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Abstract. Fisher is the single most important figure in 20th century
statistics. This talk examines his influence on modern statistical think-
ing, trying to predict how Fisherian we can expect the 21st century to
be. Fisher’s philosophy is characterized as a series of shrewd compro-
mises between the Bayesian and frequentist viewpoints, augmented by
some unique characteristics that are particularly useful in applied
problems. Several current research topics are examined with an eye
toward Fisherian influence, or the lack of it, and what this portends for
future statistical developments. Based on the 1996 Fisher lecture, the
article closely follows the text of that talk.
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1. INTRODUCTION

Even scientists need their heroes, and R. A. Fisher
was certainly the hero of 20th century statistics.
His ideas dominated and transformed our field to
an extent a Caesar or an Alexander might have
envied. Most of this happened in the second quarter
of the century, but by the time of my own education
Fisher had been reduced to a somewhat minor
figure in American academic statistics, with the
influence of Neyman and Wald rising to their high
water mark.

There has been a late 20th century resurgence of
interest in Fisherian statistics, in England where
his influence never much waned, but also in Amer-
ica and the rest of the statistical world. Much of
this revival has gone unnoticed because it is hidden
behind the dazzle of modern computational meth-
ods. One of my main goals here will be to clarify
Fisher’s influence on modern statistics. Both the
strengths and limitations of Fisherian thinking will
be described, mainly by example, finally leading up
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to some speculations on Fisher’s role in the statisti-
cal world of the 21st century.

What follows is basically the text of the Fisher
lecture presented to the August 1966 Joint Statisti-
cal meetings in Chicago. The talk format has cer-
tain advantages over a standard journal article.
First and foremost, it is meant to be absorbed
quickly, in an hour, forcing the presentation to
concentrate on main points rather than technical
details. Spoken language tends to be livelier than
the gray prose of a journal paper. A talk encourages
bolder distinctions and personal opinions, which
are dangerously vulnerable in a written article but
appropriate I believe for speculations about the
future. In other words, this will be a broad-brush
painting, long on color but short on detail.

These advantages may be viewed in a less favor-
able light by the careful reader. Fisher’s mathemat-
ical arguments are beautiful in their power and
economy, and most of that is missing here. The
broad brush strokes sometimes conceal important
areas of controversy. Most of the argumentation is
by example rather than theory, with examples from
my own work playing an exaggerated role. Refer-
ences are minimal, and not indicated in the usual
author—year format but rather collected in anno-
tated form at the end of the text. Most seriously,
the one-hour limit required a somewhat arbitrary
selection of topics, and in doing so I concentrated on
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those parts of Fisher’s work that have been most
important to me, omitting whole areas of Fisherian
influence such as randomization and experimental
design. The result is more a personal essay than a
systematic survey.

This is a talk (as I will now refer to it) on Fisher’s
influence, not mainly on Fisher himself or even his
intellectual history. A much more thorough study of
the work itself appears in L. J. Savage’s famous
talk and essay, “On rereading R. A. Fisher,” the
1971 Fisher lecture, a brilliant account of Fisher’s
statistical ideas as sympathetically viewed by a
leading Bayesian (Savage, 1976). Thanks to John
Pratt’s editorial efforts, Savage’s talk appeared,
posthumously, in the 1976 Annals of Statistics. In
the article’s discussion, Oscar Kempthorne called it
the best statistics talk he had ever heard, and
Churchill Eisenhart said the same. Another fine
reference is Yates and Mather’s introduction to the
1971 five-volume set of Fisher’s collected works.
The definitive Fisher reference in Joan Fisher Box’s
1978 biography, The Life of a Scientist.

It is a good rule never to meet your heroes. I
inadvertently followed this rule when Fisher spoke
at the Stanford Medical School in 1961, without
notice to the Statistics Department. The strength of
Fisher’s powerful personality is missing from this
talk, but not I hope the strength of his ideas. Heroic
is a good word for Fisher’s attempts to change
statistical thinking, attempts that had a profound
influence on this century’s development of statistics
into a major force on the scientific landscape. “What
about the next century?” is the implicit question
asked in the title, but I won’t try to address that
question until later.

2. THE STATISTICAL CENTURY

Despite its title, the greater portion of the talk
concerns the past and the present. I am going to
begin by looking back on statistics in the 20th
century, which has been a time of great advance-
ment for our profession. During the 20th century
statistical thinking and methodology have become
the scientific framework for literally dozens of fields,
including education, agriculture, economics, biology
and medicine, and with increasing influence re-
cently on the hard sciences such as astronomy,
geology and physics.

In other words, we have grown from a small
obscure field into a big obscure field. Most people
and even most scientists still don’t know much
about statistics except that there is something good
about the number “.05” and perhaps something bad
about the bell curve. But I believe that this will
change in the 21st century and that statistical

methods will be widely recognized as a central
element of scientific thinking.

The 20th century began on an auspicious statisti-
cal note with the appearance of Karl Pearson’s
famous x? paper in the spring of 1900. The
groundwork for statistics’s growth was laid by a
pre—World War II collection of intellectual giants:
Neyman, the Pearsons, Student, Kolmogorov,
Hotelling and Wald, with Neyman’s work being
especially influential. But from our viewpoint at the
century’s end, or at least from my viewpoint, the
dominant figure has been R. A. Fisher. Fisher’s
influence is especially pervasive in statistical appli-
cations, but it also runs through the pages of our
theoretical journals. With the end of the century in
view this seemed like a good occasion for taking
stock of the vitality of Fisher’s legacy and its poten-
tial for future development.

A more accurate but less provocative title for this
talk would have been “Fisher’s influence on modern
statistics.” What I will mostly do is examine some
topics of current interest and assess how much
Fisher’s ideas have or have not influenced them.
The central part of the talk concerns six research
areas of current interest that I think will be impor-
tant during the next couple of decades. This will
also give me a chance to say something about the
kinds of applied problems we might be dealing with
soon, and whether or not Fisherian statistics is
going to be of much help with them.

First though I want to give a brief review of
Fisher’s ideas and the ideas he was reacting to. One
difficulty in assessing the importance of Fisherian
statistics is that it’s hard to say just what it is.
Fisher had an amazing number of important ideas
and some of them, like randomization inference and
conditionality, are contradictory. It’s a little as if in
economics Marx, Adam Smith and Keynes turned
out to be the same person. So I am just going to
outline some of the main Fisherian themes, with no
attempt at completeness or philosophical reconcilia-
tion. This and the rest of the talk will be very short
on references and details, especially technical de-
tails, which I will try to avoid entirely.

In 1910, two years before the 20-year-old Fisher
published his first paper, an inventory of the statis-
tics world’s great ideas would have included the
following impressive list: Bayes theorem, least
squares, the normal distribution and the central
limit theorem, binomial and Poisson methods for
count data, Galton’s correlation and regression,
multivariate distributions, Pearson’s y2 and Stu-
dent’s ¢. What was missing was a core for these
ideas. The list existed as an ingenious collection of
ad hoc devices. The situation for statistics was
similar to the one now faced by computer science.
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In Joan Fisher Box’s words, “The whole field was
like an unexplored archaeological site, its structure
hardly perceptible above the accretions of rubble,
its treasures scattered throughout the literature.”

There were two obvious candidates to provide a
statistical core: “objective” Bayesian statistics in
the Laplace tradition of using uniform priors for
unknown parameters, and a rough frequentism ex-
emplified by Pearson’s y2? test. In fact, Pearson
was working on a core program of his own through
his system of Pearson distributions and the method
of moments.

By 1925, Fisher had provided a central core for
statistics—one that was quite different and more
compelling than either the Laplacian or Pearsonian
schemes. The great 1925 paper already contains
most of the main elements of Fisherian estimation
theory: consistency; sufficiency; likelihood; Fisher
information; efficiency; and the asymptotic optimal-
ity of the maximum likelihood estimator. Partly
missing is ancillarity, which is mentioned but not
fully developed until the 1934 paper.

The 1925 paper even contains a fascinating and
still controversial section on what Rao has called
the second order efficiency of the maximum likeli-
hood estimate (MLE). Fisher, never really satisfied
with asymptotic results, says that in small samples
the MLE loses less information than competing
asymptotically efficient estimators, and implies that
this helps solve the problem of small-sample infer-
ence (at which point Savage wonders why one
should care about the amount of information in a
point estimator).

Fisher’s great accomplishment was to provide an
optimality standard for statistical estimation—a
yardstick of the best it’s possible to do in any given
estimation problem. Moreover, he provided a practi-
cal method, maximum likelihood, that quite reli-
ably produces estimators coming close to the ideal
optimum even in small samples.

Optimality results are a mark of scientific matu-
rity. I mark 1925 as the year statistical theory
came of age, the year statistics went from an ad hoc
collection of ingenious techniques to a coherent dis-
cipline. Statistics was lucky to get a Fisher at the
beginning of the 20th century. We badly need an-
other one to begin the 21st, as will be discussed
near the end of the talk.

3. THE LOGIC OF STATISTICAL INFERENCE

Fisher believed that there must exist a logic of
inductive inference that would yield a correct an-
swer to any statistical problem, in the same way
that ordinary logic solves deductive problems. By
using such an inductive logic the statistician would

be freed from the a priori assumptions of the
Bayesian school.

Fisher’s main tactic was to logically reduce a
given inference problem, sometimes a very compli-
cated one, to a simple form where everyone should
agree that the answer is obvious. His favorite tar-
get for the “obvious” was the situation where we
observe a single normally distributed quantity x
with unknown expectation 6,

(1) x ~N(0,07),

the variance o2 being known. Everyone agrees,

says Fisher, that in this case, the best estimate is
0 = x and the correct 90% confidence interval for 0
(to use terminology Fisher hated) is

(2) 0+ 1.6450.

Fisher’s inductive logic might be called a theory of
types, in which problems are reduced to a small
catalogue of obvious situations. This had been tried
before in statistics, the Pearson system being a
good example, but never so forcefully nor success-
fully. Fisher was astoundingly resourceful at reduc-
ing problems to simple forms like (1). Some of the
devices he invented for this purpose were suffi-
ciency, ancillarity and conditionality, transfor-
mations, pivotal methods, geometric arguments,
randomization inference and asymptotic maximum
likelihood theory. Only one major reduction princi-
ple has been added to this list since Fisher’s time,
invariance, and that one is not in universal favor
these days.

Fisher always preferred exact small-sample re-
sults but the asymptotic optimality of the MLE has
been by far the most influential, or at least the
most popular, of his reduction principles. The 1925
paper shows that in large samples the MLE 6 of an
unknown parameter 6 approaches the ideal form

(D),
6> N, c?),

with the variance o? determined by the Fisher
information and the sample size. Moreover, no other
“reasonable” estimator of 6 has a smaller asymp-
totic variance. In other words, the maximum likeli-
hood method automatically produces an estimator
that can reasonably be termed “optimal,” without
ever invoking the Bayes theorem.

Fisher’s great accomplishment triggered a burst
of interest in optimality results. The most spectacu-
lar product of this burst was the Neyman-Pearson
lemma for optimal hypothesis testing, followed soon
by Neyman’s theory of confidence intervals. The
Neyman-Pearson lemma did for hypothesis testing
what Fisher’s MLE theory did for estimation, by
pointing the way toward optimality.
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Philosophically, the Neyman—Pearson lemma fits
in well with Fisher’s program: using mathematical
logic it reduces a complicated problem to an obvious
solution without invoking Bayesian priors. More-
over, it is a tremendously useful idea in applica-
tions, so that Neyman’s ideas on hypotheses testing
and confidence intervals now play a major role in
day-to-day applied statistics.

However, the success of the Neyman-Pearson
lemma triggered new developments, leading to a
more extreme form of statistical optimality that
Fisher deeply distrusted. Even though Fisher’s per-
sonal motives are suspect here, his philosophical
qualms were far from groundless. Neyman’s ideas,
as later developed by Wald into decision theory,
brought a qualitatively different spirit into statis-
tics.

Fisher’s maximum likelihood theory was
launched in reaction to the rather shallow Lapla-
cian Bayesianism of the previous century. Fisher’s
work demonstrated a more stringent approach to
statistical inference. The Neyman—-Wald decision
theoretic school carried this spirit of astringency
much further. A strict mathematical statement of
the problem at hand, often phrased quite narrowly,
followed by an optimal solution became the ideal.
The practical result was a more sophisticated form
of frequentist inference having enormous mathe-
matical appeal.

Fisher, caught I think by surprise by this flank-
ing attack from his right, complained that the Ney-
man-Wald decision theorists could be accurate
without being correct. A favorite example of his
concerned a Cauchy distribution with unknown
center

3) fi(x) = .
’ 71+ (x — 0)°]

Given a random sample x = (x,, x,,..., x,) from

(3), decision theorists might try to provide the

shortest interval of the form 6 + ¢ that covers the

true 0 with probability 0.90. Fisher’s objection,

BAYES
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spelled out in his 1934 paper on ancillarity, was
that ¢ should be different for different samples x
depending upon the correct amount of information
in x.

The decision theory movement eventually
spawned its own counter-reformation. The neo-
Bayesians, led by Savage and de Finetti, produced
a more logical and persuasive Bayesianism, empha-
sizing subjective probabilities and personal decision
making. In its most extreme form the Savage-de
Finetti theory directly denies Fisher’s claim of an
impersonal logic of statistical inference. There has
also been a postwar revival of interest in objectivist
Bayesian theory, Laplacian in intent but based on
Jeffreys’s more sophisticated methods for choosing
objective priors, which I shall talk more about later
on.
Very briefly then, this is the way we arrived at
the end of the 20th century with three competing
philosophies of statistical inference: Bayesian; Ney-
man—-Wald frequentist; and Fisherian. In many
ways the Bayesian and frequentist philosophies
stand at opposite poles from each other, with
Fisher’s ideas being somewhat of a compromise. I
want to talk about that compromise next because it
has a lot to do with the popularity of Fisher’s
methods.

4. THREE COMPETING PHILOSOPHIES

The chart in Figure 1 shows four major areas of
disagreement between the Bayesians and the fre-
quentists. These are not just philosophical dis-
agreements. I chose the four categories because
they lead to different behavior at the data-analytic
level. For each category I have given a rough indi-
cation of Fisher’s preferred position.

4.1 Individual Decision Making versus
Scientific Inference

Bayes theory, and in particular Savage—de Finetti
Bayesianism (the kind I’'m focusing on here, though
later I'll also talk about the Jeffreys brand of objec-

FREQUENTIST

***  Universal
(world of science)

Optimal
(accurate)

Analytic
(separation)

HkkkK Pessimistic

(defensive)

Fic. 1. Four major areas of disagreement between Bayesian and frequentist methods. For each one I have inserted a row of stars to

indicate, very roughly, the preferred location of Fisherian inference.
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tive Bayesianism), emphasizes the individual deci-
sion maker, and it has been most successful in
fields like business where individual decisions are
paramount. Frequentists aim for universal accep-
tance of their inferences. Fisher felt that the proper
realm of statistics was scientific inference, where it
is necessary to persuade all or at least most of the
world of science that you have reached the correct
conclusion. Here Fisher is far over to the frequen-
tist side of the chart (which is philosophically ac-
curate but anachronistic, since Fisher’s position
predates both the Savage-de Finetti and Ney-
man—-Wald schools).

4.2 Coherence versus Optimality

Bayesian theory emphasizes the coherence of its
judgments, in various technical ways but also in
the wider sense of enforcing consistency relation-
ships between different aspects of a decision-mak-
ing situation. Optimality in the frequentist sense is
frequently incoherent. For example, the uniform
minimum variance unbiased (UMVU) estimate of
exp{6} does not have to equal exp{the UMVU of 0},
and more seriously there is no simple calculus re-
lating the two different estimates. Fisher wanted to
have things both ways, coherent and optimal, and
in fact maximum likelihood estimation does satisfy

exp{6) = exp{6)}.

The tension between coherence and optimality is
like the correctness—accuracy disagreement con-
cerning the Cauchy example (3), where Fisher
argued strongly for correctness. The emphasis on
correctness, and a belief in the existence of a logic
of statistical inference, moves Fisherian philosophy
toward the Bayesian side of Figure 1. Fisherian
practice is a less clear story. Different parts of the
Fisherian program don’t cohere with each other
and in practice Fisher seemed quite willing to sacri-
fice logical consistency for a neat solution to a
particular problem, for example, switching back
and forth between frequentist and nonfrequentist
justifications of the Fisher information. This kind of
case-to-case expediency, which is a common at-
tribute of modern data analysis has a frequentist
flavor. I have located the Fisherian stars for this
category a little closer to the Bayesian side of Fig-
ure 1, but spreading over a wide range.

4.3 Synthesis versus Analysis

Bayesian decision making emphasizes the collec-
tion of information across all possible sources, and
the synthesis of that information into the final
inference. Frequentists tend to break problems into
separate small pieces that can be analyzed sepa-

rately (and optimally). Fisher emphasized the use
of all available information as a hallmark of correct
inference, and in this way he is more in sympathy
with the Bayesian position.

In this case Fisher tended toward the Bayesian
position both in theory and in methodology: maxi-
mum likelihood estimation and its attendant theory
of approximate confidence intervals based on Fisher
information are superbly suited to the combination
of information from different sources. (On the other
hand, we have this quote from Yates and Mather:
“In his own work Fisher was at his best when
confronted with small self-contained sets of
data. ...He was never much interested in the as-
sembly and analysis of large amounts of data from
varied sources bearing on a given issue.” They blame
this for his stubbornness on the smoking—cancer
controversy. Here as elsewhere we will have to view
Fisher as a lapsed Fisherian.)

4.4 Optimism versus Pessimism

This last category is more psychological than
philosophical, but it is psychology rooted in the
basic nature of the two competing philosophies.
Bayesians tend to be more aggressive and risk-tak-
ing in their data analyses. There couldn’t be a more
pessimistic and defensive theory than minimax, to
choose an extreme example of frequentist philoso-
phy. It says that if anything can go wrong it will. Of
course a minimax person might characterize the
Bayesian position as “If anything can go right it
will.”

Fisher took a middle ground here. He scorns the
finer mathematical concerns of the decision theo-
rists (“Not only does it take a cannon to shoot a
sparrow, but it misses the sparrow!”), but he fears
averaging over the states of nature in a Bayesian
way. One of the really appealing features of Fisher’s
work is its spirit of reasonable compromise, cau-
tious but not overly concerned with pathological
situations. This has always struck me as the right
attitude toward most real-life problems, and it’s
certainly a large part of Fisher’s dominance in sta-
tistical applications.

Looking at Figure 1, I think it is a mistake trying
too hard to make a coherent philosophy out of
Fisher’s theories. From our current point of view
they are easier to understand as a collection of
extremely shrewd compromises between Bayesian
and frequentist ideas. Fisher usually wrote as if he
had a complete logic of statistical inference in hand,
but that didn’t stop him from changing his system
when he thought up another landmark idea.

De Finetti, as quoted by Cifarelli and Regazzini,
puts it this way: “Fisher’s rich and manifold per-
sonality shows a few contradictions. His common
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sense in applications on one hand and his lofty
conception of scientific research on the other lead
him to disdain the narrowness of a genuinely objec-
tivist formulation, which he regarded as a wooden
attitude. He professes his adherence to the objec-
tivist point of view by rejecting the errors of the
Bayes—Laplace formulation. What is not so good
here is his mathematics, which he handles with
mastery in individual problems but rather cava-
lierly in conceptual matters, thus exposing himself
to clear and sometimes heavy criticism. From our
point of view it appears probable that many of
Fisher’s observations and ideas are valid provided
we go back to the intuitions from which they spring
and free them from the arguments by which he
thought to justify them.”

Figure 1 describes Fisherian statistics as a com-
promise between the Bayesian and frequentist
schools, but in one crucial way it is not a compro-
mise: in its ease of use. Fisher’s philosophy was
always expressed in very practical terms. He
seemed to think naturally in terms of computa-
tional algorithms, as with maximum likelihood esti-
mation, analysis of variance and permutation tests.
If anything is going to replace Fisher in the 21st
century it will have to be a methodology that is
equally easy to apply in day-to-day practice.

5. FISHER’S INFLUENCE ON
CURRENT RESEARCH

There are three parts to this talk: past, present
and future. The past part, which you have just
seen, didn’t do justice to Fisher’s ideas, but the
subject here is more one of influence than ideas,
admitting of course that the influence is founded on
the ideas’s strengths. So now I am going to discuss
Fisher’s influence on current research.

What follows are several (actually six) examples
of current research topics that have attracted a lot
of attention recently. No claim of completeness is
being made here. The main point I'm trying to
make with these examples is that Fisher’s ideas are
still exerting a powerful influence on developments
in statistical theory, and that this is an important
indication of their future relevance. The examples
will gradually get more speculative and futuristic,
and will include some areas of development not
satisfactorily handled by Fisher—holes in the Fishe-
rian fabric—where we might expect future work to
be more frequentist or Bayesian in motivation.

The examples will also allow me to talk about the
new breed of applied problems statisticians are
starting to see, the bigger, messier, more compli-
cated data sets that we will have to deal with in the

coming decades. Fisherian methods were fashioned
to deal with the problems of the 1920s and 1930s. It
is not a certainty that they will be equally applica-
ble to the problems of the 21st century—a question
I hope to shed at least a little light upon.

5.1 Fisher Information and the Bootstrap

This first example is intended to show how
Fisher’s ideas can pop up in current work, but be
difficult to recognize because of computational ad-
vances. First, here is a very brief review of Fisher
information. Suppose we observe a random sample
X1, Xg,..., x, from a density function f,(x) depend-
ing on a single unknown parameter 0,

folx) = 2y, x9,...,%,.

The Fisher information in any one x is the ex-
pected value of minus the second derivative of the
log density,

&2
ly= Ea{_w log fe(x)},

and the total Fisher information in the whole sam-
ple is ni,.

Fisher showed that the asymptotic standard er-
ror of the MLE is inversely proportional to the
square root of the total information,

N 1

4) sey(0) = ——,

Vniy

and that no other consistent and sufficiently regu-
lar estimation of #—essentially no other asymptoti-
cally, unbiased estimator—can do better.

A tremendous amount of philosophical interpre-
tation has been attached to i,, concerning the
meaning of statistical information, but in practice
Fisher’s formula (4) is most often used simply as a
handy estimate of the standard error of the MLE.
Of course, (4) by itself cannot be used directly
because i, involves the unknown parameter 6.
Fisher’s tactic, which seems obvious but in fact is
quite central to Fisherian methodology, is to plug
in the MLE 6 for 6 in (4), giving a usable estimate
of standard error,

— 1

5) se = \/n_Le

Here is an example of formula (5) in action. Figure
2 shows the results of a small study designed to
test the efficacy of an experimental antiviral drug.
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Fic. 2. The cd4 data; 20 AIDS patients had their cd4 counts
measured beforeA and after taking an experimental drug; correla-
tion coefficient 6 = 0.723.

A total of n =20 AIDS patients had their cd4
counts measured before and after taking the drug,
yielding data

x; = (before,, after;) fori= 1,2,...,20.

The Pearson sample correlation coefficient was 6 =
0.723. How accurate is this estimate?

If we assume a bivariate normal model for the
data,

(6) NZ(M,E)_)xl,xz,x3,..

.,x20,

the notation indicating a random sample of 20 pairs
from a bivariate normal distribution with expecta-
tion vector w and covariance matrix 3, then 6 is
the MLE for the true correlation coefficient 6. The
Fisher information for estimating 6 turns out to be
i,=1/(1 — 6%)? (after taking proper account of the
“nuisance parameters” in (6)—one of those techni-
cal points I am avoiding in this talk) so (5) gives
estimated standard error

. (1-6%» 0.107
se = ————— = U. .
V20

Here is a bootstrap estimate of standard error for
the same problem, also assuming that the bivariate
normal model is correct. In this context the boot-
strap samples are generated from model (6), but
with estimates g and 2 substituted for the un-
known parameters u and X:

N(ﬂ,E) = uaf, xd, xk, L xby > 0%,

where 6* is the sample correlation coefficient for
the bootstrap data set x¥, x3, x%,..., x5;.

This whole process was independently repeated
2,000 times, giving 2,000 bootstrap correlation coef-
ficients 0*. Figure 3 shows their histogram. )

The empirical standard deviation of the 2,000 6*
values is

Sepoe = 0.112,

which is the normal-theory bootstrap estimate of
standard error for #; 2,000 is 10 times more than
needed for a standard error, but we will need all
2,000 later for the discussion of approximate confi-
dence intervals.

5.2 The Plug-in Principle

The Fisher information and bootstrap standard
error estimates, 0.107 and 0.112, are quite close to
each other. This is no accident. Despite the fact that
they look completely different, the two methods are
doing very similar calculations. Both are using the
“plug-in principle” as a crucial step in getting the
answer.

Here is a plug-in description of the two methods:

e Fisher information—(@{) compute an (approxi-
mate) formula for the standard error of the sam-
ple correlation coefficient as a function of the
unknown parameters (pu,Y); (ii) plug in esti-
mates (i, 3) for the unknown parameters (u, 3)
in the formula;

« bootstrap—(@G) plug in (f,3) for the unknown
parameters (u, ) in the mechanism generating
the data; (ii) compute the standard error of the
sample correlation coefficient, for the plugged-in
mechanism, by Monte Carlo simulation.

The two methods proceed in reverse order, “com-
pute and then plug in” versus “plug in and then
compute,” but this is a relatively minor technical
difference. The crucial step in both methods, and
the only statistical inference going on, is the substi-
tution of the estimates ([,2) for the unknown
parameters ( u, 2), in other words the plug-in prin-
ciple. Fisherian inference makes frequent use of the
plug-in principle, and this is one of the main rea-
sons that Fisher’s methods are so convenient to use
in practice. All possible inferential questions are
answered by simply plugging in estimates, usually
maximum likelihood estimates, for unknown pa-
rameters.

The Fisher information method involves cleverer
mathematics than the bootstrap, but it has to be-
cause we enjoy a 107 computational advantage over
Fisher. A year’s combined computational effort by
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Fia. 3. Histogram of 2,000 bootstrap correlation coefficients; bivariate normal sampling model.

all the statisticians of 1925 wouldn’t equal a minute
of modern computer time. The bootstrap exploits
this advantage to numerically extend Fisher’s cal-
culations to situations where the mathematics be-
comes hopelessly complicated. One of the less
attractive aspects of Fisherian statistics is its over-
reliance on a small catalog of simple parametric
models like the normal, understandable enough
given the limitations of the mechanical calculators
Fisher had to work with.

Modern computation has given us the opportu-
nity to extend Fisher’s methods to a much wider
class of models, including nonparametric ones (the
more usual arena of the bootstrap). We are begin-
ning to see many such extensions, for example, the
extension of discriminant analysis to CART, and
the extension of linear regression to generalized
additive models.

6. THE STANDARD INTERVALS

I want to continue the cd4 example, but proceed-
ing from standard errors to confidence intervals.
The confidence interval story illustrates how com-
puter-based inference can be used to extend Fisher’s
ideas in a more ambitious way.

The MLE and its estimated standard error were
used by Fisher to form approximate confidence in-
tervals, which I like to call the standard intervals
because of their ubiquity in day-to-day practice,

(7) 6 + 1.645 se.

The constant, 1.645, gives intervals of approximate
90% coverage for the unknown parameter 6, with
5% noncoverage probabilities at each end of the
interval. We could use 1.96 instead of 1.645 for 95%
coverage, and so on, but here I'll stick to 90%.

The standard intervals follow from Fisher’s re-
sult that 0 is asymptotically normal, unbiased and
with standard error fixed by the sample size and
the Fisher information,

(8) 6 > N(6,se?),

as in (4). We recognize (8) as one of Fisher’s ideal
“obvious” forms.

If usage determines importance then the stan-
dard intervals were Fisher’s most important inven-
tion. Their popularity is due to a combination of
optimality, or at least asymptotic optimality, with
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computation tractability. The standard intervals
are:

e accurate—their noncoverage probabilities, which
are supposed to be 0.05 at each end of the inter-
val, are actually

9) 0.05 + ¢/Vn,

where ¢ depends on the situation, so as the sam-
ple size n gets large we approach the nominal
value 0.05 at rate n~1/2;

e correct—the estimated standard error based on
the Fisher information is the minimum possible
for any asymptotically unbiased estimate of 6 so
interval (7) doesn’t waste any information nor is
it misleadingly optimistic;

e automatic—0 and se are computed from the same
basic algorithm no matter how complicated the
problem may be.

Despite these advantages, applied statisticians
know that the standard intervals can be quite inac-
curate in small samples. This is illustrated in the
left panel of Figure 4 for the cd4 correlation exam-
ple, where we see that the standard interval end-
points lie far to the right of the endpoints for the
normal-theory exact 90% central confidence inter-
val. In fact, we can see from the bootstrap his-
togram (reproduced from Figure 3) that in this case
the asymptotic normality of the MLE hasn’t taken
hold at n = 20, so that there is every reason to
doubt the standard interval. Being able to look at
the histogram, which has a lot of information in it,
is a luxury Fisher did not have.
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Fisher suggested a fix for this specific situation:
transform the correlation coefficient to ¢ =
tanh~1(9), that is, to

1+6
1—0

L1
(10) b= log

apply the standard method on this scale and then
transform the standard interval back to the 6 scale.
This was another one of Fisher’s ingenious reduc-
tion methods. The tanh™! transformation greatly
accelerates convergence to normality, as we can see
from the histogram of the 2,000 values of 6* =
tanh~1(6*) in the right panel of Figure 4, and
makes the standard intervals far more accurate.
However, we have now lost the “automatic” prop-
erty of the standard intervals. The tanh ™! trans-
formation works only for the normal correlation
coefficient and not for most other problems.

The standard intervals take literally the large
sample approximation 6 ~ N(9, se?), which says
that 0 is normally distributed, is unbiased for 0
and has a constant standard error. A more careful
look at the asymptotics shows that each of these
three assumptions can fail in a substantial way: the
sampling distribution of 6 can be skewed; 6 can be
biased as an estimate of 0; and its standard error
can change with 6. Modern computation makes it
practical to correct all three errors. I am going to
mention two methods of doing so, the first using the
bootstrap histogram, the second based on likelihood
methods.

It turns out that there is enough information in
the bootstrap histogram to correct all three errors
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Fic. 4. (Left panel) Endpoints of exact 90% confidence interval for cd4 correlation coefficient (solid lines) are much different than
standard interval endpoints (dashed lines), as suggested by the nonnormality of the bootstrap histogram. (Right panel) Fisher’s
transformation normalizes the bootstrap histogram and makes the standard interval more accurate.
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of the standard intervals. The result is a system of
approximate confidence intervals an order of mag-
nitude more accurate, with noncoverage probabili-
ties
0.05 +c/n

compared to (9), achieving what is called second
order accuracy. Table 1 demonstrates the practical
advantages of second order accuracy. In most situa-
tions we would not have exact endpoints as a “gold
standard” for comparison, but second order accu-
racy would still point to the superiority of the boot-
strap intervals.

The bootstrap method, and also the likelihood-
based methods of the next section, are transforma-
tion invariant; that is, they give the same interval
for the correlation coefficient whether or not you go
through the tanh™! transformation. In this sense
they automate Fisher’s wonderful transformation
trick.

I like this example because it shows how a basic
Fisherian construction, the standard intervals, can
be extended by modern computation. The extension
lets us deal easily with very complicated probability
models, even nonparametric ones, and also with
complicated statistics such as a coefficient in a
stepwise robust regression.

Moreover, the extension is not just to a wider set
of applications. Some progress in understanding
the theoretical basis of approximate confidence in-
tervals is made along the way. Other topics are
springing up in the same fashion. For example,
Fisher’s 1925 work on the information loss for in-
sufficient estimators has transmuted into our mod-
ern theories of the EM algorithm and Gibbs sam-

pling.

7. CONDITIONAL INFERENCE,
ANCILLARITY AND THE MAGIC FORMULA

Table 2 shows the occurrence of a very undesir-
able side effect in a randomized experiment that
will be described more fully later. The treatment
produces a smaller ratio of these undesirable effects
than does the control, the sample log odds ratio

being
6=1 L /13 4.2
= 10g 15 3 = L.

TABLE 1
Endpoints of exact and approximate 90% confidence intervals
for the cd4 correlation coefficient assuming bivariate normality

Exact Bootstrap Standard
0.05 0.464 0.468 0.547
0.95 0.859 0.856 0.899

TABLE 2
The occurrence of adverse events in a randomized
experiment; sample log odds ratio 0 = —4.2
Yes No
Treatment 1 15 16
Control 13 3 16
14 18

Fisher wondered how one might make appropri-
ate inferences for 6, the true log odds ratio. The
trouble here is nuisance parameters. A multinomial
model for the 2 X 2 table has three free param-
eters, representing four cell probabilities con-
strained to add up to 1, and in some sense two of
the three parameters have to be eliminated in order
to get at 6. To do this Fisher came up with another
device for reducing a complicated situation to a
simple form.

Fisher showed that if we condition on the
marginals of the table, then the conditional density
of 6 given the marginals depends only 6. The nui-
sance parameters disappear. This conditioning is
“correct” he argued because the marginals are act-
ing as what might be called approximate ancillary
statistics. That is, they do not carry much direct
information concerning the value of 6, but they
have something to say about how accurately 6 esti-
mates 0. Later Neyman gave a much more specific
frequentist justification for conditioning on the
marginals, through what is now called Neyman
structure.

For t}}e data in Table 2, the conditional distribu-
tion of 6 given the marginals yields [ —6.3, —2.4] as
a 90% confidence interval for 6, ruling out the null
hypothesis value 6 = 0 where Treatment equals
Control. However, the conditional distribution is
not easy to calculate, even in this simple case, and
it becomes prohibitive in more complicated situa-
tions.

In his 1934 paper, which was the capstone of
Fisher’s work on efficient estimation, he solved the
conditioning problem for translation families. Sup-
pose that x = (x4, x,,..., x,) is a random sample
from a Cauchy distribution (3) and that we wish to
use X to make inferences about 6, the unknown
center point of the distribution. In this case there is
a genuine ancillary statistic A, the vector of spac-
ings between the ordered values of x. Again Fisher
argued that correct inferences about 6 should be
based on f,(6lA), the conditional density of the
MLE 6 given the ancillary A, not on the uncondi-
tional density £,(6).

Fisher also provided a wonderful trick for calcu-
lating f,(6|A). Let L(6) be the likelihood function:
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the unconditional density of the whole sample, con-
sidered as a function of # with x fixed. Then it
turns out that

(11) (6IA) = LAo)
fe _CL(é\)’

where ¢ is a constant. Formula (11) allows us to
compute the conditional density f,(#lA) from the
likelihood, which is easy to calculate. It also hints
at a deep connection between likelihood-based in-
ference, a Fisherian trademark, and frequentist
methods.

Despite this promising start, the promise went
unfulfilled in the years following 1934. The trouble
was that formula (11) applies only in very special
circumstances, not including the 2 X 2 table exam-
ple, for instance. Recently, though, there has been a
revival of interest in likelihood-based conditional
inference. Durbin, Barndorff-Nielsen, Hinkley and
others have developed a wonderful generalization
of (11) that applies to a wide variety of problems
having approximate ancillaries, the so-called magic
formula

1/2

o L(6) d?
(12) f£,(0lA) =¢ {

L(é) - d_02 10g L(0)|9—§}

The bracketed factor is constant in the Cauchy
situation, reducing (12) back to (11).

Likelihood-based conditional inference has been
pushed forward in current work by Fraser, Cox and
Reid, McCullagh, Barndorff-Nielson, Pierce, DiCic-
cio and many others. It represents a major effort to
perfect and extend Fisher’s goal of an inferential
system based directly on likelihoods.

In particular the magic formula can be used to
generate approximate confidence intervals that are
more accurate than the standard intervals, at least
second order accurate. These intervals agree to sec-
ond order with the bootstrap intervals. If this were
not true, then one or both of them would not be
second order correct. Right now it looks like at-
tempts to improve upon the standard intervals are
converging from two directions: likelihood and boot-
strap.

Results like (12) have enormous potential. Likeli-
hood inference is the great unfulfilled promise of
Fisherian statistics—the promise of a theory that
directly interprets likelihood functions in a way
that simultaneously satisfies Bayesians and fre-
quentists. Fulfilling that promise, even partially,
would greatly influence the shape of 21st century
statistics.

8. FISHER’S BIGGEST BLUNDER

Now I'll start edging gingerly into the 21st cen-
tury by discussing some topics where Fisher’s ideas
have not been dominant, but where they might or
might not be important in future developments. I
am going to begin with the fiducial distribution,
generally considered to be Fisher’s biggest blunder.
But in Arthur Koestler’s words “The history of
ideas is filled with barren truths and fertile errors.”
If fiducial inference is an error it certainly has been
a fertile one.

In terms of Figure 1, the Bayesian—frequentist
comparison chart, fiducial inference was Fisher’s
closest approach to the Bayesian side of the ledger.
Fisher was trying to codify an objective Bayesian-
ism in the Laplace tradition but without using
Laplace’s ad hoc uniform prior distributions. I be-
lieve that Fisher’s continuing devotion to fiducial
inference had two major influences, a negative re-
action against Neyman’s ideas and a positive at-
traction to Jeffreys’s point of view.

The solid line in Figure 5 is the fiducial density
for a binomial parameter # having observed 3 suc-
cesses in 10 trials,

s ~ Binomial(n, 8), s = 3and n = 10.

Also shown is an approximate fiducial density that
I will refer to later. Fisher’s fiducial theory at its
boldest treated the solid curve as a genuine a poste-
riori density for 6 even though, or perhaps because,
no prior assumptions had been made.

8.1 The Confidence Density

We could also call the fiducial distribution the
“confidence density” because this is an easy way to
motivate the fiducial construction. As I said earlier,
Fisher would have hated this name.

Suppose that for every value of a between 0 and
1 we have an upper 100 ath confidence limit 6[ ]
for 0, so that by definition

prob{6 < [al} = a.

We can interpret this as a probability distribution
for 6 given the data if we are willing to accept the
classic wrong interpretation of confidence,

6 is in the interval (6[0.90], §[0.91])
with probability 0.01, and so on.

Going to the continuous limit gives the “confi-
dence density,” a name Neyman would have hated.
The confidence density is the fiducial distribu-
tion, at least in those cases where Fisher would
have considered the confidence limits to be inferen-
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Fi16. 5. Fiducial density for a binomial parameter 6 having observed 3 successes out of 10 trials. The dashed line is an approximation

that is useful in complicated situations.

tially correct. The fiducial distribution in Figure 5
is the confidence density based on the usual confi-
dence limits for 6 (taking into account the discrete
nature of the binomial distribution): 6[ «] is the
value of 6 such that S ~ Binomial(10, #) satisfies

prob {S > 3} + § prob{S = 3} = a.

Fisher was uncomfortable applying fiducial argu-
ments to discrete distributions because of the ad
hoc continuity corrections required, but the difficul-
ties caused are more theoretical than practical.
The advantage of stating fiducial ideas in terms
of the confidence density is that they then can be
applied to a wider class of problems. We can use the
approximate confidence intervals mentioned ear-
lier, either the bootstrap or the likelihood ones, to
get approximate fiducial distribution even in very
complicated situations having lots of nuisance pa-
rameters. (The dashed curve in Figure 5 is the
confidence density based on approximate bootstrap
intervals.) And there are practical reasons why it
would be very convenient to have good approximate
fiducial distributions, reasons connected with our

profession’s 250-year search for a dependable objec-
tive Bayes theory.

8.2 Objective Bayes

By “objective Bayes” I mean a Bayesian theory in
which the subjective element is removed from the
choice of prior distribution; in practical terms a
universal recipe for applying Bayes theorem in the
absence of prior information. A widely accepted
objective Bayes theory, which fiducial inference was
intended to be, would be of immense theoretical
and practical importance.

I have in mind here dealing with messy, compli-
cated problems where we are trying to combine
information from disparate sources—doing a me-
taanalysis, for example. Bayesian methods are
particularly well-suited to such problems. This is
particularly true now that techniques like the Gibbs
sampler and Markov chain Monte Carlo are avail-
able for integrating the nuisance parameters out of
high-dimensional posterior distributions.

The trouble of course is that the statistician still
has to choose a prior distribution in order to use
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Bayes’s theorem. An unthinking use of uniform
priors is no better now than it was in Laplace’s day.
A lot of recent effort has been put into the develop-
ment of uninformative or objective prior distribu-
tions, priors that eliminate nuisance parameters
safely while remaining neutral with respect to the
parameter of interest. Kass and Wasserman’s 1996
JASA article reviews current developments by
Berger, Bernardo and many others, but the task of
finding genuinely objective priors for high-dimen-
sional problems remains daunting.

Fiducial distributions, or confidence densities, of-
fer a way to finesse this difficulty. A good argument
can be made that the confidence density is the
posterior density for the parameter of interest, af-
ter all of the nuisance parameters have been inte-
grated out in an objective way. If this argument
turns out to be valid, then our progress in con-
structing approximate confidence intervals, and ap-
proximate confidence densities, could lead to an
easier use of Bayesian thinking in practical prob-
lems.

This is all quite speculative, but here is a safe
prediction for the 21st century: statisticians will be
asked to solve bigger and more complicated prob-
lems. I believe that there is a good chance that
objective Bayes methods will be developed for such
problems, and that something like fiducial infer-
ence will play an important role in this develop-
ment. Maybe Fisher’s biggest blunder will become a
big hit in the 21st century!

9. MODEL SELECTION

Model selection is another area of statistical re-
search where important developments seem to be
building up, but without a definitive breakthrough.
The question asked here is how to select the model
itself, not just the continuous parameters of a given
model, from the observed data. F-tests, and “F”
stands for Fisher, help with this task, and are
certainly the most widely used model selection
techniques. However, even in relatively simple
problems things can get complicated fast, as anyone
who has gotten lost in a tangle of forward and
backward stepwise regression programs can testify.

The fact is that classic Fisherian estimation and
testing theory are a good start, but not much more
than that, on model selection. In particular, maxi-
mum likelihood estimation theory and model fitting
do not account for the number of free parameters
being fit, and that is why frequentist methods
like Mallow’s C,, the Akaike information criterion
and cross-validation have evolved. Model selection
seems to be moving away from its Fisherian roots.

Now statisticians are starting to see really com-
plicated model selection problems, with thousands

and even millions of data points and hundreds of
candidate models. A thriving area called machine
learning has developed to handle such problems, in
ways that are not yet very well connected to statis-
tical theory.

Table 3, taken from Gail Gong’s 1982 thesis,
shows part of the data from a model selection prob-
lem that is only moderately complicated by today’s
standards, though hopelessly difficult from a pre-
war viewpoint. A “training set” of 155 chronic hep-
atitis patients were measured on 19 diagnostic pre-
diction variables. The outcome variable y was
whether or not the patient died from liver failure
(122 lived, 33 died), the goal of the study being to
develop a prediction rule for y in terms of the
diagnostic variables.

In order to predict the outcome, a logistic regres-
sion model was built up in three steps:

e Individual logistic regressions were run for each
of the 19 predictors, yielding 13 that were signifi-
cant at the 0.05 level.

e A forward stepwise logistic regression program,
including only those patients with none of the 13
predictors missing, retained 5 of the 13 predictors
at significance level 0.10.

e A second forward stepwise logistic regression pro-
gram, including those patients with none of the 5
predictors missing, retained 4 of the 5 at signifi-
cance level 0.05.

These last four variables,
(13) ascites, (15) bilirubin,
(7) malaise, (20) histology,

were deemed the “important predictors.” The logis-
tic regression based on them misclassified 16% of
the 155 patients, with cross-validation suggesting a
true error rate of about 20%.

A crucial question concerns the validity of the
selected model. Should we take the four “important
predictors” very seriously in a medical sense? The
bootstrap answer seems to be “probably not,” even
though it was natural for the medical investigator
to do so given the impressive amount of statistical
machinery involved in their selection.

Gail Gong resampled the 155 patients, taking as
a unit each patient’s entire record of 19 predictors
and response. For each bootstrap data set of 155
resampled records, she reran the three-stage logis-
tic regression model, yielding a bootstrap set of
“important predictors.” This was done 500 times.
Figure 6 shows the important predictors for the
final 25 bootstrap data sets. The first of these is
(13,7,20, 15), agreeing except for order with the set
(13,15,7,20) from the original data. This didn’t
happen in any other of the 499 bootstrap cases. In
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TABLE 3
155 chronic hepatitis patients were measured on 19 diagnostic variables; data shown for the last 11 patients; outcomey = 0 or 1 as

patient lived or died; negative numbers indicate missing data
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Fi1G. 6. The set of “important predictors” selected in the last 25
of 500 bootstrap replications of the three-step logistic regression
model selection program; original choices were (13,15, 7, 20).

all 500 bootstrap replications only variable 20, his-
tology, which appeared 295 times, was “important”
more than half of the time. These results certainly
discourage confidence in the causal nature of the
predictor variables (13, 15, 7, 20).

Or do they? It seems like we should be able to use
the bootstrap results to quantitatively assess the
validity of the various predictors. Perhaps they
could also help in selecting a better prediction
model. Questions like these are being asked these
days, but the answers so far are more intriguing
than conclusive.

It is not clear to me whether Fisherian methods
will play much of a role in the further progress of
model selection theory. Figure 6 makes model selec-
tion look like an exercise in discrete estimation,
while Fisher’s MLE theory was always aimed at
continuous situations. Direct frequentist methods
like cross-validation seem more promising right
now, and there have been some recent develop-
ments in Bayesian model selection, but in fact our
best efforts so far are inadequate for problems like
the hepatitis data. We could badly use a clever
Fisherian trick for reducing complicated model se-
lection problems to simple obvious ones.

10. EMPIRICAL BAYES METHODS

As a final example, I wanted to say a few words
about empirical Bayes methods. Empirical Bayes
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seems like the wave of the future to me, but it
seemed that way 25 years ago and the wave still
hasn’t washed in, despite the fact that it is an area
of enormous potential importance. It is not a topic
that has had much Fisherian input.

Table 4 shows the data for an empirical Bayes
situation: independent clinical trials were run in 41
cities, comparing the occurrence of recurrent bleed-
ing, an undesirable side effect, for two stomach
ulcer surgical techniques, a new treatment and an
older control. Each trial yielded an estimate of the
true log odds ratio for recurrent bleeding, Treat-
ment versus Control,

1=1,2,...,41.

In city 8, for example, we have the estimate seen
earlier in Table 2,

o 1 /13
6 = log =/ 3 = —4.2,

indicating that the new surgery was very effective
in reducing recurrent bleeding, at least in city 8.
Figure 7 shows the likelihoods for 6, in 10 of the
41 cities. These are conditional likelihoods, using
Fisher’s trick of conditioning on the marginals to
get rid of the nuisance parameters in each city. It
seems clear that the log odds ratios 6, are not all
the same. For instance, the likelihoods for cities 8
and 13 barely overlap. On the other hand, the 6,
values are not wildly discrepant, most of the 41

0, = log odds ratio in city i,

Likelihoods —>»

log odds ratio 6 —>»

Fic. 7. Individual likelihood functions for 6;, for 10 of the 41
experiments in Table 4; Lg, the likelihood for the log odds ratio
in city 8, lies to the left of most of the others.

likelihood functions concentrating themselves on
the range (—6, 3). (This is the kind of complicated
inferential situation I was worrying about in the
discussion of fiducial inference, confidence densities
and objective Bayes methods.)

TABLE 4
Ulcer data: 41 independent experiments concerning the number of occurrences of recurrent bleeding following
ulcer surgery; (a, b) = (# bleeding; # nonbleeding) for Treatment, a new surgical technique;

(¢, d) is the same for Control, an older surgery; 6 is the sample log odds ratio, with

estimated standard deviation §B; stars indicate cases shown in Figure 7

Experiment a b c d 0 SD Experiment a b c d 0 SD
1* 7 8 11 2 -1.84 0.86 21 6 34 13 8 —2.22 0.61
2 8 11 8 8 —0.32 0.66 22 4 14 5 34 66 0.71
3* 5 29 4 35 0.41 0.68 23 14 54 13 61 20 0.42
4 7 29 4 27 0.49 0.65 24 6 15 8 13 —43 0.64
5* 3 9 0 12 inf 157 25 0 6 6 0 —inf  2.08
6* 4 3 4 0 —inf 165 26 1 9 5 10 -1.50 1.02
7* 4 13 13 11 -1.35 0.68 27 5 12 5 10 -0.18 0.73
8* 1 15 13 3 —4.17 1.04 28 0 10 12 2 —inf  1.60
9 3 11 7 15 -0.54 0.76 29 0 22 8 16 —inf 149

10* 2 36 12 20 —2.38 0.75 30 2 16 10 11 -1.98 0.80
11 6 6 8 0 —inf 156 31 1 14 7 6 -2.79 1.01
12* 2 5 7 2 —-2.17 1.06 32 8 16 15 12 —0.92 0.57
13* 9 12 7 17 0.60 0.61 33 6 6 7 2 -1.25 0.92
14 7 14 5 20 0.69 0.66 34 0 20 5 18 —inf 151
15 3 22 11 21 -1.35 0.68 35 4 13 2 14 0.77 0.87
16 4 7 6 4 -0.97 0.86 36 10 30 12 8 -1.50 0.57
17 2 8 8 2 —2.77 1.02 37 3 13 2 14 0.48 0.91
18 1 30 4 23 -1.65 0.98 38 4 30 5 14 -0.99 0.71
19 4 24 15 16 -1.73 0.62 39 7 31 15 22 -1.11 0.52
20 7 36 16 27 -1.11 0.51 40* 0 34 34 0 —inf  2.01

41 0 9 0 16 NA 204
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Notice that Lg, the likelihood for 6g, lies to the
left of most of the other curves. This would still be
true if we could see all 41 curves instead of just 10
of them. In other words, 6 appears to be more
negative than the log odds ratios in most of the
other cities.

What is a good estimate or confidence interval for
0s? Answering this question depends on how much
the results in other cities influence our thinking
about city 8. That is where empirical Bayes theory
comes in, giving us a systematic framework for
combining the direct information for 64 from city
8’s experiment with the indirect information from
the experiments in the other 40 cities.

The ordinary 90% confidence interval for 6,
based only on the data (1,15, 13,3) from its own
experiment, is

(13) 0, € [—6.3, —2.4].

Empirical Bayes methods give a considerably dif-
ferent result. The empirical Bayes analysis uses the
data in the other 40 cities to estimate a prior
density for log odds ratios. This prior density can be
combined with the likelihood Lg for city 8, using
Bayes theorem, to get a central 90% a posteriori
interval for 6,

(14) 0, € [—5.1,—1.8].

The fact that most of the cities had less nega-
tively tending results than city 8 plays an impor-
tant role in the empirical Bayes analysis. The
Bayesian prior estimated from the other 40 cities
says that 6, is unlikely to be as negative as its own
data by itself would indicate.

The empirical Bayes analysis implies that there
is a lot of information in the other 40 cities’s data
for estimating 64, as a matter of fact, just about as
much as in city 8’s own data. This kind of “other”
information does not have a clear Fisherian inter-
pretation. The whole empirical Bayes analysis is
heavily Bayesian, as if we had begun with a gen-
uinely informative prior for g and yet it still has
some claims to frequentist objectivity.

Perhaps we are verging here on a new compro-
mise between Bayesian and frequentist methods,
one that is fundamentally different from Fisher’s
proposals. If so, the 21st century could look a lot
less Fisherian, at least for problems with parallel
structure like the ulcer data. Right now there aren’t
many such problems. This could change quickly if
the statistics community became more confident
about analyzing empirical Bayes problems. There
weren’t many factorial design problems before
Fisher provided an effective methodology for han-
dling them. Scientists tend to bring us the problems

we can solve. The current attention to metaanalysis
and hierarchical models certainly suggests a grow-
ing interest in the empirical Bayes kind of situa-
tion.

11. THE STATISTICAL TRIANGLE

The development of modern statistical theory has
been a three-sided tug of war between the Bayesian,
frequentist and Fisherian viewpoints. What I have
been trying to do with my examples is apportion
the influence of the three philosophies on several
topics of current interest: standard error estima-
tion; approximate confidence intervals; conditional
inference; objective Bayes theories and fiducial in-
ference; model selection; and empirical Bayes tech-
niques.

Figure 8, the statistical triangle, does this more
concisely. It uses barycentric coordinates to indicate
the influence of Bayesian, frequentist and Fishe-
rian thinking upon a variety of active research
areas. The Fisherian pole of the triangle is located
between the Bayesian and frequentist poles, as in
Figure 1, but here I have allocated Fisherian phi-
losophy its own dimension to take account of its
distinctive operational features: reduction to “obvi-
ous” types; the plug-in principle; an emphasis on
inferential correctness; the direct interpretation of
likelihoods; and the use of automatic computational
algorithms.

Of course, a picture like this cannot be more than
roughly accurate, even if one accepts the author’s
prejudices, but many of the locations are difficult to
argue with. I had no trouble placing conditional
inference and partial likelihood near the Fisherian
pole, robustness at the frequentist pole and multi-
ple imputation near the Bayesian pole. Empirical
Bayes is clearly a mixture of Bayesian and frequen-
tist ideas. Bootstrap methods combine the con-
venience of the plug-in principle with a strong
frequentist desire for accurate operating character-
istics, particularly for approximate confidence in-
tervals, while the jackknife’s development has been
more purely frequentistic.

Some of the other locations in Figure 8 are more
problematical. Fisher provided the original idea be-
hind the EM algorithm, and in fact the self-con-
sistency of maximum likelihood estimation (when
missing data is filled in by the statistician) is a
classic Fisherian correctness argument. On the
other hand EM’s modern development has had a
strong Bayesian component, seen more clearly in
the related topic of Gibbs sampling. Similarly,
Fisher’s method for combining independent p-val-
ues is an early form of metaanalysis, but the sub-
ject’s recent growth has been strongly frequentist.
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Fia. 8. A barycentric picture of modern statistical research, showing the relative influence of the Bayesian, frequentist and Fisherian

philosophies upon various topics of current interest.

The trouble here is that Fisher wasnt always a
Fisherian, so it is easy to confuse parentage with
development.

The most difficult and embarrassing case con-
cerns what I have been calling “objective Bayes”
methods, among which I included fiducial infer-
ence. One definition of frequentism is the desire to
do well, or at least not to do poorly, against every
possible prior distribution. The Bayesian spirit, as
epitomized by Savage and de Finetti, is to do very
well against one prior distribution, presumably the
right one.

There have been a variety of objective Bayes
compromises between these two poles. Working near
the frequentist end of the spectrum, Welch and
Peers showed how to calculate priors whose a pos-
teriori credibility intervals coincide closely with
standard confidence intervals. Jeffreys’s work,
which has led to vigorous modern development of
Bayesian model selection, is less frequentistic. In a
bivariate normal situation Jeffreys would recom-
mend the same prior distribution for estimating the
correlation coefficient or for the ratio of expecta-
tions, while the Welch—Peers theory would use two
different priors in order to separately match each of
the frequentist solutions.

Nevertheless Jeffreys’s Bayesianism has an un-
deniable objectivist flavor. Erich Lehmann (per-
sonal communication) had this to say: “If one sepa-
rates the two Bayesian concepts [Savage—de Finetti
and Jeffreys] and puts only the subjective version

in your Bayesian corner, it seems to me that some-
thing interesting happens: the dJeffreys concept
moves to the right and winds up much closer to the
frequency corner than to the Bayesian one. For
example, you contrasted Bayes as optimistic and
risk-taking with frequentist as pessimistic and
playing it safe. On both of these scales Jeffreys is
much closer to the frequentist end of the spectrum.
In fact, the concept of uninformative prior is philo-
sophically close to Wald’s least favorable distribu-
tion, and the two often coincide.”

Lehmann’s advice is followed a bit in Figure 8,
where the Bayesian model selection (BIC) point, a
direct legacy of Jeffreys’s work, has been moved a
little ways toward the frequentist pole. However, I
have located fiducial inference, Fisher’s form of
objective Bayesianism, near the center of the trian-
gle. There isn’t much work in that area right now
but there is a lot of demand coming from all three
directions.

The point of my examples, and the main point of
this talk, was to show that Fisherian statistics, is
not a dead language and that it continues to inspire
new research. I think this is clear in Figure 8, even
allowing for its inaccuracies. But Fisher’s language
is not the only language in town, and it is not even
the dominant language of our research journals.
That prize would have to go to a rather casual
frequentism, not usually as hard-edged as pure
decision theory these days. We might ask what
Figure 8 will look like 20 or 30 years from now, and
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whether there will be many points of active re-
search interest lying near the Fisherian pole of the
triangle.

12. R. A. FISHER IN THE 21ST CENTURY

Most talks about the future are really about the
present, and this one has certainly been no excep-
tion. But here at the end of the talk, and nearly at
the end of the 20th century, we can peek cautiously
ahead and speculate at least a little bit about the
future of Fisherian statistics.

Of course Fisher’s fundamental discoveries like
sufficiency, Fisher information, the asymptotic effi-
ciency of the MLE, experimental design and ran-
domization inference are not going to disappear.
They might become less visible though. Right now
we use those ideas almost exactly as Fisher coined
them, but modern computing equipment could
change that.

For example, maximum likelihood estimates can
be badly biased in certain situations involving a
great many nuisance parameters (as in the Ney-
man-—Scott paradox.) A computer-modified version
of the MLE that was less less biased could become
the default estimator of choice in applied problems.
REML estimation of variance components offers a
current example. Likewise, with the universal
spread of high-powered computers statisticians
might automatically use some form of the more
accurate confidence intervals I mentioned earlier
instead of the standard intervals.

Changes like these would conceal Fishers’s influ-
ence, but not really diminish it. There are a couple
of good reasons though that one might expect more
dramatic changes in the statistical world, the first
of these being the miraculous improvement in our
computational equipment, by orders of magnitude
every decade. Equipment is destiny in science, and
statistics is no exception to that rule. Second,
statisticians are being asked to solve bigger, harder,
more complicated problems, under such names
as pattern recognition, DNA screening, neural
networks, imaging and machine learning. New
problems have always evoked new solutions in
statistics, but this time the solutions might have to
be quite radical ones.

Almost by definition it’s hard to predict radical
change, but I thought I would finish with a few
speculative possibilities about a statistical future
that might, or might not, be a good deal less Fisher-
ian.

12.1 A Bayesian World

In 1974 Dennis Lindley predicted that the 21st
century would be Bayesian. (I notice that his recent

Statistical Science interview now predicts the year
2020.) He could be right. Bayesian methods are
attractive for complicated problems like the ones
just mentioned, but unless the scientific world
changes the way it thinks I can’t imagine subjective
Bayes methods taking over. What I called objective
Bayes, the use of neutral or uninformative priors,
seems a lot more promising and is certainly in the
air these days.

A successful objective Bayes theory would have to
provide good frequentist properties in familiar situ-
ations, for instance, reasonable coverage probabili-
ties for whatever replaces confidence intervals. Such
a Bayesian world might not seem much different
than the current situation except for more straight-
forward analyses of complicated problems like mul-
tiple comparisons. One can imagine the statistician
of the year 2020 hunched over his or her supercom-
puter terminal, trying to get Proc Prior to run
successfully, and we can only wish that future col-
league “good luck.”

12.2 Nonparametrics

As part of our Fisherian legacy we tend to overuse
simple parametric models like the normal. A non-
parametric world, where parametric models were a
last resort instead of the first, would favor the
frequentist vertex of the triangle picture.

12.3 A New Synthesis

The postwar years and especially the last few
decades have been more notable for methodological
progress than the development of fundamental new
ideas in the theory of statistical inference. This
doesn’t mean that such developments are finished
forever. Fisher’s work came out of the blue in the
1920s, and maybe our field is due for another bolt
of lightening.

It’s easy for us to imagine that Fisher, Neyman
and the others were lucky to live in a time when all
the good ideas hadn’t been plucked from the trees.
In fact, we are the ones living in the golden age of
statistics—the time when computation has become
fast and easy. In this sense we are overdue for a
new statistical paradigm, to consolidate the
methodological gains of the postwar period. The
rubble is building up again, to use Joan Fisher
Box’s simile, and we could badly use a new Fisher
to put our world in order.

My actual guess is that the old Fisher will have a
very good 21st century. The world of applied statis-
tics seems to need an effective compromise between
Bayesian and frequentist ideas, and right now there
is no substitute in sight for the Fisherian synthesis.
Moreover, Fisher’s theories are well suited to life in
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the computer age. Fisher seemed naturally to think
in algorithmic terms. Maximum likelihood esti-
mates, the standard intervals, ANOVA tables, per-
mutation tests are all expressed algorithmically
and are easy to extend with modern computation.

Let me say finally that Fisher was a genius of the
first rank, who has a solid claim to being the most
important applied mathematician of the 20th cen-
tury. His work has a unique quality of daring math-
ematical synthesis combined with the utmost prac-
ticality. The stamp of his work is very much upon
our field and shows no sign of fading. It is the
stamp of a great thinker, and statistics—and sci-
ence in general—is much in his debt.
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Comment

D. R. Cox

I very much enjoyed Professor Efron’s eloquent
and perceptive assessment of R. A. Fisher’s contri-
butions and of their current relevance. I am sure
that Professor Efron is right to attach outstanding
importance to Fisher’s ideas.

As Professor Efron emphasizes, Fisher’s ideas are
so wide ranging that it is not feasible to cover them
all in a single paper. The following outline notes are
in supplementation of rather than in disagreement
with the paper.

(1) Fisher stressed the need for different modes
of attack on different types of inferential problem.

(2) While his formal ideas deal with fully para-
metric problems he gave the “exact” randomization
test based on the procedure used in design. The
status to him of such tests is not entirely clear. Did
he regard them as reassurance for the faint of
heart, timid about working assumptions of normal-
ity, or are they the preferred method of analysis to
which normal theory based results are often a con-
venient approximation? Yates vigorously rejected
the second interpretation. The more important point
is probably that Fisher recognized that randomiza-
tion indicated the appropriate analysis of variance,
that is, appropriate estimate of error. This replaced
the need for special ad hoc assumptions of a new
linear model for each design.

(3) A key to understanding some of the distinc-
tions between Fisherian and Neyman-Pearson
approaches lies in Fisher’s special notion of the
meaning of the probability p of a “unique” event as
set out, for example, in Fisher (1956, pages 31-36).
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tice, most Bayesian analyses are performed with so-called
noninformative priors. ...”)
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century. In Proceedings of the Conference on Directions for
Mathematical Statistics. Univ. College, London.

SMITH, A. (1995). A conversation with Dennis Lindley. Statist.
Sci. 10 305-319. (This is a nice view of Bayesians and
Bayesianism. The 2020 prediction is attributed to de Finetti.)

There are two aspects, one that the individual be-
longs to an ensemble or population in a proportion
p of which which the event holds. The other is that
it is not possible to recognize the individual as lying
in a subpopulation with a different proportion.
Fisher considered, it seems to me correctly, that
this enabled probability statements to be attached
to an unknown parameter on the basis of a random
sample, no other information being available, with-
out invoking a prior distribution. The snag is that
such distributions cannot be manipulated or com-
bined by the ordinary laws of probability.

(4) The development of Fisher’s ideas on Baye-
sian inference can be traced by comparing the
polemical remarks at the start of Design of Experi-
ments (Fisher, 1935) with the more measured com-
ments in Fisher (1956).

(5) Fisher was of course an extremely powerful
mathematician especially with distributional and
combinatorial calculations. It helps us to under-
stand his attitude to mathematical rigor to note the
remarks of Mahalanobis (1938), who wrote:

The explicit statement of a rigorous ar-
gument interested him but only on the
important condition that such explicit
demonstration of rigor was needed. Me-
chanical drill in the technique of rigorous
statement was abhorrent to him, partly
for its pedantry, and partly as an inhibi-
tion to the active use of the mind. He felt
it was more important to think actively,
even at the expense of occasional errors
from which an alert intelligence would
soon recover, than to proceed with per-
fect safety at a snail’s pace along well
known paths with the aid of a most
perfectly designed mechanical crutch.
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This is a comment on Fisher’s attitude when an
undergraduate at Cambridge; it is tempting to think
that Mahalanobis was using Fisher’s own words.

(6) In some ways Fisher’s greatest methodologi-
cal contributions, the analysis of variance including
discriminant analysis, and ideas about experimen-
tal design, appear to owe relatively little directly to
his ideas on general statistical theory. There are of
course connections to be perceived subsequently,
for example, to sufficiency and transformation mod-
els, and in the case of randomization somewhat
underdeveloped connections to conditioning and an-
cillary statistics. Fisher’s mastery of distribution
theory was, however, obviously relevant, perhaps
most strikingly in his approach to the connection
between the distribution theory of multiple regres-
sion to that of linear discriminant analysis.

(7) In the normal process of scientific develop-
ment important notions get simplified and ab-
sorbed into the general ethos of the subject and

Comment

Rob Kass

Very nice, very provocative—as I read Efron’s
version of Fisher’s profound influence on our disci-
pline, I found myself wondering whether statistics
could have succeeded to this point so spectacularly,
across so many disciplines, if it had been based
primarily on Bayesian logic rather than largely
Fisherian frequentist logic. Without the historical
counterfactual, the question might be stated this
way: from a Bayesian point of view, when, if ever, is
frequentist logic necessary?

I believe there are three places where frequentist
reasoning is essential to the success of our enter-
prise. First, we need goodness-of-fit assessments, or
what Dempster in his Fisherian ruminations has
called “postdictive inference” (see Gelman, Meng
and Stern, 1996, and the discussion of it). Second,
although many principles have been formulated for
defining noninformative, or reference, priors, it
seems that good behavior under repeated sampling
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reference to original sources becomes unnecessary
except for the historian of ideas. It is a measure of
the range and subtlety of Fisher’s ideas that it is
still fruitful to read parts at least of the two books
mentioned above as well as the papers that Profes-
sor Efron mentions in his list of references.

(8) T agree with Professor Efron that one key
current issue is the synthesis of ideas on modified
likelihood functions, empirical Bayes methods and
some notion of reference priors.

(9) I like Professor Efron’s triangle although on
balance I would prefer a square, labeled by one axis
that represents mathematical formulation and the
other that represents conceptual objective. For ex-
ample Fisher and Jeffreys were virtually identical
in their objective although of course different in
their mathematics.

(10) Finally, in contemplating Fisher’s contribu-
tions, one must not forget that he was as eminent
as a geneticist as he was as a statistician.

should play a role somehow. It is possible, as Cox
implied in his 1994 Statistical Science interview,
that we have not yet recognized how, and I have
the sense that Efron shares this view. But the third
and perhaps most important place even we
Bayesians currently find frequentist methods use-
ful is that they offer highly desirable shortcuts.
This is related to Efron’s point at the end of Section
4. The Fisherian frequentist methods for what are
now relatively simple situations, such as analysis of
variance, are certainly easy to use; it remains un-
clear whether standardized Bayesian methods could
entirely replace them. Equally crucial, however, are
the more sophisticated data analytic methods, such
as modern nonparametric regression, which share a
big relative advantage in ease of use over their
Bayesian counterparts. In short, despite my strong
preference for Bayesian thinking, based on our cur-
rent understanding of inference, I cannot see how
the next century or any other could be exclusively
Bayesian. I have felt for a long time that the
Bayesian versus frequentist contrast, while strictly
a matter of logic, might more usefully be consid-
ered, metaphorically, a matter of language—that
is, they are two alternative languages that are used
to grapple with uncertainty, with fluent speakers of
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one being capable of arriving at an understanding
of essentially any phenomenon that is understood
by fluent speakers of the other, despite there being
no good translation of certain phrases.

I suspect we all agree on Fisher’s greatness. I like
to say Fisher was to statisics what Newton was to
physics. Continuing the analogy, Efron suggests
that we need a statistical Einstein. But the real
question is whether it is possible to obtain a new
framework that achieves the goal of fiducial infer-
ence. The situation in statistical inference is beauti-
fully peaceful and compelling for one-parameter
problems: reference Bayesian and Fisherian roads
converge to second-order, via the magic formula.
When we go to the multiparameter world, however,
the hope dims not only for a reconciliation of
Bayesian and frequentist paradigms, but for any
satisfactory, unified approach in either a frequen-
tist or Bayesian framework, and we must wonder
whether the world is simply depressingly messy.
Indeed, some of the cautionary notes sounded in
the 1996 JASA review paper I wrote with Larry
Wasserman implicitly suggest that (as pure subjec-
tivists are quick to argue) there may be no way
around the fundamental difficulties.

It is clear that statistical problems are becoming
much more complicated. I got the possibly erro-

Comment

Ole E. Barndorff-Nielsen

It has been a pleasure reading Professor Efron’s
far-ranging, thoughtful and valiant paper. I agree
with most of the views presented there and this
contribution to the discussion of the paper consists
of a number of disperse comments, mostly adding to
what has been mentioned in the paper.

(1) One, potentially major, omission from the pa-
per’s vision of Fisherian influence in the next cen-
tury is the lack of discussion of the role that ideas
and methods of statistical inference may have in
quantum mechanics. Such ideas and methods are
likely to become of increasing importance, particu-
larly in connection with the developments in exper-
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neous sense (from his comment at the end of Sec-
tion 8) that Efron connects this to his unease with
the current situation and the need for a new
paradigm—to be furnished perhaps by our Einstein
Messiah. I would instead look toward a different
big new theoretical development. Bayesian and fre-
quentist analyses based on parametric models are,
from a consumer’s point of view, really quite simi-
lar. Bayesian nonparametrics, however, is in its
infancy and its connection with frequentist non-
parametrics almost nonexistent. I hope for a much
more thorough and successful Bayesian nonpara-
metric theory and a resulting deeper understanding
of infinite-dimensional problems. Perhaps entirely
new principles would have to be invoked to supple-
ment those of Fisher, Jeffreys, Neyman and de
Finetti—Savage. If it happens, an increasingly non-
parametric future would not, in principle, move us
toward the frequentist vertex of Efron’s triangle.
Rather, Bayesian inference would continue to play
its illuminating foundational role, important new
methodology would be developed, and it might even
turn out that there is a genuine, deep and detailed
sense in which frequentist methods could be consid-
ered shortcut substitutes for full-fledged Bayesian
alternatives.

imental techniques that allow the study of very
small quantum systems.

Moreover, there is already now, in the physical
literature, a substantial body of results on quantum
analogues of Fisher information and on associated
results of statistical differential geometry, in the
vein of Amari.

(2) Tt also seems pertinent to stress the impor-
tance of “pseudolikelihood,” that is, functions of
part or all of the data and part or all of the parame-
ters that to a large extent can be treated as genuine
likelihoods. Many of the most fruitful advances in
the second half of the 20th century centers around
such functions.

(3) My own view on optimality is, perhaps, some-
what different from that of Bradley Efron in that I
find that the focussing on optimality has to a con-
siderable extent been to the detriment of statistical
development. The problems and danger stem from
too narrow definitions of what is meant by optimal-
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ity. One prominent instance of how too much em-
phasis on a restricted concept of optimality may
lead astray from general principles of scientific en-
quiry is provided by the upper storeys of the Ney-
man-Person test theory edifice.

In general, what good is it to have a procedure
that is “optimal” if this optimality” does not fit in
naturally with a comprehensive and integrated
methodological approach to scientific studies.

However, if I read correctly, Professor Efron and
I do not disagree strongly here. I am thinking in
particular of his reference to the “spirit of reason-
able compromise.”

(4) In relation to the statement (at the end of
Section 8.1, on “The Confidence Density”) concern-
ing approximate confidence intervals and approxi-
mate fiducial distributions in situations with many

Comment

D. V. Hinkley

Using this paper as an excuse, I revisited the
Collected Papers (Bennett, 1972) after a gap of 15
years and was struck again by how clear and con-
cise the writing was—usually firm and irreverent,
but often good-humored.

Fisher’s work certainly colored my own view of
the principles and practices of statistics, especially
in the early 1980s. But I think that the biological
context of much of Fisher’s work made him wrongly
dismissive of Bayes’s theorem as a potential tool. It
is instructive to read the two-page note by Fisher
(1929), which answered Student’s suggestion that
normal-theory methods such as analysis of variance
be extended to nonnormal data. Fisher says “I have
never known difficulty to arise in biological work
from imperfect normality of variation, often though
I have examined data for this particular cause of
difficulty....This is not to say that the deviation
from [normal-theory methods] may not have a real
application in some technological work...” (what
would Fisher have thought of mathematical fi-
nance, one wonders!). I think that Fisher saw sam-
pling distributions as concrete, logically distinct
from the weaker uncertainty characterizing prior
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and Applied Probability, University of California,
Santa Barbara, California 93106-3110 (e-mail:
hinkley@pstat.ucsb.edu).

nuisance parameters, I wonder how this is to be
reconciled with the many counterexamples to
Fisher’s idea(s) for fiducial inference under multi-
parameter distributions.

(5) Concerning model selection I suspect that
techniques in Fisherian spirit can be developed
although this largely remains to be done.

(6) On a historical note, neither Bayesian statis-
tics nor Neyman—Pearson—-Wald type theory has
ever taken serious foothold in statistics in Den-
mark, and thinking along lines close to those of
Fisher has been prominent throughout.

The tradition does, in fact, go back to the latter
part of the 19th century, in particular to Thiele,
who, one might add, essentially worked with analy-
sis of variance long before Fisher (cf. Hald, 1981).

distributions, and so incompatible with the applica-
tion of Bayes’s theorem. Fisher’s view about sam-
pling models is still widely held, especially among
those using non-Bayesian methods, and so model
uncertainty is a nonissue in nearly all of statistical
education (not so in some sciences, however). But it
may yet turn out to be one of the most important
topics in statistics. Note that model uncertainty is
the antithesis of model selection, which we are
beginning to understand fairly well using non-
Fisherian ideas.

Other discussants may comment on Efron’s inter-
pretation of Fisher, so I shall note only that he may
overstate the contradictions. For example, random-
ization inference could be conditioned, when appro-
priate, by appropriate design—as happened with
the Knight’s Move and Diagonal Squares; see Yates
(1970, page 58) and Savage et al. (1976, page 464).
Indeed the combination of Efron (1971) and Cox
(1982) seems quintessentially Fisherian! (Similar
ideas extend into resampling—bootstrap—cross-
validation analysis, but are not yet common.)

But what of Fisher’s possible influence on the
future of statistics? With the bootstrap I am not
sure. Certainly the parametric bootstrap involves a
harmless use of computers to do Fisher’s calcula-
tions. The ingenious theoretical basis for the para-
metric BC, bootstrap method (Efron, 1987) could
almost have been written by Fisher himself. The
idea of going beyond a simple standard error and
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standardized estimate (for confidence intervals or
tests) follows Fisher; see Fisher (1928), where in
reference to the conventional standard error of the
sample correlation Fisher quips “among the things
‘which students have to know, but only a fool would
use’.” Nevertheless, the alternative developments
based on likelihood seem closer to continuation of
the Fisher approach. (All of these methods do need
further development to become easily and widely
useable.)

A major question is whether or not the nonpara-
metric bootstrap methods have or will have Fishe-
rian influence. I think not. Certainly when we get
into model selection, highly nonparametric regres-
sion such as regression trees (Ripley, 1996), we are
more in the arena of Tukey than Fisher. Purely
empirical validation and assessment does not seem
to appear in Fisher’s work, possibly due to impossi-
bility of practical calculations.

The topic of empirical Bayes estimation, or ran-
dom-effect modelling, has become of increasing im-

Comment

D. A. S. Fraser

It is a delight to read Brad’s thoughtful and
insightful overview giving deep credits to Fisher’s
contributions to current and future statistics. Brad
mentions large areas not covered by his review and
it is our loss that these areas such as randomiza-
tion and experimental design have been omitted;
they may also be among Fisher’s major contribu-
tions although much neglected in current practice. I
strongly endorse Brad’s positive approval of Fisher’s
contributions and add just a few further approving
remarks.

Brad notes that at “the time of (Brad’s) education
Fisher had been reduced to a somewhat minor
figure in American academic statistics.” This seems
to be a substantial understatement particularly at
Stanford in 1961-1962 where, and when, Brad be-
gan his graduate work in statistics. In the fall of
1961 a psychologist—statistician Sidney Siegel spoke
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tics, Sidney Smith Hall, University of Toronto,
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stat.toronto.edu).

portance with the spread of metaanalysis ideas and
methods. To paraphrase Efron (Section 10), the
information about one subpopulation in another
subpopulation “does not have a clear Fisherian in-
terpretation.” But surely Fisher would have ad-
dressed this problem in a sensible way, so we need
to figure out how by going back to read Fisher.

Fisher’s major contributions may be the ideas
about designs to avoid bias in experimental results
and to enable calculation of reliable measures of
uncertainty. Compared to these, the fine points
about whether confidence intervals are Bayesian or
not seem relatively unimportant. Fisher did make
valuable contributions to the discussion of the roles
of probability in statistics, much of it usefully sur-
veyed by Lane (1980). As far as Fisher’s theoretical
work goes, particularly the 1925 and 1934 master-
pieces, it has long seemed to me that Fisher may
have inadvertently prepared us for an acceptable
future of Bayesian methodology.

at the Stanford statistics seminar describing how
he had graphed the likelihood function for an ap-
plied problem to obtain insight on a parameter of
interest, something that now would be viewed as a
sensible step in a statistical analysis. Siegel was
widely challenged by the Statistics faculty then,
that this cannot and should not be done, a frontal
rejection of a Fisherian idea, leaving Siegel feeling
dispossessed of his credibility as a statistician. Also
that same fall “Fisher spoke at the Stanford Medi-
cal School” as noted by Brad. I was visiting the
Stanford Statistics Department that fall and did
have notice of Fisher’s talk. The absence of Statis-
tics faculty from Fisher’s talk was a measure of
Fisher’s influence at that time, perhaps the nadir of
his influence. Brad does much to correct this and
give credit for the wealth we have inherited from
Fisher.

I prefer a somewhat different interpretation for
“frequentist” than that indicated by “competing
philosophies...: Bayesian; Neyman—Wald frequen-
tist; and Fisherian.” “Frequentist” seems to refer to
the interpretation for the probabilities given by the
statistical model alone, thus embracing both Fishe-
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rian and decision theoretic philosophies. Bayesian
statistics adds prior probabilities as the distin-
guishing feature. But even here the distinction may
now be blurring when we view such additions on a
“what if” basis of temporarily enlarging the model,
in a way similar to the “what if” basis we often
apply to the model itself.

Brad refers to empirical Bayes as “not a topic
that has had much Fisherian input.” It does seem,
however, to be quite consonant with Fisher’s view
and indeed Fisher should be treated as the initiator
of what was latter called empirical Bayes. In his
1956 book Statistical Methods and Scientific Infer-
ence (page 18f) Fisher considers the genetic origins
of an animal under investigation and appends to
the initial statistical model the theoretical-em-
pirical probabilities concerning the origins of the
animal. This is pure what-we-now-call empirical
Bayes and Fisher should be credited. From another
viewpoint it is just enlarging the statistical model
to provide in some sense proper modeling.

In referring to Fisher’s “devices” for solving prob-
lems, Brad sometimes uses the seemingly pejora-
tive term “trick.” Most of these devices did seem to
be tricks when introduced but hardly now. Perhaps
we both long for more of these “tricks” as guides to
future devices.

Two formulas, (10) and (11), are recorded for “the
conditional density” f,(6|A) “of the MLE 6 given
[an] ancillary” A. These formulas use cryptic nota-
tion that makes them technically wrong without
clarification to indicate additional dependencies on
6. The context assumes that x is equivalent to
(6, A) so that density and likelihood have the form
f,(6, A) and L(6;0, A); the amplified formulas
would then appear as

£ 1) - L(0;6,A)
’ L6, A)]
. L(6;6, A)
(1) £,(0lA) = c——
L(6;6,A)

2 1/2
{_d_02 log L(0;0, A)|9é}

for the location and general cases (with appropriate
accuracies). In the location model case with

f,(x;0) =g — 0lA)R(A)
the amplified version of (10) then gives

g(6— 0lA)
“Tg0la)

which reproduces the conditional density except for
a norming constant. By contrast the given formula
(10) taken literally with the preamble describing
L(6) “as a function of 6 with x fixed” at an ob-
served value (9°, A) gives

g(6° —0l4)
C—QFx——~ >
g(6° —9lA)

which is the MLE density approximation only for
the observed data point (6, A) = (6°, A). This may
seem like a very technical point but the formulas
are often cited as a way “for calculating f,(6|A).”
In practice they can rarely be used for such a
calculation as it would require the likelihood func-
tion to be available at points (6, A) with fixed A
and varying 6, and this would require an explicit
ancillary and much computation.

For the location model case there is a formula
from Fisher that gives the conditional density of 0
from just the observed likelihood L°(6) = L(6;60°,
A):

f,(01A;6) = cL(6— 6+ 6°).

An extension of this is available for transformation
models.

Brad mentions that “the magic formula can be
used to generate approximate confidence intervals
[with] at least second order accuralcy].” In fact for
continuous models third order confidence intervals
are available in wide generality but require addi-
tional theory for approximate ancillaries.

I particularly welcome Brad’s positive views on
the prospects for fiducial methods. As one who has
worked extensively on contexts where fiducial cal-
culations have good conventional properties (the
transformation group context) or are useful for in-
creasing the accuracy of a significance value (using
fiducial to eliminate a nuisance parameter), I find
it reassuring to see optimism elsewhere. Certainly
the typical statistician feels fiducial is wrong but in
most cases he is also unfamiliar with the details or
the overlap with confidence methods.

For the case where the dimension of the variable
has been reduced to the dimension of the parame-
ter both fiducial and confidence make use quite
generally of a pivotal quantity. The confidence pro-
cedure chooses a 90% region on the pivot space and
then inverts to the parameter space to get the
confidence region; by contrast the fiducial inverts to
the parameter space and then chooses the 90%
region. The fiducial issues arise then from the in-
creased generality in the second procedure. Of
course any observed 90% fiducial region has a cor-
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responding 90% pivot region and is then of course
the 90% confidence region for that pivot region. The
controversial issues arise with simulations and rep-
etitions. Should these repetitions always be with
the same value of the parameter? This is not the

Comment

A. P. Dempster

Bradley Efron’s colorful lecture is fun to read.
Brad is generous and accurate in crediting Fisher’s
important mathematical foundations for sparking
the “frequentist” school whose framework is evi-
dently deeply embedded in Brad’s psyche and work.
At the same time, I question whether he is suffi-
ciently in touch with Fisher’s thinking to do justice
to Fisher’s also remarkable contributions to the
logic of inference. A balanced reading of the Fish-
er—-Neyman disputes suggests that the history of
20th century statistics is not a linear path from
Fisher, to Neyman and ultimately to a modern
“frequentist” statistics whose main challenger is
“Bayesianism” of either “subjective” or “objective”
varieties. The hackneyed terms in quotes need fun-
damental clarification and definition, laying out
roles in science as actually practiced.

Fisher’s conception of inference is built around
the interpretation of sampling distributions in rela-
tion to sample data. Sample data are frequency
data, and sampling distributions have natural fre-
quency interpretations. But these roles for fre-
quency are basic to any view of statistics as a
discipline and are far from making Fisher “fre-
quentist” in Neyman’s sense. Fisher aimed to char-
acterize the information in data, whereas Neyman
settled on a theory that guides a statistician’s
behavior in choosing among procedures seen as
competing on the basis of long run operating char-
acteristics. “Neyman—-Wald” theory provides useful
insights, but creates a sterile view of practice. After
a procedure is chosen and applied, how does one
then think postanalysis about uncertainties? Fisher
gave interpretations of significance tests, likelihood
and fiducial intervals that whatever their strengths
and weaknesses meet the question head-on.

A. P. Dempster is Professor, Department of Statis-
tics, Harvard University, Cambridge, Massachu-
setts 02138 (e-mail: dempster@stat.harvard.edu).

reality of applications! And there are alternatives. I
do applaud Brad’s boldness in inverting the pivotal
distribution and getting a confidence density; the
fiducial whisper campaign has been too constrain-
ing on the profession.

Understanding Fisher requires understanding
that a probability in practice determines a “well-
specified state of uncertainty” (Fisher, 1958) about
a specific situation in hand, a position identifiable
as describing a kind of formal subjectivity that
complements rather than contradicts the conven-
tional view of science as objective. Interpreting the
p-value of a significance test Fisher’s way (Fisher,
1956, page 39), after the result is reported, requires
“postdictive” assessment of such a formal subjec-
tive probability (Dempster, 1971). As early as 1935,
Fisher recognized that “confidence intervals” are
“only another way of saying that, by a certain test
of significance, some kinds of hypothetical possibili-
ties are to be rejected, while others are not” (Ben-
nett, 1990, page 187). It may be, as Brad says,
“generally considered” that fiducial probability was
Fisher’s “biggest blunder,” but should not be on the
basis of the simplistic arguments accompanying
Neyman’s exasperated polemics, for example, “a
conglomeration of mutually inconsistent assertions,
not a mathematical theory” (Neyman, 1977, page
100). Interpreting a fiducial probability shares with
interpreting a Bayesian posterior probability an
intended postanalysis predictive interpretation of
formal subjective probability that depends on ac-
cepting detailed prior assumptions, including
specifically in the case of the fiducial argument that
the distribution of an identified pivotal quantity is
independent of, and hence unaffected by, the obser-
vations. Both fiducial inferences and Bayesian in-
ferences stand or fall on case-by-case judgments of
both models and independences assumed.

Was Fisher a “lapsed Fisherian” in the smoking
and lung cancer debate of the late 1950s? He was
certainly correct to draw attention to the potential
for misleading selection biases affecting causal in-
ferences from observational data. Are Fisher’s in-
novative ideas “like randomization inference and
conditionality ... contradictory”? Not if one accepts
that postdictive reasoning and predictive reasoning
are complementary activities. Conditionality is im-
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portant for estimation, but irrelevant for interpret-
ing the outcome of a randomization test. Also, in
Fisher’s view of estimation, conditionality is not the
blanket principle of Bayesian statistics. Indeed, se-
lective conditioning was for Fisher a key to avoid-
ing universal submission to Bayes. Fisher was
unsuccessful in obvious ways, but he addresses

Rejoinder

Bradley Efron

One could scarcely ask for a clearer set of discus-
sions, or a more qualified set of discussants, leaving
me with very little to rejoin. The lecture itself was
written quickly, in a few weeks, and barely revised
for publication. My fear was that a careful revision
would become just that, careful, and lose its force in
an attempt to cover all Fisherian bases. The com-
mentaries each add important ideas that I omitted,
while scarcely overlapping with each other. Fisher’s
world must be a very high-dimensional one! Let me
end here with just a few brief reactions to the
commentaries.

(1) Paragraph (3) of Professor Cox’s comments
concerns Fisher’s definition of probability, hinging
on the absence of recognizable subsets. This is a
crucial point for the relevance of statistical argu-
ments to actual decision making, but it is not an
easy criterion to apply. As an analog I like to
imagine a field of intermixed orange and white
poppies, with the proportion of orange poppies rep-
resenting the probability of an event of interest.
Perhaps the orange proportion increases steadily
from east to west or from north to south or diago-
nally from corner to corner. A model-building pro-
gram based on logistic regression or CART amounts
to a systematic search for the field’s inhomo-
geneities.

We are all used to basing statistical inferences on
the outputs of such programs, saying perhaps that
the estimated probability of an orange poppy at the
field’s center point is 0.20, but how does this “prob-
ability” relate to Fisher’s definition? A different
model, amounting to a different partitioning of the
field, might give a different probability. My problem
here is not with recognizability, which is obviously
an important idea, but with its application to con-
texts where the statistician must choose which sub-
sets might be recognizable.

(2) Professor Kass discusses one of the deepest
problems of statistical philosophy: why are frequen-

deeper and harder questions than Neymanian the-
ory attempts to solve. I believe we should downplay
sound-bite criticisms coming from self-limiting the-
oretical perspectives, either frequentist or Bayesian.
I do not wish to protest too much, however. Brad
and I agree in seeking to resurrect Fisher from his
relative obscurity in American academic statistics.

tist computations often useful and compelling, even
for those who prefer the Bayesian paradigm?
Fisher’s work provides the best answers so far to
that question but we are still a long way from
having a satisfactory resolution. Kass offers a dif-
ferent hope, via Bayesian nonparametrics, for
bridging the chasm. Going this route requires us to
solve another deep problem, how to put uninforma-
tive prior distributions on high- (or infinite-) dimen-
sional parameter spaces.

(3) On the same point, Professor Barndorff-Niel-
sen asks how we can reconcile fiducial inference
with high-dimensional estimation results like the
James—Stein theorem. For a multivariate version of
formula (1), x ~ Ng(6, 02I), the original fiducial
argument seems to say that 6|x ~ Ni(x, c?I), a
terrible answer if we are interested in estimating
16112, for example. The confidence density approach
gives sensible results in such situations. My 1993
Biometrika paper argues, a la Kass, that this is a
way of using frequentist methods to aid Bayesian
calculations.

(4) Professor Hinkley notes the continued vitality
of Tukey-style data analysis. In its purest form this
line of work is statistics without probability theory
(see, e.g., Mosteller and Tukey’s 1977 book “Data
Analysis and Regression”) and as such I could not
place it anywhere in the statistical triangle of Sec-
tion 11. This is my picture’s fault of course, not
Tukey’s. Problem-driven areas like neural networks
often begin with a healthy burst of pure data analy-
sis before settling down to an accommodation with
statistical theory.

(5) T am grateful to Professor Fraser for present-
ing a more intelligible version of the magic formula.
This was the spot in the talk where “avoiding tech-
nicalities” almost avoided coherency. “Trick” is a
positive word in my vocabulary, reflecting a Caltech
education, and I only wish I could think of some
more Fisher-level tricks. Fisherian statistics was
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not entirely missing from early 1960s Stanford: it
flourished in the medical school, where Lincoln
Moses and Rupert Miller ran the biostatistics train-
ing program.

(6) I resisted the urge to locate the discussants in
the statistical triangle, perhaps because Professor
Dempster has placed me closer to the frequentist
corner than I feel comfortable with. Dempster em-
phasizes an important point: that Fisher’s theory,
more so than Neyman’s, aimed at postdata inter-
pretations of uncertainty. This appeared in almost
pure Bayesian form with fiducial inference, but
usually was expressed less formally, as in his inter-
pretations of significance test p-values. (See Sec-
tion 20 of the 1954 edition of Statistical Methods
for Research Workers.)

One cannot consider Fisher without also dis-
cussing Neyman, and he is likely to come out of
such discussions sounding like the bad guy. This is
most unfair. To invert Kass’s metaphor, Neyman
played Niels Bohr to Fisher’s Einstein. Nobody could
match Fisher’s intuition for statistical inference,
but even the strongest intuition can sometimes go
astray. Neyman—Wald decision theory was an heroic
and largely successful attempt to put statistical
inference on a sound mathematical foundation. Too
much mathematical soundness can be stultifying,
as Barndorff-Nielsen points out, but too much intu-
ition can cross over into mysticism, and one can
sympathize with Neyman’s frustration over Fisher’s
sometimes Delphic fiducial pronouncements.

(7) Hinkley and Dempster (and others at the
lecture) questioned whether randomization infer-
ence really contradicts the conditionality principle.
I have to admit to using both ends of the contradic-
tion myself without feeling any great amount of
guilt, but the logical inconsistency still seems to be
there. Isn’t a randomly chosen experimental design
an ancillary, and shouldn’t we condition on it rather
than basing inference on its random properties?
Dempster’s statement “Conditionality is important
for estimation, but irrelevant for interpreting the
outcome of a randomization test” seems to just
restate the problem. We condition on a randomly
selected sample size n (to borrow Professor Cox’s
famous example) whether the data is used for esti-
mation or testing.

(8) Lumping subjective and objective Bayesian-
ism together simplified my presentation, but may-

be to a dangerous degree. It elicited Professor
Lehman’s objection quoted in Section 11. Perhaps it
would be better to follow Professor Cox’s preference
for a square instead of a triangle.

Statistical philosophy is best taken in small doses.
The discussants have followed this rule (even if 1
have not) with six excellent brief essays. I am
grateful to them, to COPSS for the invitation to
give the Fisher lecture, and to the Editors of Statis-
tical Science for arranging this discussion.
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