pothesis that may be true may be rejected because it
has not predicted observable results that have not oc-
curred” (Jeffreys, 1961)]. More recently—and related
to both these criticisms—there has been great concern
that the too-common misinterpretation of p-values as
error probabilities very often results in considerable
overstatement of the evidence againstH0; compare Ed-
wards, Lindman and Savage (1963), Gibbons and Pratt
(1975), Berger and Sellke (1987), Berger and Delam-
pady (1987), Delampady and Berger (1990) and even
the popular press (Matthews, 1998).

Dramatic illustration of the nonfrequentist nature
of p-values can be seen from the applet available at
www.stat.duke.edu/∼berger. The applet assumes one
faces a series of situations involving normal data with
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unknown mean θ and known variance, and tests of
the form H0 : θ = 0 versus H1 : θ �= 0. The applet
simulates a long series of such tests and records how
often H0 is true for p-values in given ranges.

Use of the applet demonstrates results such as if, in
this long series of tests, half of the null hypotheses are
initially true, then, among the subset of tests for which
the p-value is near 0.05, at least 22%—and typically
over 50%—of the corresponding null hypotheses will
be true. As another illustration, Sterne and Davey
Smith (2001) estimated that roughly 90% of the null
hypotheses in the epidemiology literature are initially
true; the applet shows that, among the subset of such
tests for which the p-value is near 0.05, at least 72%—
and typically over 90%—of the corresponding null
hypotheses will be true. The harm from the common
misinterpretation of p = 0.05 as an error probability is
apparent.

2.3 Impact on Science of the Disagreement

We do not address here the effect on statistics of
having three (actually more) warring factions, except
to say the obvious: it has not been good for our
professional image. Our focus, instead, is on the effect
that the disagreement concerning testing has had on
the scientific community.

Goodman (1999a, b) and Hubbard (2000), elaborat-
ing on earlier work such as Goodman (1992, 1993)
and Royall (1997), made a convincing case that the
disagreement between Fisher and Neyman has had a
significantly deleterious effect upon the practice of
statistics in science, essentially because it has led to
widespread confusion and inappropriate use of test-
ing methodology in the scientific community. The ar-
gument is that testers—in applications—virtually al-
ways utilize p-values, but then typically interpret the
p-values as error probabilities and act accordingly. The
dangers in this are apparent from the discussion at the
end of the last section. Note that this confusion is dif-
ferent from the confusion between a p-value and the
posterior probability of the null hypothesis; while the
latter confusion is also widespread, it is less common
in serious uses of statistics.

Fisher and Neyman cannot be blamed for this sit-
uation: Neyman was extremely clear that one should
use preexperimentally chosen error probabilities if fre-
quentist validity is desired, while Fisher was very care-
ful in distinguishing p-values from error probabilities.

Concerns about this (and other aspects of the inap-
propriate use of p-values) have repeatedly been raised
in many scientific writings. To access at least some of

the literature, see the following web pages devoted to
the topic in various sciences:

Environmental sciences: www.indiana.edu/∼stigtsts
Social sciences: www.coe.tamu.edu/∼bthompson
Wildlife science:

www.npwrc.usgs.gov/perm/hypotest
www.cnr.colostate.edu/∼anderson/null.html.

It is natural (and common) in these sciences to fault
the statistics profession for the situation, pointing out
that common textbooks teach frequentist testing and
then p-values, without sufficient warning that these
are completely different methodologies (e.g., without
showing that a p-value of 0.05 often corresponds
to a frequentist error probability of 0.5, as indicated
by the mentioned applet and conditional frequentist
developments).

In contrast, the statistics profession mostly holds
itself blameless for this state of affairs, observing that
the statistical literature (and good textbooks) does have
appropriate warnings. But we are not blameless in
one sense: we have not made a concerted professional
effort to provide the scientific world with a unified
testing methodology (a few noble individual efforts—
such as Lehmann, 1993—aside) and so we are tacit
accomplices in the unfortunate situation. With a unified
testing methodology now available, it is time to mount
this effort and provide nonstatisticians with testing
tools that they can effectively use and understand.

3. CONDITIONAL FREQUENTIST TESTING

3.1 Introduction to Conditioning

Conditional inference is one of the most impor-
tant concepts in statistics, but often it is not taught
in statistics courses or even graduate programs. In
part this is because conditioning is automatic in the
Bayesian paradigm—and hence not a subject of par-
ticular methodological interest to Bayesians—while, in
the frequentist paradigm, there is no established gen-
eral theory as to how to condition. Frequentists do con-
dition automatically in various circumstances. For in-
stance, consider a version of the famous Cox (1958)
example, in which, say, an assay is sometimes run with
a sample of size n= 10 and other times with a sample
of size n = 20. If the choice of sample size does not
depend on the unknowns under consideration in the as-
say (e.g., if it depends only on whether an employee is
home sick or not), then virtually everyone would con-
dition on the sample size, rather than, say, report an
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error probability that is the average of the error proba-
bilities one would obtain for the two sample sizes.

To be precise as to the type of conditioning we will
discuss, it is useful to begin with a simple example,
taken from Berger and Wolpert (1988) (which also
discusses conditioning in general; see also Reid, 1995;
Bjørnstad, 1996).

EXAMPLE 2. Two observations, X1 and X2, are to
be taken, where

Xi =
{
θ + 1, with probability 1/2,

θ − 1, with probability 1/2.

Consider the confidence set for the unknown θ :

C(X1,X2)=




the point {1
2(X1 +X2)},

if X1 �=X2,

the point {X1 − 1},
if X1 =X2.

The (unconditional) frequentist coverage of this confi-
dence set can easily be shown to be

Pθ
(
C(X1,X2) contains θ

) = 0.75.

This is not at all a sensible report, once the data are
at hand. To see this, observe that, if x1 �= x2, then we
know for sure that their average is equal to θ , so that the
confidence set is then actually 100% accurate. On the
other hand, if x1 = x2, we do not know if θ is the data’s
common value plus 1 or their common value minus 1,
and each of these possibilities is equally likely to have
occurred.

To obtain sensible frequentist answers here, one can
define the conditioning statistic S = |X1 −X2|, which
can be thought of as measuring the strength of evidence
in the data (S = 2 reflecting data with maximal eviden-
tial content and S = 0 being data of minimal evidential
content). Then one defines frequentist coverage condi-
tional on the strength of evidence S. For the example,
an easy computation shows that this conditional confi-
dence equals, for the two distinct cases,

Pθ
(
C(X1,X2) contains θ | S = 2

) = 1,

Pθ
(
C(X1,X2) contains θ | S = 0

) = 1
2 .

It is important to realize that conditional frequentist
measures are fully frequentist and (to most people)
clearly better than unconditional frequentist measures.
They have the same unconditional property (e.g., in the
above example one will report 100% confidence half
the time and 50% confidence half the time, resulting

in an “average” of 75% confidence, as must be the
case for a frequentist measure), yet give much better
indications of the accuracy for the type of data that one
has actually encountered.

Exactly the same idea applies to testing. In the
case of testing simple hypotheses H0 : θ = θ0 versus
H1 : θ = θ1, one determines a statistic S(x), the
magnitude of which indicates the strength of evidence
in x. Then one computes conditional frequentist error
probabilities of Type I and Type II, respectively, as

α(s)= P0(reject H0|S(x)= s) and
(2)

β(s)= P1(accept H0|S(x)= s).

A notational comment: a variety of other names are
often given to conditioning quantities in the literature.
Fisher often used the term “relevant subsets” to refer
to subsets of the sample space upon which one should
condition. In Example 2, these would be {(x1, x2) :
x1 = x2} and {(x1, x2) : x1 �= x2}. Another common
term (as in Lehmann, 1993) is “frame of reference,”
referring to the sample space (or subset thereof) that is
actually to be used for the frequentist computation.

3.2 Brief History of Conditional
Frequentist Testing

Fisher often used conditioning arguments in testing,
as in the development of the Fisher exact test, wherein
he chose S to be the marginal totals in a contingency
table and then computed p-values conditional on
these marginal totals. In addition, Fisher recommended
that statisticians routinely condition on an ancillary
statistic S (a statistic that has a distribution that does
not depend on θ ), when available. Fisher’s arguments
for conditioning were a mix of theory and pragmatism
(cf. Savage, 1976; Basu, 1975, 1977), and led to a wide
variety of conditioning arguments being developed in
the likelihood school of statistics (see, e.g., Cox, 1958;
Kalbfleish and Sprott, 1973; Reid, 1995).

The use of conditioning in the pure frequentist
school was comparatively sporadic, perhaps because
Neyman rarely addressed the issue (in spite of frequent
criticism by Fisher concerning the supposed lack
of conditioning in the frequentist school). The first
extensive discussions of conditional frequentist testing
were in Kiefer (1976, 1977) and Brown (1978). Among
the many observations they made was that, from a
frequentist perspective, any conditioning statistic—
not just an ancillary statistic—could be employed.
However, usual frequentist criteria did not seem to be
useful in suggesting the conditioning statistic to use, so
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the theory did not immediately lead to the development
of statistical methodology. As late as 1993, Lehmann
(1993) asserted, “This leaves the combined theory
[of testing] with its most difficult issue: What is the
relevant frame of reference?”

Berger, Brown and Wolpert (1994) approached the
issue of choice of the conditioning statistic from the
perspective of seeking a unification between condi-
tional frequentist testing and Bayesian testing, and it is
a version of the test proposed therein (as reformulated
in Wolpert, 1996) that we will be discussing. That this
test also provides a potential unification with Fisherian
testing was only recently realized, however.

3.3 Recommended Conditioning Statistic and Test

Fisher argued that p-values are good measures
of the strength of evidence against a hypothesis.
A natural thought is thus to use p-values to define
the conditioning statistic for testing. Thus, for i = 0,1,
let pi be the p-value in testing Hi against the other
hypothesis and define the conditioning statistic

S = max{p0,p1}.(3)

The use of this conditioning statistic is equivalent to
deciding that data (in either the rejection or acceptance
region) that have the same p-value have the same
strength of evidence. Note that p-values are only
being used in an ordinal sense; any strictly monotonic
function of p, applied to both hypotheses, would lead
to the same conditioning statistic.

The natural corresponding conditional test proceeds
by:

• Rejecting H0 when p0 ≤ p1, and accepting other-
wise.

• Computing the Type I and Type II conditional error
probabilities (CEPs) as in (2).

Using the results in Berger, Brown and Wolpert (1994),
this can be shown to result in the test T C , defined by

T C =




if p0 ≤ p1,

reject H0 and report Type I CEP

α(x)= B(x)

1 +B(x)
,

if p0 >p1,

accept H0 and report Type II CEP

β(x)= 1

1 +B(x)
,

(4)

where B(x) is the likelihood ratio (or Bayes factor).

EXAMPLE 3 (Taken from Sellke, Bayarri and Berger,
2001). It is desired to test

H0 :X ∼ Uniform(0,1) versus H1 :X ∼ Beta(1/2,1).

The Bayes factor (or likelihood ratio) is then B(x) =
1/(2

√
x)−1 = 2

√
x. Computation yields p0 = P0

(X ≤ x)= x and p1 = P1(X ≥ x) = 1 − √
x. Thus

the conditioning statistic is S = max{p0,p1} = max{x,
1 − √

x} (so it is declared that, say, x = 3
4 in the ac-

ceptance region has the same strength of evidence as
x = 1

16 in the rejection region, since they would lead to
the same p-value in tests of H0 and H1, respectively).

The recommended conditional frequentist test is thus

T C =




if x ≤ 0.382,

reject H0 and report Type I CEP

α(x)= (1 + 1
2x

−1/2)−1,

if x > 0.382,

accept H0 and report Type II CEP

β(x)= (1 + 2x1/2)−1.

Note that the CEPs both vary with the strength of
evidence in the data, as was one of the basic goals.

4. THE POTENTIAL AGREEMENT

We consider Neyman, Fisher and Jeffreys in turn,
and discuss why T C might—and might not—have
appealed to them as a unifying test.

4.1 Neyman

The potential appeal of the test to Neyman is
straightforward: it is fully compatible with the frequen-
tist principle and hence is allowed within the frequen-
tist paradigm. Neyman rarely discussed conditioning,
in spite of considerable criticisms from Fisher in this
regard, as noted above, and so it is difficult to specu-
late as to his reaction to use of the conditioning sta-
tistic in (3). The result—having a true frequentist test
with error probabilities fully varying with the data—
would have certainly had some appeal, if for no other
reason than that it eliminates the major criticism of the
Neyman–Pearson frequentist approach. Also, Neyman
did use conditioning as a technical tool, for instance, in
developments relating to similar tests (see, e.g., Ney-
man and Pearson, 1933), but in these developments the
conditional Type I error always equalled the uncondi-
tional Type I error, so the fundamental issues involving
conditioning were not at issue.

Neyman might well have been critical of condition-
ing that affected optimality properties, such as power.
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This can occur if conditioning is used to alter the deci-
sion rule. The classic example of Cox (1958) is a good
vehicle for discussing this possibility.

EXAMPLE 4. Suppose X is normally distributed
as N (θ,1) or N (θ,4), depending on whether the
outcome, Y , of flipping a fair coin is heads (y = 1)
or tails (y = 0). It is desired to test H0 : θ = −1
versus H1 : θ = 1. The most powerful (unconditional)
level α = 0.05 test can then be seen to be the test
with rejection region given by x ≥ 0.598 if y = 1 and
x ≥ 2.392 if y = 0.

Instead, it seems natural to condition upon the
outcome of the coin flip in the construction of the tests.
Given y = 1, the resulting most powerful α = 0.05
level test would reject if x ≥ 0.645, while, given y = 0,
the rejection region would be x ≥ 2.290. This is still a
valid frequentist test, but it is no longer unconditionally
optimal in terms of power and Neyman might well have
disapproved of the test for this reason. Lehmann (1993)
provided an excellent discussion of the tradeoffs here.

Note, however, that the concern over power arises,
not because of conditioning per se, but rather because
the decision rule (rejection region) is allowed to change
with the conditioning. One could, instead, keep the
most powerful unconditional rejection region (so that
the power remains unchanged), but report error prob-
abilities conditional on Y . The resulting Type I error
probabilities, conditional on y = 1 and y = 0, would
be α(1) = 0.055 and α(0) = 0.045, respectively. The
situation is then exactly the same as in Example 2, and
there is no justification for reporting the unconditional
α = 0.05 in lieu of the more informative α(1)= 0.055
or α(0) = 0.045. (One can, of course, also report the
unconditional α = 0.05, since it reflects the chosen de-
sign for the experiment, and some people might be in-
terested in the design, but it should be clearly stated
that the conditional error probability is the operational
error probability, once the data are at hand.)

We are not arguing that the unconditional most
powerful rejection region is better; indeed, we agree
with Lehmann’s (1993) conclusion that conditioning
should usually take precedence over power when
making decisions. However, we are focusing here
only on the inferential report of conditional error
probabilities, in which case concerns over power do not
arise.

Of course, we actually advocate conditioning in this
article on (3) and not just on y. Furthermore, as we are
following Fisher in defining the strength of evidence
in the data based on p-values, we must define S

separately for y = 1 and y = 0, so that we do condition
on Y as well as S. The resulting conditional frequentist
test is still defined by (4) and is easily seen to be

T C =




if x ≥ 0,
reject H0 and report Type I CEP
α(x, y)= (1 + exp{2(2y−1)x})−1,

if x < 0,
accept H0 and report Type II CEP
β(x, y)= (1 + exp{−2(2y−1)x})−1.

Note that the answers using this fully conditional
frequentist test can be quite different from the answers
obtained by conditioning on Y alone. For instance,
at the boundary of the unconditional most powerful
rejection region (x = 0.598 if y = 1 and x = 2.392
if y = 0), the CEPs are α(0.598,1) = α(2.392,0) =
0.232. At, say, x = 4.0, the CEPs are α(4.0,1) =
0.00034 and α(4.0,0) = 0.119, respectively. Clearly
these results convey a dramatically different message
than the error probabilities conditioned only on Y (or
the completely unconditional α = 0.05).

Another feature of T C that Neyman might have
taken issue with is the specification of the rejection
region in (4). We delay discussion of this issue until
Section 5.1.

4.2 Fisher

Several aspects of T C would likely have appealed to
Fisher. First, the test is utilizing p-values to measure
strength of evidence in data, as he recommended, and
conditioning upon strength of evidence is employed.
The resulting test yields error probabilities that fully
vary with the strength of evidence in the data, a
property that he felt was essential (and which caused
him to reject Neyman–Pearson testing). In a sense,
one can think of T C as converting p-values into error
probabilities, while retaining the best features of both.

One could imagine that Fisher would have ques-
tioned the use of (3) as a conditioning statistic, since
it will typically not be ancillary, but Fisher was quite
pragmatic about conditioning and would use nonan-
cillary conditioning whenever it was convenient (e.g.,
to eliminate nuisance parameters, as in the Fisher ex-
act test, or in fiducial arguments: see Basu, 1977, for
discussion). The use of max rather than the more nat-
ural min in (3) might have been a source of concern
to Fisher; we delay discussion of this issue until Sec-
tion 5.2.

Fisher would have clearly disliked the fact that
an alternative hypothesis is necessary to define the
test T C . We return to this issue in Section 5.3.
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4.3 Jeffreys

The most crucial fact about the CEPs in (4) is
that they precisely equal the objective Bayesian error
probabilities, as defined in (1). Thus the conditional
frequentist and objective Bayesian end up reporting
the same error probabilities, although they would
imbue them with different meanings. Hence we have
agreement as to the reported numbers, which was the
original goal. Jeffreys might have slightly disagreed
with the rejection region specified in (4); we again
delay discussion until Section 5.1.

Some statisticians (the author among them) feel
that a statistical procedure is only on strong grounds
when it can be justified and interpreted from at least
the frequentist and Bayesian perspectives. That T C

achieves this unification is a powerful argument in its
favor.

4.4 Other Attractions of T C

The new conditional frequentist test has additional
properties that might well have appealed to Fisher,
Jeffreys and Neyman. A few of these are listed here.

4.4.1 Pedagogical attractions. Conditional frequen-
tist testing might appear difficult, because of the need
to introduce the conditioning statistic S. Note, how-
ever, that the test T C is presented from a fully oper-
ational viewpoint in (4), and there is no mention what-
soever of the conditioning statistic. In other words, the
test can be presented methodologically without ever re-
ferring to S; the conditioning statistic simply becomes
part of the background theory that is often suppressed.

Another item of pedagogical interest is that teaching
statistics suddenly becomes easier, for three reasons.
First, it is considerably less important to disabuse stu-
dents of the notion that a frequentist error probability
is the probability that the hypothesis is true, given the
data, since a CEP actually has that interpretation. Like-
wise, one need not worry to such an extent about clar-
ifying the difference between p-values and frequentist
error probabilities. Finally, in teaching testing, there is
only one test—that given in (4). Moving from one sta-
tistical scenario to another requires only changing the
expression for B(x) (and this is even true when testing
composite hypotheses).

4.4.2 Simplifications that ensue. The recommended
conditional frequentist test results in very significant
simplifications in testing methodology. One of the
most significant, as discussed in Berger, Boukai and
Wang (1997, 1999), is that the CEPs do not depend

on the stopping rule in sequential analysis so that
(i) their computation is much easier (the same as
fixed sample size computations) and (ii) there is no
need to “spend α” to look at the data. This last point
removes the perceived major conflict between ethical
considerations and discriminatory power in clinical
trials; one sacrifices nothing in discriminatory power
by evaluating (and acting upon) the evidence after each
observation has been obtained.

A second simplification is that the error probabili-
ties are computable in small sample situations, without
requiring simulation over the sample space or asymp-
totic analysis. One only needs to be able to compute
B(x) in (4). An example of this will be seen later, in a
situation involving composite hypotheses.

5. EXTENSIONS

5.1 Alternative Rejection Regions

A feature of T C that is, at first, disconcerting is
that the rejection region need not be specified in ad-
vance; it is predetermined as {x : p0(x) ≤ p1(x)}.
This is, in fact, the minimax rejection region, that
is, that which has unconditional error probabilities
α = β . The disconcerting aspect is that, classically,
one is used to controlling the Type I error probabil-
ity through choice of the rejection region, and here
there seems to be no control. Note, however, that
the unconditional α and β are not used as the re-
ported error probabilities; the conditional α(x) and
β(x) in (4) are used instead. In Example 3, for in-
stance, when x = 0.25, one rejects and reports Type I
CEP α(0.25)= (1 + 1

2(0.25)−1/2)−1 = 0.5. While H0
has formally been rejected, the fact that the reported
conditional error probability is so high conveys the
clear message that this is a very uncertain conclusion.

For those uncomfortable with this mode of oper-
ation, note that it is possible to, instead, specify an
ordinary rejection region (say, at the unconditional
α = 0.05 level), find the “matching” acceptance region
(which would essentially be the 0.05 level rejection re-
gion if H1 were the null hypothesis), and name the re-
gion in the middle the no-decision region. The condi-
tional test would be the same as before, except that one
would now state “no decision” when the data are in the
middle region. The CEPs would not be affected by this
change, so that it is primarily a matter of preferred style
of presentation (whether to give a decision with a high
CEP or simply state no decision in that case).

A final comment here relates to a minor dissatisfac-
tion that an objective Bayesian might have with T C .
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An objective Bayesian would typically use, as the
rejection region, the set of potential data for which
P (H0 |x) ≤ 1/2, rather than the region given in (4).
In Berger, Brown and Wolpert (1994), this concern
was accommodated by introducing a no-decision re-
gion consisting of the potential data that would lead to
this conflict. Again, however, this is of little importance
statistically (the data in the resulting no-decision region
would be very inconclusive in any case), so simplicity
argues for sticking with T C .

5.2 Other Types of Conditioning

One could consider a wide variety of conditioning
statistics other than that defined in (3). Sellke, Bayarri
and Berger (2001) explored, in the context of Exam-
ple 3, other conditioning statistics that have been sug-
gested. A brief summary of the results they found fol-
lows.

Ancillary conditioning statistics rarely exist in test-
ing and, when they exist, can result in unnatural condi-
tional error probabilities. For instance, in Example 3, if
one conditions on the ancillary statistic (which happens
to exist in this example), the result is that β(x)≡ 1/2
as the likelihood ratio, B(x), varies from 1 to 2. This
violates the desire for error probabilities that vary with
the strength of evidence in the data.

Birnbaum (1961) suggested “intrinsic significance,”
based on a type of conditioning defined through like-
lihood concepts. Unfortunately, he found that it rarely
works. Indeed, in Example 3, use of the corresponding
conditioning statistic yields α(x) ≡ 1 as B(x) varies
between 0 and 1/2.

Kiefer (1977) suggested “equal probability contin-
uum” conditioning, which yields the unnatural result,
in Example 3, that β(x)→ 0 as B(x)→ 2; to most sta-
tisticians, a likelihood ratio of 2 would not seem equiv-
alent to an error probability of 0.

In classical testing using p-values, the focus is usu-
ally on small p-values. It thus might seem more nat-
ural to condition on S = min{p0,p1} rather than S =
max{p0,p1} when defining the conditional frequentist
test. The motivation would be that instead of equating
evidence in favor of the two hypotheses, one would
equate evidence against them. In Example 3, how-
ever, this yields answers that are clearly unsatisfactory.
For instance, the resulting conditional error probabil-
ities are such that α(x) → 1/3 as B(x) → 0, while
β(x)→ 0 as B(x)→ 2, neither of which is at all sen-
sible.

Of course, one example is hardly compelling evi-
dence, but the example does show that conditioning

statistics can easily lead to error probabilities that are
counterintuitive. This is perhaps another reason that
conditional frequentist testing has not been common
in the statistical community, in spite of its consid-
erable potential advantages. A chief attraction of the
conditioning statistic in (3) is that it yields CEPs that
can never be counterintuitive, since the resulting error
probabilities must coincide with objective Bayesian er-
ror probabilities.

5.3 Calibrating p-Values When There Is No
Alternative Hypothesis

Fisher often argued that it is important to be able to
test a null hypothesis, even if no alternative hypothesis
has been determined. The wisdom in doing so has been
extensively debated: many statisticians have strong
opinions pro and con. Rather than engaging this debate
here, we stick to methodology and simply discuss how
conditional frequentist testing can be done when there
is no specified alternative.

The obvious solution to the lack of a specified alter-
native is to create a generic nonparametric alternative.
We first illustrate this with the example of testing of fit
to normality.

EXAMPLE 5. Berger and Guglielmi (2001) con-
sidered testing H0 : X ∼ N (µ,σ ) versus H1 : X ∼
F(µ,σ ), where F is an unknown location–scale dis-
tribution that will be centered at the normal distrib-
ution. As mentioned above, the key to developing a
conditional frequentist test is first to develop an objec-
tive Bayes factor, B(x). This was done by choosing a
Polya tree prior for F , centered at the N (µ,σ ) distri-
bution, and choosing the right-Haar prior, π(µ,σ ) =
1/σ , for the location–scale parameters in each model.
Berger and Guglielmi (2001) showed how to com-
pute B(x).

The recommended conditional frequentist test is
then given automatically by (4). Because the null
hypothesis has a suitable group invariance structure,
the analysis in Dass and Berger (2003) can be used to
show that the conditional Type I error is indeed α(x)

in (4), while β(x) is an average Type II error (see
Section 5.4). It is interesting to note that this is an exact
frequentist test, even for small sample sizes. This is in
contrast to unconditional frequentist tests of fit, which
typically require extensive simulation or asymptotic
arguments for the determination of error probabilities.

Developing specific nonparametric alternatives for
important null hypotheses, as above, can be arduous,
and it is appealing to seek a generic version that
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TABLE 1
Calibration of p-values as lower bounds on

conditional error probabilities

p 0.2 0.1 0.05 0.01 0.005 0.001
α(p) 0.465 0.385 0.289 0.111 0.067 0.0184

applies widely. To do so, it is useful to again follow
Fisher and begin with a p-value for testing H0. If
it is a proper p-value, then it has the well-known
property of being uniformly distributed under the null
hypothesis. (See Bayarri and Berger, 2000, Robins, van
der Vaart and Ventura, 2000, and the references therein
for discussion and generalizations.) In other words, we
can reduce the original hypothesis to the generic null
hypothesis that H0 : p(X)∼ Uniform(0,1).

For this p-value null, Sellke, Bayarri and Berger
(2001) developed a variety of plausible nonparametric
alternatives and showed that they yield a lower bound
on the Bayes factor of B(p) ≥ −e p log(p). Although
each such alternative would result in a different test (4),
it is clear that all such tests have

α(p)≥ (
1 + [−e p log(p)]−1)−1

.(5)

This is thus a lower bound on the conditional Type I
error (or on the objective posterior probability of H0)
and can be used as a “quick and dirty” calibration of a
p-value when only H0 is available.

Table 1, from Sellke, Bayarri and Berger (2001),
presents various p-values and their associated calibra-
tions. Thus p = 0.05 corresponds to a frequentist error
probability of at least α(0.05)= 0.289 in rejecting H0.

While simple and revealing, the calibration in (5) is
often a too-small lower bound on the conditional Type I
error. Alternative calibrations have been suggested in,
for example, Good (1958, 1992).

5.4 Other Testing Scenarios

For pedagogical reasons, we have only discussed
tests of simple hypotheses here, but a wide variety of
generalizations exist. Berger, Boukai and Wang (1997,
1999) considered tests of simple versus composite
hypotheses, including testing in sequential settings. For
composite alternatives, conditional Type II error is now
(typically) a function of the unknown parameter (as
is the unconditional Type II error or power function)
so that it cannot directly equal the corresponding
Bayesian error probability. Interestingly, however, a
posterior average of the conditional Type II error
function does equal the corresponding Bayesian error
probability, so that one has the option of reporting the

average Type II error or the average power instead
of the entire function. This goes a long way toward
answering Fisher’s criticisms concerning the difficulty
of dealing with power functions.

Dass (2001) considered testing in discrete settings
and was able to construct the conditional frequentist
tests in such a way that very little randomization is nec-
essary (considerably less than for unconditional tests
in discrete settings). Dass and Berger (2003) consid-
ered composite null hypotheses that satisfy an appro-
priate invariance structure and showed that essentially
the same theory applies. This covers a huge variety of
classical testing scenarios. Paulo (2002a, b) considered
several problems that arise in sequential experimenta-
tion, including comparison of exponential populations
and detecting the drift of a Brownian motion.

The program of developing conditional frequentist
tests for the myriad of testing scenarios that are
considered in practice today will involve collaboration
of frequentists and objective Bayesians. This is because
the most direct route to determination of a suitable
conditional frequentist test, in a given scenario, is the
Bayesian route, thus first requiring determination of a
suitable objective Bayesian procedure for the scenario.
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Comment
Ronald Christensen

I feel privileged to congratulate Jim Berger on his
exemplary career leading to the Fisher lectureship,
as well as this interesting work with his colleagues.
I totally agree with the premise that there is vast
confusion about the practical use of testing and I hope
that this article puts one more nail into the coffin that
Neyman–Pearson testing so richly deserves. However,
in my view, except for the incorporation of p-values,
this article has little to do with Fisherian testing.
Ultimately, the key issue is to get the philosophical
ideas down and to use methods that are appropriate to
the problems being addressed.

In retrospect I believe that Neyman and Pearson per-
formed a disservice by making traditional testing into a
parametric decision problem. Frequentist testing is ill-
suited for deciding between alternative parameter val-
ues. I think Berger and Wolpert (1984) ably demon-
strated that in their wonderful book. For example, when
deciding between two hypotheses, why would you re-
ject a hypothesis that is 10 times more likely than the
alternative just to obtain some preordained α level? It
is a crazy thing to do unless you have prior knowl-
edge that the probability of the alternative occurring

Ronald Christensen is Professor, Department of
Mathematics and Statistics, University of New
Mexico, Albuquerque, New Mexico 87131 (e-mail:
fletcher@stat.unm.edu).

is at least nearly 10 times larger. As to picking priors
for scientific purposes, if you do not have enough data
so that any “reasonable” prior gives the same answers
in practice, you obviously cannot construct a scientific
consensus and should admit that your results are your
opinions.

Outside of Neyman–Pearson theory, testing is prop-
erly viewed as model validation. Either the model
works reasonably or it does not. There is no paramet-
ric alternative hypothesis! To perform either Neyman–
Pearson or Bayesian testing, you must have, or con-
struct, a parametric alternative. If you are willing
to construct an alternative, you should use one of
those theories. (Nonparametric problems are properly
thought of as having huge parameter sets.) But at some
point we all have to stop dreaming up alternatives
and either go on to other problems, retire or die. In
model validation, there is a series of assumptions that
constitutes the model. Data are obtained and a one-
dimensional test statistic is chosen. Either the data, as
summarized by the test statistic, appear to be consis-
tent with the model or they do not. If they appear to
be inconsistent, obviously it suggests something may
be wrong with the model. (Proof by contradiction.) If
they appear to be consistent, big deal! (No contradic-
tion, no proof.) The model came from somewhere; one
hopes from scientific experience. But we eventually
show that all models are wrong. The important ques-
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tion is whether they are useful. If the data are consis-
tent, they merely do not contribute to showing that this
model is not useful.

The only general way to determine if data appear
to be inconsistent with the model is to define as
inconsistently odd those data values that have the
smallest probability density under the model. (This is a
major departure from Neyman–Pearson theory, which
relies on comparing null and alternative densities.) The
p-value is the probability of seeing something as odd
or odder than you actually saw. If you see something
odd, it gives you reason to doubt the validity of the
model you are testing, but it does not suggest which
particular aspect of the model is invalid. A parametric
null hypothesis only raises its ugly head if one can
validate all of the other assumptions that constitute the
model, so that only this null hypothesis can be called
in question.

If p-values or confidence coefficients do not mean
what you want them to mean, you better do a Bayesian

analysis, because short of developing fiducial infer-
ence, it is the only way I know to get numbers that peo-
ple like to interpret. While it is interesting to see when
p-values may or may not agree with posterior probabil-
ities, if you are not willing to do a Bayesian analysis,
you better learn what p-values and confidence coef-
ficients really mean. We need to stop inviting people
to misinterpret confidence coefficients which we do by
presenting the long-run frequency “justification;” see
Christensen (1995). The problem of misinterpreting
p-values as posterior probabilities seems to be more
limited.

Of course there remains the open question of how
to choose a test statistic. Box (1980) suggested that in
the subjective Bayesian context one use the marginal
density for the potential data evaluated at the observed
data. Such a test addresses the appropriateness of both
the sampling distribution and the prior.

Comment
Wesley O. Johnson

1. INTRODUCTION

It is a privilege to comment on the weighty topic of
statistical testing. Our profession suffers from a lack of
coherence in its philosophical underpinnings. As a re-
sult, some statisticians use any method that helps them
solve the problem at hand, while others rely on a single
mode of inference. Many of us have, through the years,
settled on some form of hybrid approach to hypothesis
testing that involves p-values and/or Type I and Type II
error considerations and/or Bayesian calculations. Sci-
entists who use statistics in their research are left to
the mercy of the statistics textbooks they have avail-
able. Given the differences in philosophy, we statisti-
cians find it surprising when different approaches lead
to similar “statistical practice.” Nonstatisticians may
find it shocking that they can disagree.

The perplexity caused by our differences of opinion
has led Berger to try to alleviate some of the confu-
sion by providing methods that are somehow consistent

Wesley O. Johnson is Professor, Department of Statis-
tics, University of California, Davis, California 95616
(e-mail: wojohnson@ucdavis.edu).

with all major philosophical camps. Berger has a long
and distinguished history of attempting to reconcile the
Bayesian and frequentist points of view. This article
takes on the further challenge of attempting to improve
the perception of statistics by the outside world. Con-
sistent with his effort to reconcile, he has not discussed
philosophical issues about the relative merits of this
or that approach, but rather he focuses on discover-
ing the common ground based on a particular synthesis
of the views of Fisher, Neyman and Jeffreys. Profes-
sor Berger can only be applauded for taking on this
lofty challenge. Moreover, the regimen prescribed is
remarkable. He has reason to be proud for discovering
it. This article will be read by many and should gener-
ate much discussion.

My own statistical foundation has grown over many
years to lean, or perhaps topple, toward the subjective
Bayesian mode, and this discussion reflects that fact. In
doing so, it may depart somewhat from Berger’s more
lofty goals.

2. EPIDEMIOLOGY, SCREENING TESTS AND
POINT NULLS

Berger points out the seemingly “surprising” result
that the proportion of nulls that actually hold among
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those times that a p-value is in a neighborhood of 0.05
can be quite large. Such results are quite familiar to
epidemiologists. For example, consider a screening
problem for some disease like HIV infection (see
Gastwirth, Johnson and Reneau, 1991). Such screening
tests are often quite accurate, so let us assume the
sensitivity of the test (1 minus the false negative test
rate) is about 0.99 and the specificity (1 minus the false
positive rate) is about 0.995. Since the two error rates
are so small, it might seem surprising to some that
with an HIV population disease prevalence of 0.0004,
for example, only about 7.5% of people with positive
results will actually be infected.

Screening tests correspond to standard simple versus
simple hypothesis tests. The null hypothesis is that the
blood sample in question is infected, so Type I error
constitutes falsely indicating that infected blood is not
infected. The probability of a Type I error, α, is the
false negative rate for the test, which is also 1 minus
the test sensitivity, and the probability of a Type II
error, β , is the false positive rate for the test, which is
also 1 minus the test specificity. The prevalence of HIV
infection in a population is analogous to the proportion
of null hypotheses that are true. Predictive values
(positive and negative) of the screening test are those
proportions of correct outcomes for blood samples that
were screened positive and negative, respectively.

Conversely, a simple versus simple hypothesis test
also determines a screening test. Identify H0 as the dis-
eased state. Define a positive outcome to be when the
p-value is less than the prescribed Type I error prob-
ability, namely p ≤ α, and a negative outcome other-
wise. Then all of the standard epidemiologic objects
defined above apply. While Berger has focused on the
probability of the null being true having observed the
p-value in a neighborhood of the observed value, I con-
tinue the analogy between screening and testing by cal-
culating the probabilities of H0 when the p-value is ei-
ther less than or greater than α, which correspond to
1 minus the predictive value positive and the predictive
value negative, respectively. Berger also calculated the
former.

By the Bayes theorem, the proportions of null
hypotheses that are actually “true” given that p ≤ α

and p > α, respectively, are

Pr(H0|p ≤ α)= α Pr(H0)

α Pr(H0)+ (1 − β)(1 − Pr(H0))

and

Pr(H0|p > α)= (1 − α)Pr(H0)

(1 − α)Pr(H0)+ β(1 − Pr(H0))
.

If there are small Type I and Type II errors and if
the prevalence of true null hypotheses is low, then
the following approximations hold (as in Johnson
and Gastwirth, 1991): Pr(H0|p ≤ α)

.= α Pr(H0) and
Pr(H0|p > α)

.= Pr(H0)/{Pr(H0) + β}. Thus if the
p-value is used to reject at level α and if a small
proportion of nulls is a priori true, then the a posteri-
ori proportion of nulls that holds, given p ≤ α, will
be α times the a priori proportion. If the a priori
proportion of nulls were near 1, then Pr(H0|p ≤ α)

.=
α/(α + 1 − Pr(H0)) and Pr(H0|p > α)

.= 1. Thus if
95% of all nulls were true a priori and α = 0.05, then
about 50% of the nulls will be true given p ≤ α, while
it is expected that virtually all nulls will be true when
p > α.

A classic problem in risk analysis involves testing
that a particular population of individuals is completely
disease-free (Suess, Gardner and Johnson, 2002; Han-
son, Johnson, Gardner and Georgiadis, 2003). Hav-
ing even a single individual in the population who
is diseased is problematic. For example, in treating
the potential for foot-and-mouth disease in cattle, as
soon as an individual infected animal is discovered, en-
tire herds in the vicinity of the discovered animal are
generally eradicated (anonymous, Foot-and-mouth dis-
ease emergency disease guidelines, Animal and Plant
Health Inspection Service, USDA, Hyattsville, MD,
1991). Moreover, in animal testing, there is rarely a
perfect or “gold-standard” test that can be used for dis-
ease surveillance (Joseph, Gyorkos and Coupal, 1995;
Enøe, Georgiadis and Johnson, 2000; Johnson, Gast-
wirth and Pearson, 2001). Without a perfect test, stan-
dard herd surveillance data lead to nonidentifiable
models, making it virtually impossible to directly test
for the absence of disease without either unrealistically
assuming known accuracy for the screening tests or
performing a subjective Bayesian analysis. Here, the
composite null hypothesis is that there are infected
units in the population (the prevalence of infection is
positive) and the precise alternative states that there is
none (the prevalence is zero). The Type I error involves
the acceptance of the hypothesis of no infection when
there is at least one infected animal in the population.
It would appear that one cannot expect reconciliation
for this kind of problem since a subjective approach
seems warranted and, moreover, it is superficially un-
clear whether Berger’s method will apply to composite
nulls with precise alternatives.

3. SAMPLE SIZE

Many statisticians advise, “Don’t do hypothesis test-
ing.” To a large extent, I subscribe to this philosophy.
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Frequentist hypothesis tests present many dangers, not
the least of which is the potential misinterpretation of
results and confusion discussed by Berger. In my expe-
rience, the sample size problem is even more danger-
ous. It is common for scientists to implicitly accept null
hypotheses by referring to factors that are not signifi-
cant as essentially irrelevant, with no concern whether
the estimated effect would be both statistically signif-
icant and practically meaningful if their sample size
had been larger. For Bayesians, the moral of the fa-
mous Jeffreys–Lindley paradox is precisely that using
ill-conceived reference priors can lead to inappropri-
ately accepting null hypotheses. However, the problem
of inappropriately accepting a null does not generally
occur in a subjective Bayesian analysis since null and
alternative hypotheses are treated symmetrically. Thus
if there is a very high posterior certainty for the null,
regardless of the sample size, it is appropriate to accept
the null. If a Bayesian or other procedure is equivo-
cal, the analyst must assess whether the observed ef-
fect would be of practical import were it real and thus
whether a larger sample size could result in the conclu-
sion that a meaningful effect exists.

Bayesian methods seem to offer a more balanced
evaluation of the null model. For example, posterior
probabilities for point nulls in standard normal mod-
els tend to be considerably larger than correspond-
ing p-values (see, e.g., Berger, 1985a, Table 4.2). In
Berger’s (1985a) example (with z = 1.96, n = 1000),
the p-value is 0.05 but the posterior probability of the
null is 0.80. In the more extreme case (with z= 3.291,
n= 1000), p = 0.001, but the posterior probability of
the null is as large as 0.124. With smaller n and the
same values for z, p-values remain unchanged while
posterior probabilities decline but stay well above the
corresponding p-values. This indicates a natural pro-
tection in Bayesian testing against the tendency to re-
ject everything for large sample sizes in frequentist
testing. Berger also calculates lower bounds (consid-
ering all possible priors under the alternative) on the
posterior probability of the null, which turn out to be
0.127 and 0.0044 for these two z-values and for all
choices of n. Regardless of the choice of prior under
the alternative, it is more difficult to reject a point null
using these proper Bayesian methods.

Perhaps with very large sample sizes, conditioning
on the maximum p-value statistic results in conditional
error rates that shed light on this problem. If so, I
wonder what can be said about the situation with, say,
20 covariates in a regression model based on 10,000
observations where the p-values range from some
small value less than 0.05 on down.

4. A SUBJECTIVIST’S VIEW VERSUS
OBJECTIVE BAYES

The issue of performing an objective versus a subjec-
tive Bayesian analysis is a deep philosophical question.
Conversations between individuals in opposite camps
go on ad infinitum. I have often wondered why there is
so much resistance within the statistical community to
the use of subjective prior information. I suspect that
many of us have little or no formal training in sub-
stantive areas of science, so when we approach a data
set, it is without expert knowledge of the subject at
hand. We often handle many different kinds of data and
there is little time to become subject matter experts in
even a small subset of these areas. In writing a statisti-
cal paper about a Bayesian approach, when selecting a
prior distribution we often think that putting a real prior
into the analysis would involve guesswork, so objec-
tivity starts to sound very appealing. I could not agree
more.

However, as a statistician working with scientists in
several substantive areas who seem perfectly at ease
with inputting their scientific knowledge in the form of
prior distributions, it is difficult for me to understand
the apparent reluctance of even Bayesians to consider
using subjective prior information in their collabora-
tive efforts. In my experience, it is quite the excep-
tion for a scientist to lack knowledge on the expected
behavior of relevant observable quantities. It is also
quite the exception for them to be reluctant to incorpo-
rate that information into the analysis (Joseph, Gyorkos
and Coupal, 1995; Bedrick, Christensen and John-
son, 1997, 2000; Westfall, Johnson and Utts, 1997;
Liu, Johnson, Gold and Lasley, 2003; Hanson, John-
son and Gardner, 2003; Hanson, Bedrick, Johnson and
Thurmond, 2003; Georgiadis, Johnson, Gardner and
Singh, 2003; Suess, Gardner and Johnson, 2002; Fos-
gate et al., 2002; McInturff, Johnson, Gardner and
Cowling, 2003). Practical methods for eliciting and in-
corporating prior information for generalized regres-
sion models were developed by Bedrick, Christensen
and Johnson (1996) and implemented in several of the
above articles.

While I understand Professor Berger to be sympa-
thetic to the use of subjective Bayesian methods and
that here he is mainly concerned with attempting to
find common ground among the majority of statis-
ticians, it seems to me that this extraordinary effort
to reconcile the masses may help to perpetuate the
myth that subjectivism is a bad thing rather than a
good thing. This is not a criticism of Berger’s ef-



16 J. O. BERGER

forts, but rather an observation. My attempt here is
to encourage the use of subjective methods in sub-
stantive collaborative efforts. After all, is it not the
case in science that there are different opinions about
many issues? Do not good scientists disagree with each
other while having scientifically sensible reasons for
holding their separate opinions? It should not seem
surprising when several analyses of the same data re-
sult in different conclusions because of different sci-
entific models that were included in the analysis. The
goal then is to collect enough of the right kind of
data so as to result in very similar posteriors and, con-
sequently, consensus—another type of reconciliation.
Bayesian subjective methods provide an eloquent, and
some would say coherent, method by which consensus
ultimately can be achieved among people whose prior
opinions are not so strong as to overwhelm any data.

5. OTHER TYPES OF RECONCILIATION

There are of course many other forms of inference
to which the concept of reconciliation would apply.
For a fairly general class of estimation problems,
Samaniego and Reneau (1994), in particular, have
characterized the circumstances when Bayesian point
estimation is preferable, and when not, according to
Bayes risk, a frequentist criterion. They point out
that Bayes rules are often preferable provided the
“prior distribution provides ‘useful’ information about
the unknown parameter” and that it is not “overstat-

ed.” Their conclusion about reconciliation is that both
Bayesian and frequentist schools “are correct (and
better than the other) under specific (and complemen-
tary) circumstances.”

Another area that has been considered is the recon-
ciliation of Bayes and frequentist methods for multi-
ple testing problems. In particular, Westfall, Johnson
and Utts (1997) discussed the issue of Bayesian mul-
tiplicity adjustment and presented a correspondence
with the usual Bonferroni adjustment. More recently,
Gönen, Westfall and Johnson (2003) developed in-
formative Bayesian methods for multiple two-sample
comparisons arising from general multivariate data. In
this work, k simultaneous (correlated) point null hy-
potheses are considered. It is argued that independent
point nulls with degree of belief 0.5 in each would
result in (0.5)k degree of belief that all nulls were
simultaneously true, which may be far too small to
believe. A particular model is presented where the
experimenter is asked to specify his or her subjec-
tive degree of belief that all nulls are simultaneously
true as well as the marginal probabilities for sin-
gle hypotheses. This induces a priori correlation be-
tween beliefs in individual nulls. It is not clear what
would be an objective prior for this problem. The in-
terplay between specifying the joint null probability
and the marginal probabilities would seem to mitigate
against this possibility, as it would seem to require
scientific input and, consequently, informative prior
information.

Comment
Michael Lavine

I want to begin by thanking Professer Berger for
an extremely well written and thought provoking
article. Its main points are to explain conditional error
probabilities (CEPs) and argue that they can result in
methodological unification. This discussion will focus
on whether CEPs do, in fact, provide a methodology
acceptable to everyone and whether such a unification
is desirable.

Michael Lavine is Professor, Institute of Statistics
and Decision Sciences, Duke University, Durham,
North Carolina 27708-0251 (e-mail: michael@stat.
duke.edu).

DO CEPS RESOLVE METHODOLOGICAL ISSUES?

Berger shows that CEPs look promising in each of
his examples. Here we examine CEPs to see whether
they look sensible when compared across several test-
ing scenarios simultaneously. The idea of compar-
ing across multiple scenarios was previously used
by Gabriel (1969), Schervish (1996) and Lavine and
Schervish (1999), who used the following idea of co-
herence. Another criterion for comparing across sev-
eral scenarios appears in Schervish, Seidenfeld and
Kadane (2003):

LetH ′ ⊆H ′′ be nested hypotheses. Any ev-
idence for H ′ is necessarily evidence for
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H ′′; any evidence against H ′′ is necessar-
ily evidence againstH ′. Therefore any mea-
sure m of support or strength-of-evidence
should obey m(H ′) ≤ m(H ′′). A measure
of support m is called coherent if m(H ′)≤
m(H ′′) for all H ′ ⊆H ′′ and incoherent oth-
erwise. A testing procedure is called coher-
ent if rejection of H ′′ entails rejection of H ′
for all H ′ ⊆H ′′ and incoherent otherwise.

Apart from its intuitive appeal, Lavine and Schervish
(1999) give a decision–theoretic argument for coher-
ence.

An example from Lavine and Schervish (1999)
illustrates the idea:

[A consulting client] was comparing three
modes of inheritance in the species Astilbe
biternata. All three modes are represented
by simple hypotheses concerning the dis-
tribution of the observable data. One hy-
pothesisH1 is called tetrasomic inheritance,
while the other two hypotheses H2 and H3
(those which happen to have the largest and
smallest likelihoods, respectively) together
form a meaningful category, disomic inher-
itance. The Bayes factor in favor of H2 will
be larger than the Bayes factor in favor of
H2 ∪ H3 no matter what strictly positive
prior one places over the three hypotheses
because H3 has the smallest likelihood.

Therefore, Bayes factors are incoherent measures of
support.

What do CEPs say about the Astilbe biternata exam-
ple? According to Berger (personal communication),
in testing H1 versus H2, the CEP would be based on
the likelihoods of H1 and H2. However, in testing H1
versus H2 ∪ H3, the CEP would use the likelihood
based on equal a priori weights for H2 and H3. There-
fore, CEPs would claim to have less evidence favoring
H2 ∪H3 over H1 than favoring H2 over H1 and would
be incoherent.

A similar phenomenon can occur with nested lin-
ear models. Let (x1, y1) = (−1,3), (x2, y2) = (1,3)
and consider the model yi = a + bxi + εi , where
εi ∼ N(0,1). What do CEPs say about the hypotheses
H0 : a = b = 0, H1 : b = 0 and H2 : no restrictions?
For testing H0 versus H1, CEPs would use the Bayes
factor obtained from a standard Cauchy prior on a; this
is also the prior that Jeffreys would have used. For test-
ing H0 versus H2, CEPs would use a Zellner–Siow

prior (Zellner and Siow, 1980) for (a, b) which for
this data set is the standard two-dimensional Cauchy
density proportional to (1 + a2 + b2)−3/2. Both pri-
ors were suggested by Berger and Pericchi (2001). Cal-
culations using these priors show p(y1, y2|H0) ≈ 2 ×
10−5, p(y1, y2|H1) ≈ 1 × 10−2 and p(y1, y2|H2) ≈
3×10−3. Because p(y1, y2|H1) > p(y1, y2|H2), CEPs
would claim more evidence for H1 than for H2 (as op-
posed to H0) and would therefore be incoherent.

Berger states “The most crucial fact about the
CEPs . . . is that they precisely equal the objective
Bayesian error probabilities . . . ,” where “objective”
means calculated using an objective Bayesian prior.
It is precisely the objective Bayesian prior that makes
CEPs incoherent. In both examples, when the hypothe-
ses change, so do the priors. In particular, the prior
mass or density assigned to each simple hypothesis
changes according to which simple hypotheses are
grouped together as a composite. This is in contrast to
“subjective” Bayesian priors that reflect beliefs about
the simple hypotheses, not the partitions by which they
are grouped.

It seems that CEPs will not be attractive to subjective
Bayesians or to anyone who values coherence, and they
will not provide a methodological unification between
such people, Fisherians and Neymanians.

IS METHODOLOGICAL UNIFICATION
A GOOD THING?

Berger argues that statisticians’ methodological
disagreement has had a negative impact on science.
I claim in contrast that disagreement is a good thing
and we should not seek unification. The reason is
that when statisticians formulate theories of hypoth-
esis testing, they should distinguish between several
possible scientific goals, any of which might be the
scientist’s aim in a particular application. A scientist
comparing two composite hypotheses might be look-
ing for any of the following.

1. In which hypothesis does the truth lie? Accepting
for the moment that we can best distinguish among
simple hypotheses by their likelihood, this question
is loosely answered by finding regions of high like-
lihood in both the null and alternative hypotheses.
A more severe answer is given by finding the like-
lihood ratio statistic and the maximum likelihood
estimators in both hypotheses.

2. Averaging over all the simple hypotheses in each
composite, which composite explains the data bet-
ter? Accepting for the moment that we can specify



18 J. O. BERGER

a prior (a weighting distribution for the purpose of
averaging), this question is answered by Bayes fac-
tors.

3. Summing or integrating over all the simple hypothe-
ses in each composite, which composite has the
most support? Accepting again that we can spec-
ify a prior, this question is answered by posterior
probabilities.

4. Are our data in sufficient disaccord with H0 that
we should consider alternatives? Setting aside the
question of whether this is really a decision problem
that requires specification of a loss function, per-
haps this is the question being answered by testing
H0 without an explicit alternative.

By treating hypothesis testing as a single type of sta-
tistical problem, statisticians ignore that scientists may
have these or other, fundamentally different questions

which they, or we, call by the general term “hypothesis
test.” There is no reason to suppose that the different
questions are all best answered by the same method-
ology and every reason to suppose the opposite. As
a profession we are guilty of failing to ascertain what
our clients want, of forcing too many of their disparate
questions into the general rubric of hypothesis testing
and of inappropriately applying our favorite methodol-
ogy (different for different statisticians) to all of them.
Perhaps some of the discomfort in the general scientific
community with hypothesis tests is due to a vague or
unconscious understanding that our methodolgy does
not always answer the right question. If that is true,
then seeking a unified methodology is counterproduc-
tive. We should instead emphasize the disagreement
by distinguishing the different questions that different
methodologies are targeted to answer.

Comment
Subhash R. Lele

Discussing a philosophical paper is always a tricky
business; one has to balance between devil’s advocacy
and preaching to the choir. I am afraid I am going to
play more the role of a devil’s advocate than that of
a preacher. I would like to commend Professor Berger
for his valiant efforts in trying to unify the three com-
peting schools of statistical thoughts. Unfortunately,
I feel we are as far away from achieving that goal as
the physicists are in formulating a satisfactory unified
field theory. Moreover, I wonder if such a unification
of approaches in statistics is even needed.

1. Professor Berger starts by saying that “while the
debates over interpretation can be strident, statistical
practice is little affected as long as the reported
numbers are the same.” He further puts a caveat that
“We focus less on ‘what is correct philosophically?’
than on ‘what is correct methodologically?’ ” Unless I
am totally misunderstanding his words, I think the real
crux of any statistical analysis is in the interpretation
of the numbers. That is where science is conducted.
How can something be incorrect philosophically, but

Subhash R. Lele is Professor, Department of Math-
ematical and Statistical Sciences, University of Al-
berta, Edmonton, Alberta, Canada T6G 2G1 (e-mail:
slele@ualberta.ca).

correct methodologically? Just as numerical values
without proper units are meaningless, output of a
statistical procedure is meaningless without proper
interpretation. I recall heated debates that ensued in
the foundations of finite population sampling exactly
on this point: what is correct inferentially versus what
is correct probabilistically? Just because the numbers
are the same, it does not mean one should be making
the same scientific inference.

2. Professor Berger uses the p-value as a measure of
the strength of evidence in the data. I am sure he is well
aware of the arguments against this. See Royall (1997)
for references as well as further discussion on this
point. An important point (Royall, 1997; Lele, 1998) is
that the strength of evidence is a comparative concept.
Hacking (1965) suggested the use of the likelihood
ratio as a measure of strength of evidence. This can
be further generalized to achieve model robustness and
outlier robustness, as well as the possibility of handling
nuisance parameters, through the use of “evidence
functions” (Lele, 1998). I am curious to know why
Professor Berger uses controversial p-values instead
of the likelihood ratio as a measure of the strength of
evidence.

3. I wonder, when CEPs are interpreted as probabili-
ties of a particular hypothesis being correct, are we im-
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plicitly assuming that one of the hypotheses has to be
correct? What if the truth is not contained in either of
the hypotheses? Are we choosing the closest hypothe-
sis in some sense?

4. It is clear that one can use various conditioning
statistics (Section 5.2 and point 2 above) that purport to
measure the “strength of evidence.” How do we choose
among the myriad of these statistics? If we follow
Professor Berger’s ideas, would we not end up in the
same quagmire where we ended up when we tried to
use ancillary statistics for conditioning?

5. One of the major uses of the power function of
a test procedure is in deciding the sample size and
the experimental design. How is the testing framework
defined in this article useful toward this goal? Does a
unification of the three schools exist in this context?

6. Should we not be interested more in the effect
size and the confidence/credible intervals? Professor
Berger seems to suggest that there is less of a problem
in unifying these ideas than in unifying the testing
framework. Why not solve the easier problem that is
also more useful?

7. Professor Berger discusses the possibility of in-
cluding the no-decision zone in his framework. This is
quite closely related to the concept of the probability
of weak evidence as introduced in Royall (2000). Of
course, calculation of this probability will depend on
the question of which experiment to repeat (Lehmann,
1993). I think this is really the crucial question that
only scientists can address.

8. Calculation of p-values does not depend on the
alternatives, but in Section 3.3 it seems that an explicit
alternative is needed to compute it. Is it implicit in

this article that the ratio of the p-values is a measure
of strength of evidence? Does it not integrate over
all other possible data that one could have observed?
Would this not violate the likelihood principle?

9. As a side note, I would also like to point out that
there seem to be some similarities between Professor
Berger’s approach and the approach discussed by
Mayo (1996).

After reading the last sentence, “This is because the
most direct route to determination of a suitable con-
ditional frequentist test, in a given scenario, is the
Bayesian route” (and, probably building upon my prior
beliefs), I felt that Professor Berger is starting with an
answer, that the Bayesian approach is inherently cor-
rect, and then trying to modify the frequentist approach
so that it provides the Bayesian answers. I feel instead
that we should start anew. Our first order of business
should be the question of proper quantification of the
evidence in the data. Once such quantification is at-
tained, we should think in terms of decision-making
procedures that may or may not involve subjective
judgements. Since any decision-making procedure is
bound to make errors, we should think in terms of re-
porting and controlling such errors, namely, probabili-
ties of misleading evidence and weak evidence. These
may then be used to design experiments effectively.

I would like to thank Professor Mark Taper for useful
comments. I would also like to thank Professor Roger
Berger for giving me the opportunity to comment
on this interesting paper. This work was partially
supported by a grant from the National Science and
Engineering Research Council of Canada.

Comment
Deborah G. Mayo

1. INTRODUCTION

When two or more methodologies of inference rec-
ommend different appraisals of evidence there are two
broad avenues that might be taken to “reconcile” them.
The first is to take the position that the conflicting
methodologies operate with distinct aims, goals, and

Deborah G. Mayo is Professor, Department of Philos-
ophy, Virginia Tech, Blacksburg, Virginia 24061-0126
(e-mail: mayod@vt.edu).

assumptions, and that rather than insist that one or both
be emended to achieve unified appraisals, one should
articulate the intended interpretations of the key com-
ponents of each so as to avoid confusions, and clar-
ify the different domains in which one or the other
methodology might be most appropriate. A second po-
sition is to maintain that one of the methodologies,
say M1, is superior or more plausible to that of alterna-
tive M2, and advocate modifying M2 so that it comes
into line with M1. However, it is equally open to adher-
ents of M2 to judge M1 by dint of the standards of M2.
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So in seeking a reconciliation by means of the second
strategy, there is always a great danger of being guilty
of begging the question against the alternative (often
unwittingly). Without a careful scrutiny of equivocal
terms, underlying assumptions and the rejoinders open
to the alternative methodology, the fallacious nature of
such arguments might go unnoticed and might even be
celebrated as promoting the basic tenets of the rival
school. Berger’s reconciliation attempt falls under the
second type of strategy. As a philosopher of statistics,
my role will be to sketch some of the logical and epis-
temological concerns that a full scrutiny and response
would require.

2. TERMINOLOGY: FREQUENTIST ERROR
PROBABILITIES AND ERROR STATISTICS

Berger has so thoroughly coopted the terms of the
Neyman–Pearson school, one hardly knows what terms
are left to fall back on to articulate the equivocations.
Since some such terminological distinctions are nec-
essary, let us agree, for the purposes of this note at
least, to retain the usual meaning of error probability
as defined in Neyman–Pearson (N–P) statistical test-
ing. Having been criticized by so many for its insis-
tence that its error probabilities apply, not to statistical
hypotheses, but only to procedures of testing (and es-
timation), one would think that school had earned the
right to at least this much!

The probabilities of Type I and Type II errors, as
well as p-values, are defined exclusively in terms of
the sampling distribution of a test statistic d(X), un-
der a statistical hypothesis of interest—the familiar tail
areas. In contrast, Berger’s CEPs refer to the posterior
probabilities of hypotheses under test, H0, conditional
on the observed d(x). I limit error statistical accounts
to those where probabilities are derived from sampling
distributions (including both N–P and Fisherian signif-
icance tests).

3. HOW WOULD AN ERROR STATISTICIAN APPLY
BERGER’S UNIFICATION?

It is not clear just what Berger recommends as a
replacement for the current N–P and Fisherian tests,
especially as his examples seem to fall outside both
representatives of the error statistical paradigm. N–P
tests require H0 and H1 to exhaust the space of hy-
potheses (within an assumed model), Fisherian tests
are defined with only the null, and both approaches
deliberately operate without prior probability assign-
ments to hypotheses. We get some guidance from

Example 1 and the discussion of the “applet” (Sec-
tion 2.2). Clearly Berger intends it to show, even to
a thoroughgoing error statistician, that there is some-
thing wrong with p-values, at least when used as data-
dependent measures of evidence (without a CEP “cor-
rection”). In a Normal distribution test of H0 : µ = 0
versus H1 : µ �= 0, “at least 22%—and typically over
50%—of the corresponding null hypotheses will be
true” if we assume “half of the null hypotheses are ini-
tially true,” conditional on a 0.05 statistically signif-
icant d(x). Berger takes this to show it is dangerous
to “interpret the p-values as error probabilities” (Sec-
tion 2.3), but note the shift in meaning of “error prob-
ability.” The alleged danger assumes the correct error
probability is given by the proportion of true null hy-
potheses (in a chosen population of nulls), conditional
on reaching an outcome significant at or near 0.05 (e.g.,
22 or 50%). But why should an error statistician agree
that the Bayesian definitions Berger advocates replace
the error statistical ones?

Innocence by Association

Let us see how the error statistician is to proceed if
he or she were to take seriously the apparent lesson
of Berger’s applet. A recent study that has gotten a
great deal of attention reports statistically significant
increases in blood clotting disorders and breast can-
cer among women using hormone replacement therapy
(HRT) for 5 years or more. Let us suppose p is 0.02.
The probability of observing so large an increase in
disease rates when H0 is true and HRT poses no in-
creased risk is 0.02. Given the assumptions of the sta-
tistical model are met, the error statistical tester takes
this to indicate a genuine increased risk, for example,
approximately 2 additional cases, of breast cancer per
10,000 (higher, if HRT is taken for 10 years). Berger
warns us that such low p-values may be overstating
the evidence against the null (the discrepancy between
p-values and CEPs increases with sample size and here
there were over 16,000 women). To check this, it would
seem, we must go on to consider a pool of null hy-
potheses from which H0 may be seen to belong, and
find the proportion of these that have been found to
be true in the past. This serves as the prior probability
for H0. We are then to imagine repeating the current
significance test over all of the hypotheses in the pool
we have chosen. Then the posterior probability of H0
(conditional on the observed result) will tell us whether
the original assessment is misleading. But which pool
of hypotheses should we use? Shall we look at all those
asserting no increased risk or benefit of any sort? Or no



COULD FISHER, JEFFREYS AND NEYMAN HAVE AGREED? 21

increased risk of specific diseases (e.g., clotting disor-
ders, breast cancer)? In men and women? Or women
only? Hormonal drugs or any treatments? The percent-
ages “initially true” will vary considerably. Moreover,
it is hard to see that we would ever know the pro-
portion of true nulls rather than merely the proportion
that have thus far not been rejected by other statistical
tests!

Further, even if we agreed that there was a 50%
chance of randomly selecting a true null hypothesis
from a given pool of nulls, that would still not give
the error statistician a frequentist prior probability of
the truth of this hypothesis, for example, that HRT
has no effect on breast cancer risks. Either HRT in-
creases cancer risk or it does not. Conceivably, the
relevant parameter, say the increased risk of breast
cancer, could be modeled as a random variable, but
its distribution would not be given by computing the
rates of other apparently benign or useless treatments!
Berger’s Bayesian analysis advocates a kind of “inno-
cence by association,” wherein a givenH0 gets the ben-
efit of having been drawn from a pool of true or not-
yet-rejected nulls. Perhaps the tests have been insuffi-
ciently sensitive to detect risks of interest. Why should
that be grounds for denying there is evidence of a gen-
uine risk with respect to a treatment (e.g., HRT) that
does show statistically significant risks? (The dangers
are evident.)

The Assumption of “Objective” Bayesian Priors

Admittedly, Berger does not really seem to be
recommending error statisticians calculate the above
frequentist priors, but rather that they assume from
the start the “objective” Bayesian prior of 0.5 to the
null, the remaining 0.5 probability being spread out
over the alternative parameter space. But seeing how
much this influences the Bayesian CEP, which in turn
licenses discounting the evidence of risk, should make
us that much more leery of assuming them from the
start. One can see why the Bayesian significance tester
wishes to start with a fairly high prior to the null—
else, a rejection of the null would be merely to claim
that a fairly improbable hypothesis has become more
improbable (Berger and Sellke, 1987, page 115). By
contrast, it is informative for an error statistical tester
to reject a null, even assuming it is not precisely
true, because we can learn how false it is. (Some
people deny point nulls are ever precisely true!) So,
why should error statisticians agree to the charge that
their interpretation of evidence is flawed because it
disagrees with those based on a priori assumptions

appropriate for a form of inference error statisticians
reject?

4. BERGER’S FREQUENTIST PRINCIPLE

Berger’s CEPs satisfy something he calls the fre-
quentist principle (FP), which he alleges is Neyman’s
principle, only stated “in the form that is actually of
clear practical value” (Section 2.1). The essential func-
tion of N–P tests, for Neyman, however, was to con-
trol at small values the probabilities of taking the ac-
tion (or reaching the inference) associated with “reject
H0” when H0 is true (Type I error) and at the same
time control as far as possible the probability of tak-
ing the action associated with “accept H0” when H0 is
false (Type II error), where accept H0 may be regarded
as a shorthand for “no evidence against H0” (Ney-
man, 1976, page 749). Additionally, this error control
has to hold regardless of prior probability assignments.
Berger’s FP, however, does not require controlling er-
rors at small values and is highly dependent on prior
probability assignments. So far as I can see, the only
“clear practical value” of saddling Neyman with this
vaguely worded principle (wherein the meaning of er-
ror rates is allowed to shift) is to convince us that CEPs
satisfy the N–P error statistical philosophy. But they do
not.

Berger has a problem regarding observed signifi-
cance levels or p-values as legitimate error proba-
bilities—perhaps because they are not predesignated—
but neither Neyman nor Pearson felt this way. Neither,
for that matter, did Fisher, only he denied that low er-
ror rates captured the essential justification of signifi-
cance test reasoning for scientific, as opposed to “ac-
ceptance sampling,” contexts (Fisher, 1973, page 45).
The low p-value in the HRT study led to reject H0 and
assert that there is evidence of genuine (and quantifi-
able) increased risks in women taking HRT for 5 years
or more. Only p% of such trials would lead to sup-
posing one had gotten hold of a real, repeatable, effect
were the outcomes merely the result of the chance as-
signments of HRT or placebo groups. The error proba-
bility holds whether it refers to an actual or hypotheti-
cal series of tests, and it is this hypothetical reasoning
that matters for Fisher—but also for Pearson (and even
for Neyman, in his inferential moods).

Turning the tables for a moment, consider how an
error statistician might evaluate the error probabilities
associated with Berger’s procedure: construing a 0.05
significant result as little or no evidence of a discrep-
ancy from the null hypothesis. The error of relevance
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would be akin to a Type II error—denying there is ev-
idence against H0 when H0 is false—and the proba-
bility of this error would be very high. [He would also
fail to ensure low CEPs! Having calculated the CEP is
0.2 or 0.5, the Type II CEP would be 0.8 or 0.5. That
is, 80 or 50% of the hypotheses (in the pool of nulls)
would be false, when Berger has found little evidence
against the null.] More generally, faced with conflicts
between error probabilities and Bayesian CEPs, the er-
ror statistical tester may well conclude that the flaw lies
with the latter measure. This is precisely what Fisher
argued.

Fisher: The Function of the p-Value Is Not Capable
of Finding Expression

Discussing a test of the hypothesis that the stars
are distributed at random, Fisher takes the low p-
value (about 1 in 33,000) to “exclude at a high
level of significance any theory involving a random
distribution” (Fisher, 1973, page 42). Even if one
were to imagine that H0 had an extremely high prior
probability, Fisher continues—never minding “what
such a statement of probability a priori could possibly
mean”—the resulting high posteriori probability to
H0, he thinks, would only show that “reluctance to
accept a hypothesis strongly contradicted by a test of
significance” (ibid, page 44) . . . “is not capable of
finding expression in any calculation of probability
a posteriori” (ibid, page 43). Indeed, if one were to
consider the claim about the a priori probability to be
itself a hypothesis, Fisher suggests, it would be rejected
by the data.

The Core Principles of Error Statistics
Are Not Satisfied

Thus, we must deny Berger’s unification lives up
to his claim to satisfy “the core principles” of er-
ror statistics. The two key claims he cites as attrac-
tive selling points of his unified account make this
clear.

1. We need no longer warn students and researchers
off supposing that “a frequentist error probability is the
probability that the hypothesis is true” (Section 4.4.1),
Berger assures us, since the CEP is the (objective)
Bayesian posterior. This may be good news for those
who concur that error probabilities “can never be coun-
terintuitive [if they] coincide with objective Bayesian
error probabilities” (Section 5.2), but what if we do
not?

2. Error statisticians (who accept his unification) are
also free from the complications of having to take into
account the stopping rule used in sequential tests. Al-
though a procedure that “tries and tries again,” stop-
ping only when a chosen small p-value is computed,
is known to alter the N–P Type I error rate, CEPs are
not affected. Pretty clearly then the unification is not
controlling N–P error probabilities (Mayo and Kruse,
2001).

Berger’s exhortations that we should focus not on
“what is correct philosophically,” but rather on “what
is correct methodologically” presupposes the latter
does not turn on the former when in fact it does—
especially where different methods result in different
numbers. Far from restoring the scientific credentials
of statistics—a laudatory goal—this way of achieving
a reconciliation seems only to be increasing the con-
fusion and misunderstanding of the logic and value of
error statistical methods.

5. A POSTDATA INTERPRETATION OF N–P TESTS
(BASED ON A CONCEPT OF SEVERE TESTING)

A more promising route is to recognize, as did Egon
Pearson, that there are two distinct philosophical tra-
ditions from which to draw in evaluating statistical
methodology (Pearson, 1966, page 228). In one, prob-
ability is used to provide a postdata assignment of
degree of probability, confirmation or belief in a hy-
pothesis; in the second, probability is used to assess
the probativeness, trustworthiness or severity of a test
procedure (e.g., Peirce, Popper). Error statistical test-
ing falls under the latter; Bayesian and other degree-
of-confirmation accounts, the former. Nevertheless we
can agree with Berger’s charge that the central weak-
ness of N–P tests is the need of a postdata assessment
to reflect “the variation in evidence as the data range
over the rejection or acceptance regions” (Section 2.2).
Rather than supplement N–P tests with Bayesian CEPs,
however, we can instead supplement them with data-
specific assessments of the severity with which one or
another inference passes. If it is possible, by means of
such a severity interpretation of tests, to address the
fallacies and “paradoxes” associated with N–P tests
while articulating tests from the philosophical stand-
point of the error statistician, then surely that would be
desirable (Mayo, 1983, 1985, 1991, 1992, 1996, 1997;
Mayo and Spanos, 2002). Here I can give only a bare
sketch.
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6. SEVERITY AND A POSTDATA INTERPRETATION
OF N–P TESTS

The notion of severity stems from my attempt
to improve upon Popper’s philosophy of science. It
reflects, I think, our ordinary, day-to-day notion of a
probative exam: For a hypothesis or claim H to have
passed a severe test T with data x, x must not only
be in accord with H ; such an accordance must be very
improbable if, in fact, it is a mistake to regard x as
evidence for H. That is, a hypothesis H passes a severe
test T with data x if (1) x agrees with H and (2) with
very high probability, test procedure T would have
produced a result that accords less well with H than
x does, if H were false or incorrect.

Although severity applies to assessing hypotheses
in general, here my concern is with statistical tests.
Consider test Tα , H0 : µ ≤ µ0 against H1 : µ >

µ0, in the context of the simple Normal model with
known variance, using the usual test statistic, d(X) =√
n(X−µ)
σ

. Let µ0 = 0 and σ = 1. Since Berger focuses
on p-values, let us set out the N–P test by reference to
the observed significance level, p(x0), that is, rejectH0
at level α iff P(d(X) > d(x0); H0)≤ α for a small α,
say, 0.03. x0 is the observed value of X.

Although N–P tests are framed in terms of hypothe-
ses being rejected or accepted, both correspond to
“passing” some hypothesis, enabling a single notion of
severity to cover both. “Reject H0” in Tα licenses in-
ferences about the extent of the positive discrepancy
indicated by data x :µ>µ′, whereas “accept H0” cor-
responds to inferences about the discrepancies from H0
ruled out, x :µ≤ µ′, where µ′ ≥ 0.

The Case of Rejecting H0

For test Tα , define the severity with which hypoth-
esis µ > µ′ passes when H0 is rejected [i.e., p(x0) ≤
α]:

Sev
(
Tα; µ>µ′, d(x0)

)
= P

(
d(X)≤ d(x0); µ>µ′ is false

)
.

In the special case where µ′ = 0, this is identical
to 1 minus the p-value, as is plausible, but the
assessment now has a clear post-data construal that
varies appropriately with changing outcomes, sample
sizes, and hypotheses of interest.

Since the primary goal of the severity interpretation
is to avoid classic fallacies, as much attention is given
to inferences that are licensed as to those that are not;
any adequate assessment requires a report of both.

FIG. 1. Severity with which test Tα passes µ > µ′ with
d(x0)= 2.0.

Suppose n = 100 (σx = 0.1). If d(x0) = 2, then Tα
rejects H0 since we set α to 0.03. H0 :µ > 0 passes
with severity about 0.977 [P(�X ≤ 0.2;µ= 0)= 0.977],
but we can also assess how well particular discrepan-
cies pass, for example, µ > 0.1 passes with severity
about 0.84 [P(�X ≤ 0.2; µ= 0.1)= 0.84].

In evaluating severity, we are not changing the hy-
potheses of the original test, but considering different
postdata inferences that one might be interested in
evaluating. Does d(x0)= 2 provide good evidence that
µ> 0.2? No, since our procedure would yield so large
a d(x0) 50% of the time even if µ were no greater
than 0.2. One might either report extreme cases of
inferences that are and are not warranted, or graph all
severity values for a given observed d(x0) as shown in
Figure 1.

It is noticed that we obtain an inference that passes
with severity 0.95 were we to form the one-sided 95%
confidence interval that corresponds to test Tα (i.e.,
µ> 0.035). However, confidence intervals (in addition
to having a problematic postdata interpretation) treat
all values in the interval on par, whereas we see
that many (e.g., µ > 0.2, µ > 0.3) pass with low
severity.

If the test yields a d(x0) further into the rejec-
tion region, e.g., if d(x0) = 4, a different severity
curve results wherein µ > 0 passes with severity
about 0.999, µ> 0.2 passes with severity about 0.977,
and so on.

Same p-Value, Two Sample Sizes

Although µ > 0.2 passes with severity 0.977 with
d(x0) = 4.0 when n = 100, suppose instead that
d(x0) = 4.0 occurs in Tα with sample size 1600. Hy-
pothesis µ > 0.2 would now pass with nearly 0 sever-
ity! More generally, a statistically significant differ-
ence (at level p) is less indicative of a given discrep-
ancy from the null the larger the n. The well-known
“large n” problem in testing is thereby scotched.

Severity versus Power

At first glance severity may seem to be captured
by the notion of a test’s power, but in the case where
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H0 is rejected, severity is inversely related to power
(as well as being data-dependent, unlike power). For
example, with n = 100 the severity with which the
inference µ > 0.4 passes with d(x0) = 2 is low (i.e.,
0.03). However, the power of the test against 0.4 is
high, 0.98! The intuition that high severity is entailed
by high power is true only when H0 is accepted; that
is, high power against µ′ ensures that failing to reject
H0 warrants µ≤ µ′.

The Case of Accepting H0

For test Tα the severity with which hypothesis µ ≤
µ′ passes when H0 is accepted [i.e., p(x0) > α)] is:

Sev
(
Tα; µ≤µ′, d(x0)

)
= P

(
d(X) > d(x0); µ≤ µ′ is false

)
.

Suppose now that n = 25 in test Tα , and d(x0) = 0.5
(i.e., X̄ = 0.1, p-value = 0.31). The classic fallacy
is to take a failure to reject the null as evidence of
0 discrepancy from the null: the problem is there are
always discrepancies that the test had little capacity to
detect. A popular gambit intended to avoid this would

note that d(x0) = 0.5 is as close (statistically) to 0 as
it is to 0.2—the “counternull” hypothesis (Rosenthal
and Rubin, 1994). But this is yet to tell us which
discrepancies we are warranted in ruling out, whereas
severity does. In particular, µ ≤ 0.4 and µ ≤ 0.5 pass
with high severity (0.93 and 0.97).

The post-data severity assessments are still based
on standard error probabilities, but they are evaluated
relative to the observed value of the test statistic.
Viewing N–P tests from the severe testing perspective,
we see that the real value of being able to control
error probabilities at small values is not the desire to
have a good track record in the long run—although
such a long-run justification is still available (and in
several contexts may be perfectly apt). It is, rather,
because of how this lets us severely probe, and thereby
understand correctly, the process underlying the data in
front of us.
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Comment
Luis R. Pericchi

Professor Berger, in his 2001 Fisher Lecture, pro-
poses a new foundation to the ubiquitous subject of
precise hypothesis testing. The thrusts of the article
are both philosophical and scientific, proposing a col-
lective search that will hopefully embrace statisticians
from the main philosophical schools, and one that in-
corporates fundamental elements of each. The emerg-
ing new synthesis would produce methodology and
measures of evidence over which statisticians might
agree and that, most importantly, will move scientific
practice to a superior level, improving the service of
statistics to science on the subject of testing, on which
arguably there is most confusion and malpractice. My
view is that the author makes a compelling case for
the simplest case of testing: a simple hypothesis versus
a simple alternative. Far from solving all open ques-

Luis R. Pericchi is Professor, Department of Mathe-
matics and Computer Science, University of Puerto
Rico, Rio Piedras, Puerto Rico 00931-3355 (e-mail:
pericchi@goliath.cnnet.clu.edu).

tions for more complicated situations, the author puts
forward an eclectic research program which is both
promising and timely, and which will be beneficial for
statistics as a whole and for science as a consequence.
The building block is the conditional viewpoint of sta-
tistics and Jeffreysian measures of error are the key to
choose on which statistics to condition. If this program
is successful in this most controversial subject, a new
face of statistics will emerge in the form of a superior
synthesis, with an enlarged Bayesian and particularly
Jeffreysian component, but one that will accommodate
Fisherian and Neymanian aspects as well. I will elabo-
rate on some points. Overall I envision that what Pro-
fessor Berger is proposing at this point will be theory
and practice in the not so far future.

TWO HISTORICAL AGREEMENTS

Shortly after the final edition of Jeffreys’ (1961) The-
ory of Probability book, Welch and Peers (1963) pro-
duced an agreement: They proved that for univariate
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regular parametric likelihoods, the Jeffreys rule for se-
lecting an objective (typically improper) prior for es-
timation is the optimal prior in the sense that confi-
dence level and posterior probability for intervals will
agree fastest as the sample size grows. This result set
up an agenda for eclectic work in more complex sit-
uations, and the now established theory of frequen-
tist matching priors is still being developed. Whereas,
for multidimensional priors, it is not the Jeffreys rule
which gives the optimum, but refinements of them like
reference and other priors, the result gave an unex-
pected new justification of the Jeffreys rule in unidi-
mensional situations (originally developed by Jeffreys
on parameter invariance requirements) and for objec-
tive Bayesian thinking in general. A second agreement
was reported by Berger, Brown and Wolpert (1994),
who assumed a conditional frequentist viewpoint for
simple versus simple testing and showed that by con-
ditioning on the likelihood ratio (equal to the Bayes
factor in this setting), the conditional frequentist error
probabilities equal the Bayesian posterior probabilities
of error. As with Welch and Peers, this result set up an
agenda for new agreement: even if it is bound to re-
quire subtleties and modifications for more general sit-
uations, the agenda is there. Subsequent articles have
advanced the theory somewhat, but there is still a lot to
be done. I believe that the agenda will gain momentum
for two reasons. First, the disagreement in testing is far
more important than in interval estimation. Second, be-
cause the schools of statistics now talk much more to
each other and fight less.

EFFECT OF THE DISAGREEMENT

A lot has been written to criticize unconditional
tests (as summaries of evidence) and p-values (as
error probabilities) as compared with too little that
has been made, particularly in textbooks that are
actually used at an elementary level, to improve these
widespread practices. I believe that the reasons for
this are basically (1) the nonexistence of general
methodological alternatives and, importantly, (2) what
Professor Berger calls the disagreement. (The second
reason may be claimed to be even more important,
since it may prevent a collective search for general
alternatives and keep stock with the old practices.)
Other suggestions for agreement have been discussed,
for example, by Cox and Hinkley (1974), that either
change the prior or change the α-level of the test
with the sample size. But Professor Berger’s proposal
seems to be the first to incorporate simultaneously

essential concepts from the three main schools of
statistics.

ASPECTS OF THE LECTURE

The aim of the Lecture appears to be nothing less
than to change the whole subject of statistical testing
of a precise hypothesis by all schools of statistical
thought via a new and superior synthesis. Only if
this is achieved can the general practice of statistical
evidence of scientific hypothesis be changed, yielding
conclusions on which statisticians and—later, perhaps
much later—scientists may agree. An avenue of basic
agreement must be found prior to the possibility of
changing widespread inferior practice.

The basic point of view is that the conditional view-
point of statistics is correct, both from a Bayesian
and from a frequentist perspective. It is, therefore, the
fundamental concept that may yield a unifying, all-
embracing method for agreement in general method-
ology, but that in the case of a precise null hypothe-
sis has a most difficult trial. In fact, Professor Berger
called the conditional Bayesian approach the most use-
ful viewpoint in his book (Berger, 1985a). Bayesian is
certainly not the only conditional approach, but it is the
most structured one and thus the least complicated to
implement. This fact, outlined in Berger, Brown and
Wolpert (1994) and masterfully discussed in this Lec-
ture, is a landmark that opens up a promising avenue
for unification on this (conceptually) difficult prob-
lem.

The style of the Lecture is the style attributed to
Hegel by Goethe: To place yourself in the horizon
of your adversaries and refute them with their own
words and concepts. In the important and ubiquitous
scientific problem of testing a precise hypothesis, the
concepts are more important than the conclusions; this
differs from estimation. It has to differ if unification is
deemed possible, since the conclusions in testing are
in fundamental disagreement. The adversaries are to
be found, however, in several camps: pure Fisherian,
Neymanian and even Bayesians.

An original mathematical aspect of the Lecture is to
condition on the maximum of p-values, rather than the
traditional motivation of conditioning on the value of
the likelihood ratio. This makes it even more attractive
and compelling in the simple versus simple hypothesis
case.

I anticipate that immediate effects of this Lecture
will be to influence Bayesians and to give more credi-
bility to Bayes factors. Some Bayesians at some point
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TABLE 1
The conditional test at work, showing sensible decisions and conditional error probabilities which are equal

to the posterior probabilities of the rejected model

Unconditional Conditional p-values

x̄ = 1.645/
√

n n Decision α β Decision αc βc p0 p1

0.74 5 Reject 0.05 0.28 Reject 0.23 0.05 0.28
0.52 10 Reject 0.05 0.06 Reject 0.45 0.05 0.06
0.42 15 Reject 0.05 0.013 Accept 0.23 0.05 0.013
0.37 20 Reject 0.05 0.002 Accept 0.07 0.05 0.002
0.33 25 Reject 0.05 0.000 Accept 0.01 0.05 0.000

in their lives have misunderstood the so-called Lind-
ley paradox. The reasoning, even made by quite a few
Bayesians, is that the Lindley paradox is caused by the
often unjustifiable assumption of a positive probability
of a set of measure zero—in this case the null hypoth-
esis. Thus, the reasoning goes, the Bayes factor is at
fault and should be replaced by a different statistic with
a different asymptotic behavior. (The disagreement is
also present in Bayesian quarters!) This reasoning is
simply wrong. A simple counterexample is the follow-
ing: Assume a random Normal sample with variance 1
and H0 : mean = 0 versus H1 : mean = 1.

Here the prior is the natural prior P(H0)= P(H1)=
1/2. The conditional test (see Table 1) and the Bayes
factor naturally select H0 iff x̄ < 1/2, the midpoint be-
tween the hypotheses. The conditional test appears to
be more sensible from both frequentist and Bayesian
outlooks. This is Lindley’s paradox: As evidence ac-
cumulates, Bayesian posterior probabilities (and now
also conditional frequentist testing) will tend to dif-
fer more with unconditional testing both in the deci-
sion taken and the errors reported. Furthermore, it is
clear in the example that it is the conditional frequentist
and Bayesian posterior probability output which make
sense. Certainly this is a simplistic example, but if an
approach fails in the simplest of examples, is it suspect
in a more complex situation?

Bayesian positions might be classified broadly into
two categories (still another classification of Bayes-
ians): those who envision that the world eventually
will be 100% Bayesian and those who more humbly
(and certainly with more political instinct) insist that
a new synthesis (sometimes called a compromise) will
be the world of the future. This new synthesis, is bound
to have a fundamental, if not dominant, Bayesian
basic reasoning, but with varied frequentist aspects
incorporated. This Lecture gives substantial weight to
the latter position. In itself, this Lecture gives partial

proof that a new and still unwritten synthesis is the
future.

SOME OPEN PROBLEMS

I mentioned before that a main reason for lack of a
conditional replacement for unconditional frequentist
testing and p-values is the nonexistence of a general
conditional alternative. Since the shortest route to this
alternative is the development of general approaches to
objective priors for testing, it follows that developing
objective priors for Bayes factors is the most serious
hurdle. Once resolved, conditioning on them would
be the natural extension of this line of work. Recent
developments in intrinsic, fractional and EP priors
seem to me to be the most natural candidates to
pursue. Another point that I have not mentioned is
the consequences that conditional testing will have
in the stopping rule principle. I think that extensions
to sequential testing in general settings are bound to
be more difficult to foresee at this point. One reason
for this is that, even though for precise hypotheses
the resulting conditional test obeys the stopping rule
principle, accepted priors as reference priors in non-
sequential settings actually depend on the stopping
rule. Thus sequential testing under this fresh thinking,
masterfully exposed by Professor Berger, is going to be
very exciting!

A FINAL COMMENT

There seems to be some room for approximations
here. Schwarz’s Bayesian information criterion (BIC)
is a rough approximation to Bayes factors, and is
simple and easy to use. For the class of problems
on which the BIC is safe, using it instead of a
proper Bayes factor may produce an easily reachable
substantial extension of the method.
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Comment
N. Reid

Methods to reconcile different approaches to infer-
ence are needed and much welcomed. As researchers in
substantive areas increasingly use more complex statis-
tical analyses, and become more knowledgeable in sta-
tistics, the perceived discord between Bayesian and fre-
quentist approaches seems to loom larger than it does
in the statistical community. I think this causes con-
fusion and frustration among researchers, much as the
introduction to inference causes confusion and frustra-
tion among students. In my view, the most promising
route to a compromise is to derive Bayesian inference
procedures that can also be justified by their behav-
ior in repeated sampling from the model. This article
outlines such a route in the context of testing a null
hypothesis. Recent work on so-called matching priors
attempts to identify Bayesian posterior probability in-
tervals that also have an interpretation as confidence
intervals.

The Neyman approach to testing is a mathemati-
cal device designed, I believe, to generate test statis-
tics for highly structured settings and should not be
used as a basis for inference in a particular problem.
It is unfortunate that there are still elementary text-
books recommending rejection of null hypotheses at
level 0.05, but I do not believe Neyman would have
used his work in such a prescriptive and dogmatic way.
On the other hand, p-values have always seemed to
me a sensible and constructive way to assess whether
or not the data at hand are broadly consistent with a hy-
pothesized model. The fact that they may be incorrectly
interpreted by a broader public is dismaying, but not
necessarily their death knell. In recent work with Don
Fraser, we emphasized the role of the p-value regarded
as a function of a parameter of interest in constructing
confidence intervals at any desired level of confidence.

N. Reid is Professor, Department of Statistics, Univer-
sity of Toronto, Toronto, Ontario, Canada M5S 3G3
(e-mail: reid@utstat.toronto.ca).

In fact I think that the main role of testing should be
in providing confidence sets or regions through inver-
sion, although I appreciate that many practitioners do
not use p-values, or testing, in this way.

For these reasons I was personally interested in the
prospect of Fisher/Jeffreys agreement and less con-
cerned with the possibility of constructing conditional
Type I errors. In fact I do not agree with Berger that
p-values are misinterpreted as Type I errors, although
I do believe they are misinterpreted as posterior proba-
bilities that the null hypothesis is true. Thus a method
that more closely aligns p-values with posterior prob-
abilities is to be welcomed.

As far as I can tell, though, the Fisher/Jeffreys agree-
ment is essentially to have Fisher acknowledge Jef-
freys was correct. In the highly artificial case of testing
a simple null hypothesis against a simple alternative,
Berger argues that the posterior probability of the null
can be interpreted as the maximum of two p-values.
While an interesting link, it seems difficult to gener-
alize this to more realistic settings. It is argued here
and in related work that one solution is to recalibrate
p-values so that they have an interpretation as poste-
rior probabilities; in the absence of other information
about the alternative, to use the recalibration that re-
places the p-value with α(p) = Pr(H0|x). It seems to
me that this means that the result of applying T C to
Example 1 is to replace the p-value of 0.021 or 0.0037
by the posterior probabilities 0.28 or 0.11, or perhaps
some probabilities slightly different, obtained by using
a slightly different prior, but roughly the same order
of magnitude. Extending the method to composite null
hypotheses seems to require basically a full Bayesian
analysis, and the connection to p-values becomes even
more remote.
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Rejoinder
James O. Berger

I enjoyed reading the discussions and am grateful
to the discussants for illuminating the problem from
interestingly different perspectives. Surprisingly, there
was little overlap in the comments of the discussants,
and so I will simply respond to their discussions in
order. As usual, I will primarily restrict my comments
to issues of disagreement or where elaboration would
be useful.

RESPONSE TO PROFESSOR CHRISTENSEN

Christensen argues for the Bayesian and likelihood
approaches to testing when one has an alternative
hypothesis, and I do not disagree with what he says.
Indeed, one of the purposes of this article was to show
that frequentists, through the conditional approach, can
also enjoy some of the benefits of better interpretability
to which Christensen refers.

Christensen mostly discusses the interesting issue of
model validation when a parametric alternative hypoth-
esis is not available. In Section 5 of the article, I dis-
cussed two ways to approach this problem, designed
to overcome the difficulty of seemingly having to de-
pend on p-values in such situations. Christensen also
notes the difficulty in choosing a test statistic for model
validation; see Bayarri and Berger (2000) for relevant
discussion on this point.

RESPONSE TO PROFESSOR JOHNSON

Johnson reminds us that, in many problems such
as screening tests, it is not uncommon for nulls to be
true—even when their p-values are small—because of
the magnitude of the prior probabilities of hypotheses
that are typically encountered in the area. This is
indeed important to keep in mind, but the misleading
nature of p-values is apparent even if hypotheses have
equal prior probabilities.

Johnson next mentions an interesting problem in
risk analysis in which the null hypothesis is composite
and the alternative is simple. As briefly mentioned in
Section 5.4, handling this within the testing framework
of the article would require use of a prior distribution
on the composite model and would result in the

posterior probability of the null being equal to an
“average conditional Type I error.” Use of an average
Type I error is not common frequentist practice, so
adoption of the suggested procedure by frequentists,
in this situation, would likely be problematical. Of
course, reporting Type I error as a function of the
parameter is not common either and is not practically
appealing. (Johnson’s example is one in which taking
the sup of the Type I error over the null parameter space
would also not be practically appealing.) If one did so,
it would seem necessary to indicate which parameter
values were deemed to be of particular interest, and it
is then a not-so-big step to write down a distribution
(call it a prior or a weighting function) to reflect
the parameters of interest, implement the conditional
frequentist test and report the average Type I error.

Johnson also raises the important issue that the mis-
leading nature of p-values, from a Bayesian perspec-
tive, becomes more serious as the sample size in-
creases. One nice feature of the conditional frequentist
approach is its demonstration of this fact purely from
the frequentist perspective (since the conditional fre-
quentist Type I error probability equals the Bayesian
posterior probability). Johnson wonders if this can also
be applied to a regression model with large sample size
and 20 covariates. The answer is, unfortunately, no, in
that efforts to develop an analog of the conditional fre-
quentist testing methodology for multiple hypotheses
have not been successful. Indeed, Gönen, Westfall and
Johnson (2003) indicated one of the problems in at-
tempting to do this, namely, the crucial and delicate
way that the prior probabilities of the multiple hypothe-
ses can enter into the analysis.

Johnson reminds us that, while objective statistical
methodology certainly can have its uses, we would of-
ten be better off to embrace the subjective Bayesian
approach in practice. I agree, although my own prac-
tical experience is that a mixed approach is typically
needed; it is often important to introduce some subjec-
tive information about key unknowns in a problem, but
other unknowns have to be treated in a default or ob-
jective fashion.
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RESPONSE TO PROFESSOR LAVINE

Lavine presents several interesting examples related
to the incoherence of objective Bayesian testing, when
“objective” is defined to mean, for instance, that each
hypothesis is given equal prior probability. Incoheren-
cies can then arise when one of the hypotheses is a
union of other hypotheses, and these hypotheses are
subsequently tested separately, without the prior mass
for the original hypothesis being divided among the
subhypotheses.

Within objective Bayesian testing, this is not a seri-
ous practical problem, in that it is understood that ob-
jective Bayesians may need to be more sophisticated
than using the naive “equal prior probability of hy-
potheses” assumption (in much the same way that it is
well understood that always using a constant prior den-
sity for parameters is not good objective Bayesian prac-
tice). Alas, the “cure for incoherency” for conditional
frequentist testing is not so simple and, indeed, may not
be possible. This is because the frequentist–Bayesian
unification for testing two hypotheses seems to work
well only with equal prior probabilities of hypotheses
(see Berger, Brown and Wolpert, 1994) and, as men-
tioned earlier, effectively dealing with more than two
hypotheses in the conditional frequentist testing para-
digm has proven to be elusive. My current view on this
issue is that the conditional frequentist approach elim-
inates the greatest source of incoherency in frequentist
testing and hence is much better in practice, but does
not eliminate all incoherency.

Lavine asks, “Is methodological unification a good
thing?”, and suggests that it is not. However, he is refer-
ring to the issue that there can be a variety of concep-
tually quite different testing goals and that each sepa-
rate goal might require a different analysis. This is very
different from saying that, for testing with a particu-
lar goal in mind, it is okay to have methodologies that
yield very different answers; this last, I argue, is highly
undesirable for statistics. Now it could be that each of
the different testing methodologies is the right answer
for one of the particular testing goals, but I do not think
so. Thus, even accepting Lavine’s thesis that there are
four distinct testing scenarios, I would argue that each
should ideally have its own unified testing methodol-
ogy.

RESPONSE TO PROFESSOR LELE

Lele suggests that the unification of having different
statistical approaches produce the same numbers is
not satisfactory, when the interpretations of these

numbers are quite different. As a general point this
might be true, but let us focus on the unified testing
situation: The conditional frequentist will choose to
interpret an error probability of 0.04 in terms of
a long-run frequency and the Bayesian, in terms
of posterior probability. Producing the same number
simply means that either interpretation is valid for the
given test. My view is that inferential statements that
have two (or more) powerful supporting interpretations
are considerably stronger than inferences that can be
justified only from one perspective.

Lele is concerned with the use of p-values to mea-
sure the “strength of evidence in the data” and refers to
some of the many arguments in the literature which in-
dicate that p-values are poor measures of evidence. In-
deed, perhaps the primary motivation for this article is
precisely that p-values are poor measures of evidence
about the comparative truth of hypotheses, which is
what is addressed in the literature to which Lele refers.
In this article, p-values are used in a quite differ-
ent fashion, however—not to compare hypotheses, but
rather to measure the strength of the generic informa-
tion content in the data within a specific test: Saying
that data for which p0 = 0.04 has the same generic
strength of evidence as the data for which p1 = 0.04, in
a specific test under consideration, is a comparatively
mild evidential statement. (This is like saying, in esti-
mation of a normal mean µ, that the strength of evi-
dence in the data is measured by S/

√
n; it says nothing

directly about µ, the quantity of interest.) In response
to another of Lele’s questions, the ratio of p-values has
no role in the analysis.

Of course, Lele is correct that other measures of
strength of evidence in the data, such as likelihood ra-
tio, could be used to develop conditioning statistics.
Indeed, I mentioned a variety of these possibilities in
Section 5.2. I specifically did mention Birnbaum’s at-
tempt to use likelihood ratio to define a conditioning
statistic and I pointed out that it often fails to give sat-
isfactory answers, as Birnbaum himself noted. (Likeli-
hood ratio is a great measure of the comparative sup-
port that the data has for hypotheses, but fails to pro-
vide adequate conditioning statistics in the conditional
frequentist paradigm.) Lele further asks how to choose
from among the myriad possible conditioning statis-
tics. The main point of the article is that one should
use the p-value conditioning statistic, because it is the
only choice that achieves the unification of viewpoints.

Here are answers to a number of Lele’s other
questions.
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• The development of conditional error probabilities
implicitly assumes that one of the hypotheses is cor-
rect. Bayesian testing can be given an interpretation
in terms of which hypothesis is closest to the true
hypothesis, but I do not know of any such interpre-
tation for conditional frequentist testing.

• Dass and Berger (2003) indicated how sample size
and design questions should be addressed in the con-
ditional frequentist framework. Central is the notion
that one should design so as to achieve conditional
frequentist (or Bayesian) inferential goals.

• There is already a vast literature on unification
of frequentist and Bayesian confidence sets, as
mentioned in the discussions by Pericchi and Reid,
so there was no reason to look at this problem first,
as Lele proposes.

• The use of the alternative hypothesis, in our defini-
tion of p-values, is limited to utilization of the like-
lihood ratio test statistic to define the p-values.

• Since the proposed conditional frequentist error
probabilities equal the objective Bayesian posterior
probabilities of hypotheses, they clearly are compat-
ible with the likelihood principle. However, there is
a slight violation of the likelihood principle in that
the critical value for the test will depend on the full
sampling models under consideration. This has very
little practical import, however, in that the CEPs for
data near the critical value will be large, leading to
the clear conclusion that there is no substantial ev-
idence in favor of either of the hypotheses for such
data.

• Lele suggests that the unification achieved here is
simply an attempt to modify frequentist theory so
that it agrees with Bayesian theory. That is not
an accurate characterization, in that unification of
conditional frequentist and Bayesian methodology
is always essentially unique, and the goal of this
line of research (also mentioned by Pericchi and
Reid) is to discover an essentially unique unified
methodology (if it exists at all). It is interesting
that, until Berger, Brown and Wolpert (1994), it was
felt that unification in the testing domain was not
possible.

RESPONSE TO PROFESSOR MAYO

I like Mayo’s phrase “innocence by association.”
Alas, her discussion reflects the more standard “guilt
by association.” I have, in the past, often written
about difficulties with p-values and unconditional error
probabilities, and instead advocated use of posterior

probabilities of hypotheses or Bayes factors. It is
perhaps because of this history that Mayo begins the
substantive part of her discussion with the statement
that, “In contrast [to frequentist error probabilities],
Berger’s CEPs refer to the posterior probabilties of
hypotheses under test . . . .”

In actuality, all the CEPs in the article are found by
a purely frequentist computation, involving only the
sampling distribution. It is noted in the article that these
fully frequentist error probabilities happen to equal
the objective Bayesian posterior probabilities, but this
does not change their frequentist nature in any respect.
(Likewise, it would not be reasonable to reject all
standard frequentist confidence sets in the linear model
just because they happen to coincide with objective
Bayesian credible sets.) As another way of saying this,
note that one could remove every reference to Bayesian
analysis in the article and what would be left is simply
the pure frequentist development of CEPs. Indeed,
I originally toyed with writing the article this way—
bringing in the relationship to Bayesian analysis only
at the end—to try to reduce what I feared would be
guilt by association.

Mayo’s discussion then turns to a critique of Bayes-
ian testing. Were this a Bayesian article, rather than
an article primarily about a frequentist procedure,
I would happily defend Bayesian analysis from these
criticisms. I will refrain from doing so here, however,
since such a defense would inevitably distract from
the message that pure frequentist reasoning should
result in adoption of the recommended CEPs. Many
of Mayo’s other comments also reflect this confusion
about the frequentist nature of CEPs, and it would be
repetitive if I responded to each. Hence I will confine
myself to responding to a few other comments that
Mayo makes.

• Why should the frequentist school have exclusive
right to the term “error probability?” It is not
difficult to simply add the designation “frequentist”
(or Type I or Type II) or “Bayesian” to the term to
differentiate between the schools.

• The applet is mentioned mainly as a reference for
those who seek to improve their intuition concerning
the behavior of p-values. (To paraphrase Neyman,
can it be wrong to study how a concept works
in repeated use?) In particular, none of the logic
leading to CEPs is based on the applet.

• Mayo finds the stated frequentist principle to be
vaguely worded and indeed it is. It does, however,
convey what I believe to be the essence of the princi-
ple; see, for instance, Section 10 of Neyman (1977),
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which gives a considerably expanded discussion of
this version of the principle. I neglected to say that
the frequentist principle can be applied separately to
Type I errors and Type II errors, which is precisely
what is done by CEPs.

• Mayo asserts that Neyman, Pearson and Fisher all
thought that p-values are “legitimate error proba-
bilities” (which, because of my first listed comment
above, presumably means “frequentist error proba-
bilities”). My reading of the literature is quite the
opposite—that this was perhaps the most central el-
ement of the Neyman–Fisher debate, with Neyman
opposing p-values because they are not predesig-
nated (and hence cannot have a long-run frequency
interpretation in actual use) and Fisher asserting
that insistence on predesignated error probabilities
is misguided in science.

• Mayo finishes with an introduction to “severity and a
postdata interpretation of N–P tests,” a development
apparently aimed at bringing postdata assessment
into N–P testing. Since CEPs provide postdata
frequentist error probabilities based on essentially
standard concepts (e.g., Type I and Type II error and
conditioning), I do not see a need for anything more
elaborate.

RESPONSE TO PROFESSOR PERICCHI

I certainly agree with Pericchi’s historical perspec-
tive and elaborations on the need for unification in test-
ing. I also agree with his assessment that a complete
overhaul of statistical testing is necessary, with uncon-
ditional tests (and/or p-values) being replaced by con-
ditional tests. It would be nice if the conditional fre-
quentist paradigm would itself be sufficient for this
retooling of testing, in that the task would then not
be diverted by ideology. Unfortunately, the conditional
frequentist testing theory is hard to extend in many
ways (e.g., to the case of multiple hypotheses).

Pericchi does point out two scenarios where there is
real potential for progress on the conditional frequen-
tist side: sequential testing (Paulo, 2002b, is relevant
here) and use of approximations such as BIC. However,
in general, I suspect that the main use of conditional
frequentist arguments will be to demonstrate that ob-
jective Bayesian testing does have a type of frequentist
validity, thus making it also attractive to frequentists
who recognize the centrality of conditioning.

RESPONSE TO PROFESSOR REID

Reid also emphasizes the value in a Bayesian–
frequentist unification, and properly observes the im-
portance of p-values as a technical tool for a wide

variety of statistically important calculations. I quite
agree; indeed, the article demonstrates another impor-
tant technical use of p-values, in defining the condi-
tioning statistic for the proposed conditional frequen-
tist tests.

It is interesting that Reid has not observed frequent
misinterpretation of p-values as Type I error probabil-
ities, but rather has observed their frequent misinter-
pretation as posterior probabilities. Individuals’ expe-
riences are quite different in this regard; for instance,
Hubbard (2000) recounts that the main problem in the
management science literature is the misinterpretation
of p-values as Type I error probabilities.

Reid mentions the issue of extending the analysis to
composite null hypotheses, and worries that it requires
essentially a full Bayesian analysis. Luckily, most
classical composite null hypotheses have an invariance
structure that allows reduction to a point null for
conditional frequentist testing, as shown in Dass and
Berger (2003).
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