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1. General Remarks

Tlns rather long and extraordinary paper is the first full account of Fisher’s
ldeas on the foundations of theoretical statistics, with the focus being on
estlmatlon The paper begins with a sideswipe at Karl Pearson for a pur-
ported general proof of Bayes’ postulate. Fisher then clearly makes a distinc-
tion between parameters, the objects of estimation, and the statistics that one
émves at to estimate the parameters. There was much confusion between the
f.wo since the same names were given to both parameters and statistics, e.g.,
mean, standard deviation, correlation coefficient, etc., without an indication
O‘f whether it was the population or sample value that was the subject of
cussion. This formulation of the parameter value was certainly a critical
step'for theoretical statistics [see, e.g., Geisser (1975), footnote on p. 320 and
‘Stlgler (1976)]. In fact, Fisher attributed the neglect of theoretical statistics
not only to this failure in distinguishing between parameter and statistic but
also to a philosophical reason, namely, that the study of results subject to
greater or lesser error implies that the precision of concepts is either impossi-
ble or not a practical necessity. He sets out to remedy the situation, and
remedy it he did. Indeed, he did this so convincingly that for the next 50 years
ot so almost all theoretical statisticians were completely parameter bound,
paylng little or no heed to inference about observables.

Fisher states that the purpose of statistical methods is to reduce a large
Quantlty of data to a few that are capable of containing as much as possible
of the relevant information in the original data. Because the data will general-
ly supply a large number of “facts,” many more than are sought, much infor-
mation ifrThe data is irretevant This brings to the fore the W

fat statistical analysis via the reduction of data is the process of extracting
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/the relevant information and excluding the irrelevant information. A way of
accomplishing this is by modeling a hypothetical population specified by rela-
tively few parameters.

Hence, the critical problems of theoretical statistics in 1920, according to
Fisher, were (1) specification, choice of the hypothetical parametric distribu-
tion; (2) estimation, choice of the statistics for estimating the unknown param-
eters of the distribution; (3) sampling distributions, the exact or approximate
distributions of the statistics used to estimate the parameters. For a majority
of statisticians, these have been and still are the principal areas of statistical
endeavor, 70 years later. The two most important additions to this view are
that the parametric models were, at best, merely approximations of the under-
lying process generating the observations, and in view of this, much greater

V emphasis should be placed on observable inference rather than on parametric
inference.

2. Foundational Developments

In this paper, Fisher develops a number of concepts relevant to the estimation
of parameters. Some were previously introduced but not generally developed,
and others appear for the first time. Here, also, the richness of Fisher’s lingua
statistica emerges, yielding poignant appelatives for his concepts, vague though
some of them are. This activity will continue throughout all his future contri-
butions. First he defines consistency: A statistic is consistent if, when calcu-
lated from the whole population, it is equal to the parameter describing the
probability law. This is in contradistinction to the usual definition which
entails a sequence of estimates, one for each sample size, that converges in--
probability to the appropriate parameter. While Fisher consistency is restricted
to repeated samples from the same distribution, it does not suffer from the
serious defect of the usual definition. That flaw was formally pointed out later
by Fisher (1956): Suppose one uses an arbitrary value A4 for an estimator
for n < n,, where n is as large as one pleases, and for n > n; uses an asympto-
tically consistent estimator T,. The entire sequence, now corrupted by A for
n < n, and then immaculately transformed to 7, thereafter, remains a useless,
but perfectly well-defined, consistent estimator for any n. Fisher is not to be
trifled with!
Indicating that many statistics for the same parameter can be Fisher-
consistent, in particular, the sample standard deviation and sample mean
- deviation for the standard deviation of a normal population, he goes on to
suggest a criterion for efficiency. It is a large sample definition. Among all
estimators for a parameter that are Fisher-consistent and whose distributions
are asymptotically normal, the one with the smallest variance is efficient.
Later, he shows that when the asymptotic distribution of the method of mo- .
ments estimator is normal for the location of a uniform distribution while that
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of the “optimum” estimator is double exponential, he realizes that the vari-
ance does not necessarily provide a satisfactory basis for comparison, espe-
cially for small samples. Thus, he also recognizes that his large sample defini-
tion of intrinsic accuracy (a measure of relative efficiency) should not be based
on variances and a definition appropriate for small samples is required. In
later papers, e.g., Fisher (1925), vague concepts of intrinsic accuracy will be
replaced by the more precise amount of information per observation. At any
rate, the large sample criterion is incomplete and needs to be supplemented
by a sufficiency criterion. The “remarkable” property of this concept was
previously pointed out when introduced for a special case without giving it a

. name [Fisher (1920)]. A statistic, then, is sufficient if it contains all the infor-
mation in the sample regarding the parameter to be estimated; that is, given
a sufficient statistic, the distribution of any other statistic does not involve the
parameter. This compelling concept of his, including the factorization result,
is still in vogue. Assuming a sufficient statistic and any other statistic whose
joint distribution is asymptotically bivariate normal with both means being
the parameter estimated, he then “demonstrates” that the sufficient statistic
has an asymptotic variance smaller than that of the other statistic by a clever
conditioning argument that exploits the correlation between the statistics.
Hence, he claims that a sufficient* statistic satisfies the criterion of (large

- sample) efficiency. This “proof” of course could only apply to those statistics
whose asymptotic bivariate distribution with the sufficient statistic was nor-
mal.

He comments further on the method of moments estimation procedure.
While ascribing great practical utility to it, he also exposes some of its short-
comings. In particular, in estimating the /éenter of a one-parameter Cauchy
distribution, he points out that the first sample moment, the sample mean,
which is the method of moments estimator is not consistent but the median
is. He also cautions against the statistical rejection of outliers unless there are
other substantive reasons. Rather than outright rejection, he proposes that it
seriously be considered that the error distribution is not normal. Fisher effec-
tively argues that the specification of the underlying probability law will gen-
erally require the full set of observations. A sufficient reduction is only mean-
ingful once the probability law has been adequately established.

3. Maximum Likelihood

Fisher begins this part of his discourse acknowledging, first, that properties
such as sufficiency, efficiency, and consistency per se were inadequate in di-
rectly obtaining an estimator. In solving any particular problem, we would

* In the author’s note, Fisher (1950), there is a handwritten correction to the definition of intrinsic
accuracy replacing sufficiency by efficiency, possibly based on his later recognition that maxi-
mum likelihood estimators were not always sufficient.
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require a method that would lead automatically to the statistic which satisfied
these criteria. He proposes such a method to be that of maximum likelihood,
while admitting dissatisfaction with regard to the mathematical rigor of any
proof that he can devise toward that result. Publication would have been
withheld until a rigorous proof was found, but the number and variety of new
results emanating from this method pressed him to publish. With some un-
characteristic humility, he says, “I am not insensible of the advantage which
accrues to Applied Mathematics from the cooperation of the Pure Mathema-
tician and this cooperation is not infrequently called forth by the very imper-
fections of writers on Applied Mathematics.” This totally disarming state-
ment would preclude any harsh commentary on the evident lack of rigor in
many of his “proofs” here. Such evident modesty and good feelings toward
mathematicians would never again flow from his pen.

Fisher (1912) had earlier argued for a form of maximum likelihood estima-
tion. He had taken a Bayesian approach because the maximizing procedure
resembled the calculation of the mode of a posterior probability. In the pres-
ent paper, he is very concerned to differentiate it from the Bayesian ap-
proach. He also argues against the “customary” Bayesian use of flat priors on
the grounds that different results are obtained when different scales for the
parameters are considered.

To illustrate Fisher’s argument, suppose x denotes the number of successes
out of n independent trials with probability of success; then the likelihood
function is

L(p) = A-p (O<p<),

n!

=1
which is max1m1zed when p is chosen to be x/n. Now, if a uniform distribution
on (0, 1) is taken to be the prior distribution of p, then Bayesian analysis
would yield

n(p) oc p*(1 — p)*™>

as the posterior density of p. But if we parameterize this Bernoulli process in
a different way, say, in terms of @ with sinf = 2p — 1, then the likelihood
function of 6§ is

L) =

n! (1 + sin@)*(1 — sin@)"™* ( n n)
2

n—x = = —3<0<3)

which, when maximized with respect to 8, gives sinf = 2x—nm=2p—1.
Thus, the maximum likelihood estimate is invariant under a 1-1 transforma- -
tion. For the Bayes approach, he questions the assignment of a prior assigned
to 6. The uniformity of 6 on (— /2, /2) leads to the posterior density of p as

n(p) oc p* (1 — )12,

which is different from the previous result above. Due to this inconsistency
and other reasons, Fisher derides the arbitrariness of the Bayes prior and
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chooses not to adopt the Bayesian approach. He apparently was strongly
influenced in this regard by the prior criticisms of inverse probability by Boole
(1854) and Venn (1866). Venn’s criticism led to the elimination of the material
on inverse probability from the very prominent textbook on algebra at this
time by Chrystal (1886).

Fisher’s argument regarding invariance was convincing to many and un-
doubtedly was a setback for the Bayesian approach until Jeffreys (1946) pro-
posed a transformation-invariant procedure for calculating a prior density.
There is a bit of irony here in that Fisher’s expected information quantity,
used in-this paper but precisely defined later by Fisher (1925), was the effectu-
ating ingredient for Jeffreys. If t = g(0) satisfies certain condltlons then the
expected amount of information is

16) = E[a—‘ﬂg—;@] ["’] I@),

I1Y2(0) d6 = 1'Y2(z) dx.

Hence, using the positive square root of the expected amount of information
as a prior on 6 will transform invariantly on a prior for t and vice-versa.

Fisher also suggests using L() as a relative measure of the plausibility of
various values of 8 and introduces the term “likelihood” to distinguish the
concept from probability, confessing that earlier he had confused the two. He
says that “likelihood is not here used loosely as a synonym for probability,
but simply to express the relative frequencies with which such values of the
hypothetical quantity § would in fact yield the observed sample.” The likeli-
hood is then an alternative measure of the degree of rational belief when
inverse probability was not applicable, which he believed was true most of the
time. In more recent years this has led to a school of inference using the
likelihood in various ways [Barnard et al. (1963), Edwards (1973)].

Assuming that the distribution of the maximum likelihood estimator tends
to normality, Fisher demonstrates that the variance is the reciprocal of the
Fisher information. That is, if T is an “optimal” statistic satisfying

dlog L(0)
a0

at § = T, then the variancet of the large-sample normal distribution of T is
the inverse of

and therefore

=0

_0*log L(6)
06>

The general consistency of the maximum likelihood estimator is not used but
essentially assumed, and the “proof” relies heavily on the initial assumption.

+ In the ultimate formula on page 31 of the following abridged version, x should be replaced by n.
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Fisher consistency of the maximum likelihood estimator is also assumed with-
out proof.

Fisher derives the explicit form of the limiting normal distribution for
the maximum likelihood estimator, after having “demonstrated” that a suffi-
cient estimate has the smallest-variance normal distribution in large sampies.
Now the theory would be complete if the maximum likelihood estimator were
found to be sufficient, since then the reciprocal of Fisher-expected informa-
tion would be a lower bound against.which efficiency could be measured.
Fisher claims to show that it is sufficient, although his wording is ambiguous
in some passages. Fisher’s “demonstration” begins with the joint distribution
of the maximum likelihood estimator 6 and an arbitrary statistic T, whose
joint density f satisfies

dlog f(6, T|6) _

00 0

at @ = 0. The factorization
1@, t;0) = g(8; 0)h(b, T)

is then deduced, and the sufficiency of  follows.
Using the inverse of the expected information,

1
0% log L(6)
~E [ 67

as a lower bound on variance, Fisher illustrates the calculations on the Pear-
son-type III error curve with density function

seimapoc| 227 [ exp{ ==,

where only m is unknown and to be estimated. The method of moments
estimator is m = X — a(p + 1) with variance a?(p + 1)/n, whereas the asym-
ptotic variance of the maximum likelihood estimator is

a@p-1_ _ 1
n *log L(m)]
5| ]

Thus, the method of moments is not efficient for any n and approaches zero
efficiency as p — 1. In addition, he points out that for estimating the location
parameter of a Cauchy distribution, the method of moments is useless. No
moment of the Cauchy exists and the distribution of the sample mean is
independent of the sample size! Savage (1976) later provides a curious, if not
pathological, example in which a Fisher-consistent estimator is derived that
is sufficient and hence loses no information in the Fisher sense, while the
maximum likelihood estimator 6 is not sufficient and hence does lose infor-
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rpation. But 4 has a smaller mean squared error for a sufficiently large sample
size.

The method of maximum likelihood appears to have been anticipated by
Edgeworth (1908-9) according to Pratt (1976). Although there is less than
universal consensus for this view, there is ample evidence that Edgeworth
derived the method in the translation case directly and also using inverse
probability. It appears he also conjectured the asymptotic efficiency of the
method without giving it a name.

4. Other Topics

The remainder of the paper contains mainly applications of maximum likeli-
hood techniques and various relative efficiency calculations. There is a long
discussion of the Pearson system of fréquency curves. This section serves
mainly to display Fisher’s analytic virtuosity in handling the Pearson system,
also displaying graphs that serve to characterize the system in a more useful
form than previously. This enables him to calculate for the various Pearson
frequency curves,} regions for varying percent efficiencies of the method of
moments estimators of location and scale. He also determines the conditions
that make them fully efficient. In the latter case, he shows that if the log of a
density is quartic, under certain conditions it will be approximately normal
and fit the Pearson system. In dealing with the Pearson-type III curve, he now
demonstrates that the asymptotic variance of the maximum likelihood esti-
mators of scale a and shape p is smaller than that of their method of mo-
ments counterparts. However, he fails to remark or perhaps notice the anom-
aly of the nonregular case. Here the asymptotic variance of the maximum
likelihood estimator of a is larger when m and p are given than when only p is
given. Similarly, the maximum likelihood estimator of p has smaller asymp-
totic variance when a and m are unknown than when a and m are known.

Interest in the Pearsonian system has declined considerably over the years,
being supplanted by so-called nonparametric and robust procedures, and
revival appears unlikely unless Bayesians find use for them. The final part of
the paper looks at discrete distributions, where the method of minimum chi-
square is related to maximum likelihood, and the problem of Sheppard’s
correction for grouped normal data is addressed in detail. This and the mate-
rial on the Pearson system actually make up the bulk of the paper. No doubt
of considerable interest 70 years ago, it is of far less interest than the preceding
work on the foundations. Fisher implies as much in his author’s note. How-
ever, there is a final example that deals with the distribution of observations
in a dilution series that is worthy of careful examination.

1 The density on the bottom of page 342 as well as the one on page 343 of the original paper
contain misprints. The section involving this material has been omitted in the abridged version
of Fisher’s paper which follows.
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After earlier displaying the potential lack of efficiency inherent in an un-
critical application of the method of moments, Fisher in an ingenious volte-
face produces an estimation procedure for a dilution series example, which,
though inefficient, is preferable to a fully efficient one essentially for economic
and practical reasons. To be sure, in later years Fisher fulminated against the
wholesale introduction of utility or decision theory into scientific work, but
rarely again were such principles so elegantly and unobtrusively applied to
such a significant practical problem. The analysis here represents a peerless
blend of theory and application.

An important monitoring procedure, of ongoing interest and wide applica-
bility, used in this instance for estimating the density of protozoa in soils, was
brought to Fisher’s attention. A series of dilutions of a soil sample solution
were made such that each is reduced by a factor a. At each dilution, a uniform
amount of the solution is deposited on s different plates containing a nutrient.
After a proper incubation period, the number of protozoa on each plate is to
be counted. A reasonable model for such a situation is that the chance of z
protozoa on a plate is Poisson-distributed with expected value 8/a*, where 0
is the density or number of protozoa per unit volume of the original solution,
and x the dilution level. A large number of such series were made daily for a
variety of organisms. It proved either physically impossible or economically
prohibitive to count the number of such organisms on every plate for many
such series in order to estimate . First, Fisher suggests that only those plates
containing no organisms be counted; the chance of such an occurrence at level
x is p, = exp(—6/a*). By this device, an experimentally feasible situation is
attained that produces a joint likelihood for ¥, the number of sterile plates
at level x, as

k s _
L=T] ( )Pi"(l — P
x=0 \JVx, -

for dilution levels x = 0, 1, ..., k. He then calculates the contribution of a plate
at level x to the information about log 8 to be

W, = px(l - px)_l(log px)z'

This is informative as to the number of dilution levels necessary in such exper-
iments. Further, the total expected information is approximately given as

sn?

"X Gloga)y
The maximum likelihood solution to the problem, however, required a heavy
investment of time and effort given the computational facilities of 1922. (Of
course, it can easily be done today.)

At this point, Fisher employs a second wrinkle that makes the problem
tractable. He suggests that the expected total number of sterile plates be
equated to the observed total number in order to obtain an estimate of 6. This
“rough” procedure has expected information with respect to log 0 of approxi-
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mate value
s
log2loga’

This results in a very quick and easy procedure possessing an efficiency, inde-
pendent of the dilution factor, of about 88%,.

This may very well be one of the earliest statistical applications of a deci-
sion like approach to the analysis of data.

5. Summary

Clearly Fisher’s paper was a landmark event in theoretical statistics. While it
suffered from a lack of mathematical rigor, long analytic excursions into areas
of lesser interest, and some confusion in parts, the novelty and number of
ideas expressed here, both those developed from previous work and newly
introduced, are still compelling for most statisticians. Although this paper is
infrequently cited, its influence completely pervades the subsequent paper
[Fisher (1925)],§ which presents a clearer exposition of his views. However, he
poured into the 1922 paper, pell-mell, all his creative thinking and work on
the foundations of statistics, the major exception being the fiducial argument.
This work, filtered through the 1925 paper, has had a profound impact on
statistical thinking unto this day. One has only to scan any serious work on
the foundations to see that these ideas still have relevance in statistical theory,
although citation is almost always to the 1925 paper. '
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On the Mathematical Foundations of
Theoretical Statistics

R.A. Fisher
Fellow of Gonville and Caius College,
Chief Statistician, Rothamsted Experimental Station

Definitions

Centre of Location. That abscissa of a frequency curve for which the sampling
errors of optimum location are uncorrelated with those of optimum scaling.
©)

Consistency. A statistic satisfies the criterion of consistency, if, when it is
calculated from the whole population, it is equal to the required parameter.
“)

Distribution. Problems of distribution are those in which it is required to
calculate the distribution of one, or-the simultaneous distribution of a num-
ber, of functions of quantities distributed in a known manner. (3.

Efficiency. The efficiency of a statistic is the ratio (usually expressed as a
percentage) which its intrinsic accuracy bears to that of the most efficient
statistic possible. It expresses the proportion of the total available relevant
information of which that statistic makes use. (4 and 10.)

Efficiency (Criterion). The criterion of efficiency is satisfied by those statis-
tics which, when derived from large samples, tend to a normal distribution
with the least possible standard deviation. (4.) ‘

Estimation. Problems of estimation are those in which it is required to
estimate the value of one or more of the population parameters from a ran-
doi sample of the population. (3.

Intrinsic Accuracy. The intrinsic accuracy of an error curve is the weight
in large samples, divided by the number in the sample, of that statistic of
location which satisfies the criterion of efficiency. (9.)

Isostatistical Regions. If each sample be represented in a generalized space
of which the observations are the co-ordinates, then any region throughout
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which any set of statistics have identical values is termed an isostatistical
region.

Likelihood. The likelihood that any parameter (or set of parameters) should
have any assigned value (or set of values) is proportional to the probability
that if this were so, the totality of observations should be that observed.

Location. The location of a frequency distribution of known form and scale
is the process of estimation of its position with respect to each of the several
variates. (8.) , s .

Optimum. The optimum value of any parameter (or set of parameters) is
that value (or set of values) of which the likelihood is greatest. (6.)

Scaling. The scaling of a frequency distribution of known form is the pro-
cess of estimation of the magnitudes of the deviations of each of the several
variates. (8.)

Specification. Problems of specification are those in which it is required to
specify the mathematical form of the distribution of the hypothetical popula-
tion from which a sample is to be regarded as drawn. (3.)

Sufficiency. A statistic satisfies the criterion of sufficiency when no other
statistic which can be calculated from the same sample provides any addi-
tional information as to the value of the parameter to be estimated. (1.)

Validity. The region of validity of a statistic is the region comprised within
its contour of zero efficiency. (10.)

1. The Neglect of Theoretical Statistics

Several reasons have contributed to the prolonged neglect into which the
study of statistics, in its theoretical aspects, has fallen. In spite of the immense
amount of fruitful labour which has been expended in its practical applica-
tions, the basic principles of this organ of science are still in a state of obscu-
rity, and it cannot be denied that, during the recent rapid development of
practical methods, fundamental problems have been ignored and fundamen-
tal paradoxes left unresolved. This anomalous state of statistical science is
strikingly exemplified by a recent paper (1) entitled “The Fundamental Prob-
lem of Practical Statistics,” in which one of the most eminent of modern
statisticians presents what purports to be a general proof of Bayes’ postulate,
a proof which, in the opinion of a second statistician of equal eminence,
“seems to rest upon a very peculiar—not to say hardly supposable—relation.”
@)

Leaving aside the specific question here cited, to which we shall recur, the
obscurity which envelops the theoretical bases of statistical methods may
perhaps be ascribed to two considerations. In the first place, it appears'to be
widely thought, or rather felt, that in a subject in which all results are liable
to greater or smaller errors, precise definition of ideas or concepts is, if not
impossible, at least not a practical necessity. In the second place, it has hap-
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pened that in statistics a purely verbal confusion has hindered the distinct
formulation of statistical problems; for it is customary to apply the same
name, mean, standard deviation, correlation coefficient, etc., both to the true
value which we should like to know, but can only estimate; and to the particu-
lar value at which we happen to arrive by our methods of estimation; so also
in applying the term probable error, writers sometimes would appear to sug-
gest that the former quantity, and not merely the latter, is subject to error.

It is this last confusion, in the writer’s opinion, more than any other, which
has led to the survival to the present day of the fundamental paradox of
inverse probability, which like an impenetrable jungle arrests progress to-
wards precision of statistical concepts. The criticisms of Boole, Venn, and
Chrystal have done something towards banishing the method, at least from
the elementary text-books of Algebra; but though we may agree wholly with
Chrystal that inverse probability is a mistake (perhaps the- only mistake to
which the mathematical world has so deeply committed itself), there yet re-
mains the feeling that such a mistake would not have captivated the minds of
Laplace and Poisson if there had been nothing in it but error.

2. The Purpose of Statistical Methods

In order to arrive at a distinct formulation of statistical problems, it is neces-
sary to define the task which the statistician sets himself: briefly, and in its
most concrete form, the object of statistical methods is the reduction of data.
A quantity of data, which usually by its mere bulk is incapable of entering the
mind, is to be replaced by relatively few quantities which shall adequately
represent the whole, or which, in other words, shall contain as much as possi-
ble, ideally the whole, of the relevant information contained in the original
data.

This object is accomplished by constructing a hypothetical infinite popula-
tion, of which the actual data are regarded as constituting a random sample.
The law of distribution of this hypothetical population is specified by rela-
tively few parameters, which are sufficient to describe it exhaustively in re-
spect of all qualities under discussion. Any information given by the sample,
which is of use in estimating the values of these parameters, is relevant infor-
mation. Since the number of independent facts supplied in the data is usually
far greater than the number of facts sought, much of the information supplied
by any actual sample is irrelevant. It is the object of the statistical processes
employed in the reduction of data to exclude this irrelevant information, and
to isolate the whole of the relevant information contained in the data.

When we speak of the probability of a certain object fulfilling a certain
condition, we imagine all such objects to be divided into two classes, ac-
cording as they do or do not fulfil the condition. This is the only characteristic
in them of which we take cognisance. For this reason probability is the most
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elementary of statistical concepts. It is a parameter which specifies a simple
dichotomy in an infinite hypothetical population, and it represents neither
more nor less than the frequency ratio which we imagine such a population
to exhibit. For example, when we say that the probability of throwing a five
with a die is one-sixth, we must not be taken to mean that of any six throws
with that die one and one only will necessarily be a five; ar that of any six
million throws, exactly one million will be fives; but that of a hypothetical
population of an infinite number of throws, with the diein its original condi-
tion, exactly one-sixth will be fives. Our statement will not then contain any
false assumption about the actual die, as that it will not wear out with contin-
ued use, or any notion of approximation, as in estimating the probability
from a finite sample, although this notion may be logically developed once
the meaning of probability is apprehended.

The concept of a discontinuous frequency distribution is merely an exten-
sion of that of a simple dichotomy, for though the number of classes into
which the population is divided may be infinite, yet the frequency in each class
bears a finite ratio to that of the whole population. In frequency curves, how-
ever, a second infinity is introduced. No finite sample has a frequency curve:
a finite sample may be represented by a histogram, or by a frequency polygon,
which to the eye more and more resembles a curve, as the size of the sample
is increased. To reach a true curve, not only would an infinite number of
individuals have to be placed in each class, but the number of classes (arrays)
into which the population is divided must be made infinite. Consequently, it
should be clear that the concept of a frequency curve includes that of a hypo-
thetical infinite population, distributed according to a mathematical law, rep-
resented by the curve. This law is specified by assigning to each element of the
abscissa the corresponding element of probability. Thus, in the case of the
normal distribution, the probability of an observation falling in the range dx,
is

1
—(x—m)2252
e dx,
o./2n

in which expression x is the value of the variate, while m, the mean, and o, the
standard deviation, are the two parameters by which the hypothetical popu-
lation is specified. If a sample of n be taken from such a population, the data
comprise n independent facts. The statistical process of the reduction of these
data is designed to extract from them all relevant information respecting the
values of m and ¢, and to reject all other information as irrelevant.

It should be.noted that there is no falsehood in interpreting any set of
independent measurements as a random sample from an infinite population;
for any such set of numbers are a random sample from the totality of numbers
produced by the same matrix of causal conditions: the hypothetical popula-
tion which we are studying is an aspect of the totality of the effects of these
conditions, of whatever nature they may be. The postulate of randomness
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thus resolves itself into the question, “Of what population is this a random
sample?” which must frequently be asked by every practical statistician.

It will be seen from the above examples that the process of the reduction
of data is, even in the simplest cases, performed by interpreting the available
observations as a sample from a hypothetical infinite population; this is a
fortiori the case when we have more than one variate, as when we are seeking
the values of coefficients of correlation. There is one point, however, which
may be briefly mentioned here in advance, as it has been the cause of some
confusion. In the example of the frequency curve mentioned above, we took
it for granted that the values of both the mean and the standard deviation of
the population were relevant to the inquiry. This is often the case, but it
sometimes happens that only one of these quantities, for example the stan-
dard deviation, is required for discussion. In the same way an infinite normal
population of two correlated variates will usually require five parameters for
its specification, the two means, the two standard deviations, and the correla-
tion; of these often only the correlation is required, or if not alone of interest,
it is discussed without reference to the other four quantities. In such cases an
alteration has been made in what is, and what is not, relevant, and it is not
surprising that certain small corrections should appear, or not, according as
the other parameters of the hypothetical surface are or are not deemed rele-
vant. Even more clearly is this discrepancy shown when, as in the treatment
of such fourfold tables as exhibit the recovery from smallpox of vaccinated
and unvaccinated patients, the method of one school of statisticians treats the
proportion of vaccinated as relevant, while others dismiss it as irrelevant to
the inquiry. (3.) -

3. The Problems of Statistics

The problems which arise in reduction of data may be conveniently divided
into three types:

(1) Problems of Specification. These arise in the choice of the mathematical
form of the population.

(2) Problems of Estimation. These involve the choice of methods of cal-
culating from a sample statistical derivates, or as we shall call them statis-
tics, which are designed to estimate the values of the parameters of the
hypothetical population.

(3) Problems of Distribution.  These include discussions of the distribution
of statistics derived from samples, or in general any functions of quantities
whose distribution is known.

It will be clear that when we know (1) what parameters are required to specify
" the population from which the sample is drawn, (2) how best to calculate from
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the sample estimates of these parameters, and (3) the exact form of the distri-
bution, in different samples, of our derived statistics, then the theoretical as-
pect of the treatment of any particular body of data has been completely
elucidated.

As regards problems of specification, these are entirely a matter for the
practical statistician, for those cases where the qualitative nature of the hypo-
thetical population is known do not involve any problems of this type. In
other cases we may know by experience what forms are likely to be suitable,
and the adequacy of our choice may be tested a posteriori. We must confine
ourselves to those forms which we know how to handle, or for which any
tables which may be necessary have been constructed. More or less elaborate
forms will be suitable according to the volume of the data. Evidently these are
considerations the nature of which may change greatly during the work of a
single generation. We may instance the development by Pearson of a very
extensive system of skew curves, the elaboration of a method of calculating
their parameters, and the preparation of the necessary tables, a body of work
which has enormously extended the power of modern statistical practice, and
which has been, by pertinacity and inspiration alike, practically the work of
a single man. Nor is the introduction of the Pearsonian system of frequency
curves the only contribution which their author has made to the solution of
problems of specification: of even greater importance is the introduction of
an objective criterion of goodness of fit. For empirical as the specification of
the hypothetical population may be, this empiricism is cleared of its dangers
if we can apply a rigorous and objective test of the adequacy with which the
proposed population represents the whole of the available facts. Once a statis-
tic, suitable for applying such a test, has been chosen, the exact form of its
distribution in random samples must be investigated, in order that we may
evaluate the probability that a worse fit should be obtained from a random
sample of a population of the type considered. The possibility of developing
complete and self-contained tests of goodness of fit deserves very careful con-
sideration, since therein lies our justification for the free use which is made of
empirical frequency formulae. Problems of distribution of great mathematical
difficulty have to be faced in this direction.

Although problems of estimation and of distribution may be studied sepa-
rately, they are intimately related in the development of statistical methods.
Logically problems of distribution should have prior consideration, for the
study of the random distribution of different suggested statistics, derived from
samples of a given size, must guide us in the choice of which statistic it is most
profitable to calculate. The fact is, however, that very little progress has been
made in the study of the distribution of statistics derived from samples. In
1900 Pearson (15) gave the exact form of the distribution of x2, the Pearsonian
test of goodness of fit, and in 1915 the same author published (18) a similar
result of more general scope, valid when the observations are regarded as
subject to linear constraints. By an easy adaptation (17) the tables of probabil-
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ity derived from this formula may be made available for the more numerous
cases in which linear constraints are imposed upon the hypothetical popula-
tion by the means which we employ in its reconstruction. The distribution of
the mean of samples of n from a normal population has long been known, but
in 1908 “Student” (4) broke new ground by calculating the distribution of the
ratio which the deviation of the mean from its population value bears to the
standard deviation calculated from the sample. At the same time he gave the
exact form of the distribution in samples of the standard deviation. In 1915
Fisher (5) published the curve of distribution of the correlation coefficient for
the standard method of calculation, and in 1921 (6) he published the corre-
sponding series of curves for intraclass correlations. The brevity of this list is
emphasised by the absence of investigation of other important statistics, such
as the regression coefficients, multiple correlations, and the correlation ratio.
A formula for the probable error of any statistic is, of course, a practical
necessity, if that statistic is to be of service: and in the majority of cases such
formulae have been found, chiefly by the labours of Pearson and his school,
by a first approximation, which describes the distribution with sufficient accu-
racy if the sample is sufficiently large. Problems of distribution, other than the
distribution of statistics, used to be not uncommon as examination problems
in probability, and the physical importance of problems of this type may be
exemplified by the chemical laws of mass action, by the statistical mechanics
of Gibbs, developed by Jeans in its application to the theory of gases, by the
electron theory of Lorentz, and by Planck’s development of the theory of
quanta, although in all these applications the methods employed have been,
from the statistical point of view, relatively simple.

The discussions of theoretical statistics may be regarded as alternating
between problems of estimation and problems of distribution. In the first
place a method of calculating one of the population parameters is devised
from common-sense considerations: we next require to know its probable
error, and therefore an approximate solution of the distribution, in samples,
of the statistic calculated. It may then become apparent that other statistics
may be used as estimates of the same parameter. When the probable errors
of these statistics are compared, it is usually found that, in large samples, one
particular method of calculation gives a result less subject to random errors
than those given by other methods of calculation. Attacking the problem
more thoroughly, and calculating the surface of distribution of any two statis-
tics, we may find that the whole of the relevant information contained in one
is contained in the other: or, in other words, that when once we know the
other, knowledge of the first gives us no further information as to the value
of the parameter. Finally it may be possible to prove, as in the case of the
Mean Square Error, derived from a sample of normal population (7), that a
particular statistic summarises the whole of the information relevant to the
corresponding parameter which the sample contains. In such a case the prob-
lem of estimation is completely solved. : :
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4. Criteria of Estimation

The common-sense criterion employed in problems of estimation may be
stated thus:—That when applied to the whole population the derived statistic
should be equal to the parameter. This may be called the Criterion of Consis-
tency. It is often the only test applied: thus, in estimating the standard devia-
tion of a normally distributed population, from an ungrouped sample, either
of the two statistics—

1
o= ﬁ‘S(Ix - X)) (Mean error)

1
gy = /r—lS(x — x)? (Mean square error)

will lead to the correct value, o, when calculated from the whole population.
They both thus satisfy the criterion of consistency, and this has led many
computers to use the first formula, although the result of the second has 14
per cent. greater weight (7), and the labour of increasing the number of obser-
vations by 14 per cent. can seldom be less than that of applying the more
accurate formula. .

Consideration of the above example will suggest a second criterion, namely:
—That in large samples, when the distributions of the statistics tend to nor-
mality, that statistic is to be chosen which has the least probable error.

This may be called the Criterion of Efficiency. It is evident that if for large
samples one statistic has a probable error double that of a second, while both
are proportional to n~'2, then the first method applied to a sample of 4n
values will be no more accurate than the second applied to a sample of any n
values. If the second method makes use of the whole of the information avail-
able, the first makes use of only one-quarter of it, and its efficiency may there-
fore be said to be 25 per cent. To calculate the efficiency of any given method,
we must therefore know the probable error of the statistic calculated by that
method, and that of the most efficient statistic which could be used. The
square of the ratio of these two quantities then measures the efficiency. _

The criterion of efficiency is still to some extent incomplete, for different
methods of calculation may tend to agreement for large samples, and yet
differ for all finite samples. The complete criterion suggested by our work on
the mean square error (7) is:

That the statistic chosen should summarise the whole of the relevant infor-
mation supplied by the sample. _

This may be called the Criterion of Sufficiency.

In mathematical language we may interpret this statement by saying that
if @ be the parameter to be estimated, 6, a statistic which contains the whole
of the information as to the value of 6, which the sample supplies, and 8, any
other statistic, then the surface of distribution of pairs of values of 6, and 0,,

and
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for a given value of 6, is such that for a given value of 6,, the distribution of
6, does not involve 0. In other words, when 6, is known, knowledge of the
value of 8, throws no further light upon the value of 6.

It may be shown that a statistic which fulfils the criterion of sufficiency will
also fulfil the criterion of efficiency, when the latter is applicable. For, if this
be so, the distribution of the statistics will in large samples be normal, the
standard deviations being proportional to n~'/2, Let this distribution be

d 1 e~1/(1—r2){(ol—02)/2af—(2rol—o 0,-0)20,05+(0,—0%)/203)} d01 d02,

2n6,6,/1 — r?

then the distribution of 6, is

1 82202
df = e~ @:-09020% 49
0/ 21 !

so that for a given value of 8, the distribution of 6, is

1 1) (9= 2
df = e VRT=) (E8:=0)/0,~O:=0)/a2)? gg. .
0,1/ 2m /1 —r?

and if this does not involve 6, we must have
ro; = 0y;

showing that ¢, is necessarily less than o,, and that the efficiency of 8, is
measured by r?, when r is its correlation in large samples with 6,.

Besides this case we shall see that the criterion of sufficiency is also applica-
ble to finite samples, and to those cases when the weight of a statistic is not
proportional to the number of the sample from which it is calculated.

5. Examples of the Use of the Criterion of Consistency

In certain cases the criterion of consistency is sufficient for the solution of
problems of estimation. An example of this occurs when a fourfold table is .
interpreted as representing the double dichotomy of a normal surface. In this
case the dichotomic ratios of the two variates, together with the correlation,
completely specify the four fractions into which the population is divided. If
these are equated to the four fractions into which the sample is divided, the
correlation is determined uniquely.

In other cases where a small correction has to be made, the amount of the
correction is not of sufficient importance tc justify any great refinement in
estimation, and it is sufficient to calculate the discrepancy which appears
when the uncorrected method is applied to the whole population. Of this
nature is Sheppard’s correction for grouping, and it will illustrate this use of
the criterion of consistency if we derive formulae for this correction without
approximation.



Let & be the value of the variate at the mid point-of any. group; a the
interval of grouping;.and x the true value. of. the vana;te at: any pomt, then the
k" moment of an mfmrte gmupcd sample is. . b

é‘f'(lﬂ)a B :
; f é’j(x)dx, e

: ‘5:(;1/2)« tit
in whwh f{x) éx‘m%he ftequmcy, inanyelement dx, of the ungrouped pcpula-

tion,and . , o
&= <p + EE) a,
p being any integer.

Evidently the k'™® moment is periodic in 8, we will therefore equate it to
Ap+ A sinf+A,sin20...
+ Blf cos o\+ B, cos20....

’i‘hen ;
: "Era/a. '
Ao =5 Z a0 "f(x) dx
T p=—c Je-t/2a
P=w . §+(1/2)a,
TEee Jemama ‘
2 ¢+(1/2),a '
By =— Z , cos s0 do J. "f(x) dx,
. T P = (1/2)a

But
' 2n
=—¢— 2 ; ] .
: e 0 aé AN
therefore - ‘ o v } 7
o=
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- sinsh #sm—zc—:fsﬁ :
_cos s0 = cos z—nsﬁ, S
SRRy f~1 o fEraE $H(12)a
o Ag= JT di ~ 'ﬂx)dx—— I f(x) dx f e R dé
FEE G o z: (1/2>a L = (1/2)« ;
Insertmg the values 1 2,3 and 4 for k, we obtam for the apenodlc terms of
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the four moments of the grouped population

~

1Ao = xf(x) dx,
(* o ‘ é2
2Ap = (xz + 2 f(x) dx,

[* o 2 4
sAo = (x4 +5 4 “—)f(x) dx.

o —0

21

+~/If we ignore the periodic terms; these equations lead to‘the-ordinary Shep-
pard corrections for the second and fourth moment. The nature of the ap-

proximation involved is brought out by the periodic terms. In the abserice of

high contact at the ends of the curve, the contribution of these will, of course,
include the terms given in a recent paper by Pearson (8); but even with high
contact it is of interest to see for what degree of coarseness of grouping the

periodic terms become sensible.

Now
1 p=0 (27 g+(1/2)a
A=~ Y sin s d6 j Ef(x) dx,
T p== Jo E—(1/2)a
s ) Q28 e Lo
-2 f sin 2% ¢ E() dx,
J- a -(12)8
© E+(1/2)a .
=gf f(x) dx.[ Ek sing—gdé.
a)-» &—(1/2)a a
But i i o
x+(1/2)a - ;
g'[ fsinz—@(K: ———a—cos@—sfcosns,
. a x_(1/2)a a . 1'ES : a
therefore

a [®
1Ag = (")Hl;t—s f

-

similarly the other terms of the different moments‘n;éy be ééléuldfed. a

.For a normal cur\{e referred to the true mean. -
28 2.2m,2
1As —_ (_)s+1_s_e (s202/2¢ ),
1BS =0,

in which
- a = 2ne.

cos 2—n:—xf(x) dx;. 0
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The error of the mean is therefore:
—2s(e“"2/2”” sin 8 — “4"”2”” sm 29 + ie"”"”z‘z’ sin 30 —---).

To illustrate a coarse grouping, take the group interval equal to the stan-
dard deviation: then

. g
| 20’
and the error is
i . ‘
——e 2" gin 0
T

. . ' . g
with sufficient accuracy. The standard error of the mean being —-, we may
n

calculate the size of the sample for which the error due to the periodic terms
becomes equal to one-tenth of the standard error, by puttmg

= ze~—2u2
whence
e ™ e g 3790 x 1012,
100 . ¢

For the second moment

, .
Bs = (__)s 4(0.2 + ;:_2) e-—(szaZ/zaZ)’

\/50' 40'26_2"2
10/n -

n = gege*™ = 175 x 102,

The error, while still very- mmute, is thus more 1mportant for the second
than for the first moment.
For the thll‘d moment

and, if we put

there results

2 &t

6ats €
‘( y { +‘s2 3

T i 6)} e,

putting : o
J156* ,

50 o 12noPe
10./n

n=

1

%2 L 12
Seoe™ = 147 x 102,
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While for the fourth moment
86
B, = (-yn122% {1 ~ (a7 — 3)——(n *— 6 s G}e‘“’“’m’n
o

so that, if we put,

\/§_6 ¢ — 321!?2 4 —2n2
10./n ’

~ 32007*

In a similar manner the exact form of Sheppard’s correction may be found
for other curves; for the normal curve we may say that the periodic terms are
exceedingly minute so long as a is less than o, though they increase very
rapidly if a is increased beyond this point. They are of increasing impor-
tance as higher moments are used, not only absolutely, but relatively to the
increasing probable errors of the higher moments. The principle upon which
the correction is based is merely to find the error when the moments are
calculated from an infinite grouped sample; the corrected moment therefore
fulfils the criterion of consistency, and so long as the correction is small no
greater refinement is required.

Perhaps the most extended use of the criterion of consistency has been
developed by Pearson in the “Method of Moments.” In this method, which is
without question of great practical utility, different forms of frequency curves
are fitted by calculating as many moments of the sample as there are parame-
ters to be evaluated. The parameters chosen are those of an infinite popula-
tion of the specified type having the same moments as those calculated from
the sample.

The system of curves developed by Pearson has four variable parameters,
and may be fitted by means of the first four moments. For this purpose it is
necessary to confine attention to curves of which the first four moments are
finite; further, if the accuracy of the fourth moment should increase with the
size of the sample, that is, if its probable error should not be infinitely great,
the first eight moments must be finite. This restriction requires that the class
of distribution in which this condition is not fulfilled should be set aside as
“heterotypic,” and that the fourth moment should become practically value-
less as this class is approached. It should be made clear, however, that there
is nothing anomalous about these so-called “heterotypic” distributions except
the fact that the method of moments cannot be applied to them. Moreover,
for that class of distribution to which the method can be applied, it has not
been shown, except in the case of the normal curve, that the best values will be
obtained by the method of moments. The method will, in these cases, certainly
be serviceable in yielding an approximation, but to discover whether this
approximation is a good or a bad one, and to improve it, if necessary, a more
adequate criterion is required.

A single example will be sufficient to illustrate the practical difficulty al-

=2 = 1.34 x 10'2.
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Figure 1. Symmetrical error curves of equal intrinsic accuracy:

1 dx
A....... =—

7wl + x?
B....... df=L -x%4

2/

luded to above. If a point P lie at known (unit) distance from a straight line
AB, and lines bé drawn at random through P, then the distribution of the
points of intersection with AB will be distributed so that the frequency in any
range dx is

_l_ dx
T l4+(x—m?¥

df

in which x is the distance of the infinitesimal range dx from a fixed point 0 on
the line, and m is the distance, from this point, of the foot of the perpendicular
PM. The distribution will be a symmetrical one (Type VIL) having its centre
at x = m (fig. 1). It is therefore a perfectly definite problem to estimate the
value of m (to find the best value of m) from a random sample of values of x.
We have stated the problem in its simplest possible form: only one parameter
is required, the middle point of the distribution. By the method of moments,
this should be given by the first moment, that is by the mean of the observa-
tions: such would seem to be at least a good estimate. It is, however, entirely
valueless. The distribution of the mean of such samples is in fact the same,
identically, as that of a single observation. In taking the mean of 100 values of
X, we are no nearer obtaining the value of m than if we had chosen any value
of x out of the 100. The problem, however, is not in the least an impracticable
one: clearly from a large sample we ought to be able to estimate the centre of
the distribution with some precision; the mean, however, is an entirely useless
statistic for the purpose. By taking the median of a large sample, a fair ap-
proximation is obtained, for the standard error of the median of a large sam-

ple of nis 2—”——, which, alone, is enough to show that by adopting adequate
n .

statistical methods it must be possible to estimate the value for m, with in-
creasing accuracy, as the size of the sample is increased.
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This example serves also to illustrate the practical difficulty which observ-
ers often find, that a few extreme observations appear to dominate the value
of the mean. In these cases the rejection of extreme values is often advocated,
and it may often happen that gross errors are thus rejected. As a statistical
measure, however, the rejection of observations is too crude to be defended:
and unless there are other reasons for rejection than mere divergence from the
majority, it would be more philosophical to accept these extreme values, not
as gross errors, but as indications that the distribution of errors is not normal.
As we shall show, the only Pearsonian curve for which the mean is the best
statistic for locating the curve, is the normal or gaussian curve of errors. If the
curve is not of this form the mean is not necessarily, as we have seen, of any
value whatever. The determination of the true curves of variation for different
types of work is therefore of great practical importance, and this can only be
done by different workers recording their data in full without rejections, how-
ever they may please to treat the data so recorded. Assuredly an observer need
be exposed to no criticism, if after recording data which are not probably
normal in distribution, he prefers to adopt some value other than the arith-
metic mean.

6. Formal Solution of Problems of Estimation

The form in which the criterion of sufficiency has been presented is not of
direct assistance in the solution of problems of estimation. For it is necessary
first to know the statistic concerned and its surface of distribution, with an
infinite number of other statistics, before its sufficiency can be tested. For the
solution of problems of estimation we require a method which for each partic-
ular problem will lead us automatically to the statistic by which the criterion
of sufficiency is satisfied. Such a method is, I believe, provided by the Method
of Maximum Likelihood, although I am not satisfied as to the mathematical
rigour of any proof which I can put forward to that effect. Readers of the
ensuing pages are invited to form their own opinion as to the possibility of
the method of the maximum likelihood leading in any case to an insufficient
statistic. For my own part I should gladly have withheld publication until a
rigorously complete proof could have been formulated; but the number and
variety of the new results which the method discloses press for publication,
and at the same time I am not insensible of the advantage which accrues to
Applied Mathematics from the co-operation of the Pure Mathematician, and
this co-operation is not infrequently called forth by the very imperfections of
writers on Applied Mathematics.

If in any distribution involving unknown parameters 0,, 6, 0,, ..., the
chance of an observation falling in the range dx be represented by

f(x,0,,0,,...)dx,
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then the chance that in a sample of n, n, fall in the range dx,, n, in the range
dx,, and so on, will be

!
ﬁ%—'—jn {f(xp’ 01, 92, ...) dxp}”l‘.

The method of maximum likelihood consists simply in choosing that set
of values for the parameters which makes this quantity a maximum, and since
in this expression the parameters are only involved in the function f, we have
to make

S(log f)

a maximum for variations of 0,, 0,, 6,, &c. In this form the method is applica-
ble to the fitting of populations involving any number of variates, and equally
to discontinuous as to continuous distributions.

In order to make clear the distinction between this method and that of
Bayes, we will apply it to the same type of problem as that which Bayes
discussed, in the hope of making clear exactly of what kind is the information
which a sample is capable of supplying. This question naturally first arose,
not with respect to populations distributed in frequency curves and surfaces,
but with respect to a population regarded as divided into two classes only, in
fact in problems of probability. A certain proportion, p, of an infinite popula-
tion is supposed to be of a certain kind, e.g., “successes,” the remainder are
then “failures.” A sample of n is taken and found to contain x successes and
y failures. The chance of obtaining such a sample is evidently

n! :
x,—y,l’x(l -pyr.

Applying the method of maximum likelihood, we have

S(log f) = x log p + y log(1 — p)
whence, differentiating with respect to p, in order to make this quantity a
maximum,

x x
- = ) or p=-—.
D n

A
1-p

The question then arises as to the accuracy of this determination. This
question was first discussed by Bayes (10), in a form which we may state thus.
After observing this sample, when we know p, what is the probability that p
lies in any range dp? In other words, what is the frequency distribution of the
values of p in populations which are selected by the restriction that a sample
of n taken from each of them yields x successes. Without further data, as
Bayes perceived, this problem is insoluble. To render it capable of mathemati-
cal treatment, Bayes introduced the datum, that among the populations upon
which the experiment was tried, those in which p lay in the range dp were
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equally frequent for all equal ranges dp. The probability that the value of p
lay in any range dp was therefore assumed to be simply dp, before the sample
was taken. After the selection effected by observing the sample, the proba-
bility is clearly proportional to

p*(1 — py dp.

After giving this solution, based upon the particular datum stated, Bayes
adds a scholium the purport of which would seem to be that in the absence of
all knowledge save that supplied by the sample, it is reasonable to assume this
particular a priori distribution of p. The result, the datum, and the postulate
implied by the scholium, have all been somewhat loosely spoken of as Bayes’
Theorem. :

The postulate would, if true, be of great importance in. bringing an im-
mense variety of questions.within the domain of probability. It is, however,
evidently extremely arbitrary. Apart from evolving a vitally important piece
of knowledge, that of the exact form of the distribution of values of p, out of
an assumption of complete ignorance, it is not even a unique solution. For we
might never have happened to direct our attention to the particular quantity
p: we might equally have measured probability upon an entirely different
scale. If, for instance,

sinf=2p—1,
the quantity, 8, measures the degree of probability, just as well as p, and is

even, for some purposes, the more suitable variable. The chance of obtaining
a sample of x successes and y failures is now

?‘%iﬁ(l + sin 6)*(1 — sin 6y
applying the method of maximum likelihood,

Sflog f) = x log(1 + sin @) + ylog(1 —sin #) — nlog 2,
and differentiating with respect to 6,

xcosf _ ycosf whence sin 0 = X=
1+sinf 1—sin@’ T n

an exactly equivalent solution to that obtained using the variable p. But what
a priori assumption are we to make as to the distribution of 87 Are we to
assume that 8 is equally likely to lie in all equal ranges d6? In this case the a
priori probability will be d6/=, and that after making the observations will be
proportional to

(1 + sin 8)*(1 — sin BY d6.

But if we interpret this in terms of p, we obtain
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o d
P — Py = p™ (L — PP dp,
vp(l —p)
a result inconsistent with that obtained previously. In fact, the distribution
previously assumed for p was equivalent to assuming the special distribution
for 6,

cos 8
2

the arbitrariness of which is fully apparent when we use any variable other
than p.

In a less obtrusive form the same species of arbitrary assumption underlies
the method known as that.of inverse probability. Thus, if the same observed
result A might be the consequence of one or other of two hypothetical condi-
tions X and Y, it is assumed that the probabilities of X and Y are in the same
ratio as the probabilities of A occurring on the two assumptions, X is true, Y
is true. This amounts to assuming that before A was observed, it was known
that our universe had been selected at random from an infinite population in
which X was true in one half, and Y true in the other half. Clearly such an
assumption is entirely arbitrary, nor has any method been put forward by
which such assumptions can be made even with consistent uniqueness. There
is nothing to prevent an irrelevant distinction being drawn among the hypo-
thetical conditions represented by X, so that we have to consider two hypo-
thetical possibilities X, and X,, on both of which A will occur with equal
frequency. Such a distinction should make no difference whatever to our con-
clusions; but on the principle of inverse probability it does so, for if previously
the relative probabilities were reckoned to be in the ratio x to y, they must
now be reckoned 2x to y. Nor has any criterion been suggested by which
it is possible to separate such irrelevant distinctions from those which are
relevant. '

There would be no need to emphasise the baseless character of the assump-
tions made under the titles of inverse probability and Bayes’ Theorem in view
of the decisive criticism to which they have been exposed at the hands of
Boole, Venn, and Chrystal, were it not for the fact that the older writers, such
as Laplace and Poisson, who accepted these assumptions, also laid the foun-
dations of the modern theory of statistics, and have introduced into their
discussions of this subject ideas of a similar character. I must indeed plead
guilty in my original statement of the Method of the Maximum Likelihood
(9) to having based my argument upon the principle of inverse probability; in
the same paper, it is true, I emphasised the fact that such inverse probabilities
were relative only. That is to say, that while we might speak of one value of
p as having an inverse probability three times that of another value of p, we
might on no account introduce the differential element dp, so as to be able to
say that it was three times as probable that p should lie in one rather than the
other of two equal elements. Upon consideration, therefore, I perceive that

df = dé,
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the word probability is wrongly used in such a connection: probability is a
ratio of frequencies, and about the frequencies of such values we can know
nothing whatever. We must return to the actual fact that one value of p, of
the frequency of which we know nothing, would yield the observed result
three times as frequently as would another value of p. If we need a word to
characterise this relative property of different values of p, I suggest that we
may speak without confusion of the likelihood of one value of p being thrice
the likelihood of another, bearing always in mind that likelihood is not here
used loosely as a synonym of probability, but simply to express the relative
frequencies with which such values of the hypothetical quantity p would in
fact yield the observed sample.

The solution of the problems of calculating from a sample the parameters
of the hypothetical population, which we have put forward in the method of
maximum likelihood, consists, then, simply of choosing such values of these
parameters as have the maximum likelihood. Formally, therefore, it resem-
bles the calculation of the mode of an inverse frequency distribution. This
resemblance is quite superficial: if the scale of measurement of the hypotheti-
cal quantity be altered, the mode must change its position, and can be brought
to have any value, by an appropriate change of scale; but the optimum, as the
position of maximum likelihood may be cailed, is entirely unchanged by any
such transformation. Likelihood also differs from probability* in that it is not
a differential element, and is incapable of being integrated: it is assigned to a
particular point of the range of variation, not to a particular element of it.
There is therefore an absolute measure of probability in that the unit is chosen
so as to make all the elementary probabilities add up to unity. There is no
such absolute measure of likelihood. It may be convenient to assign the value
unity to the maximum value, and to measure other likelihoods by compari-
son, but there will then be an infinite number of values whose likelihood is
greater than one-half. The sum of the likelihoods of admissible values will
always be infinite.

Our interpretation of Bayes’ problem, then, is that the likelihood of any
value of p is proportional to

14 x(l - p)y’
and is therefore a maximum when
X
p - n,

* It should be remarked that likelihood, as above defined, is not only fundamentally distinct from
mathematical probability, but also from the logical “probability” by which Mr. Keynes (21) has
recently attempted to develop a method of treatment of uncertain inference, applicable to those
cases where we lack the statistical information necessary for the application of mathematical
probability. Although, in an important class of cases, the likelihood may be held to measure the
degree of our rational belief in a conclusion, in the same sense as Mr. Keynes’ “probability,” yet
since the latter quantity is constrained, somewhat arbitrarily, to obey the addition theorem of

mathematical probability, the likelihood is a quantity which falls definitely outside its scope.



30 R.A. Fisher

which is the best value obtainable from the sample; we shall term this the
optimum value of p. Other values of p for which the likelihood is not much less
cannot, however, be deemed unlikely values for the true value of p. We do
not, and cannot, know, from the information supplied by a sample, anything
about the probability that p should lie between any named values.

The reliance to be placed on such a result must depend upon the frequency
distribution of x, in different samples from the same population. This is a
perfectly objective statistical problem, of the kind we have called problems of
distribution; it is, however, capable of an approximate solution, directly from
the mathematical form of the likelihood.

When for large samples the distribution of any statlstlc 6., tends to nor-
mality, we may write down the chance for a given value of the parameter 0,
that 6, should lie in the range d, in the form

1
O=——o @02 g4g
o /2n !

The mean value of 8, will be the true value 6, and the standard deviation
is o, the sample being assumed sufficiently large for us to disregard the depen-
dence of ¢ upon 6. '

The likelihood of any value, 6, is proportional to

e~(01—0)2/262,
this quantity having its maximum value, unity, when

0=20,;

for

LI
00 g

Differentiating now a second time

0> 1
2 log® = —z

Now ® stands for the total frequency of all samples for which the chosen
statistic has the value 8,, consequently ® = S'(¢), the summation being taken
over all such samples, where ¢ stands for the probability of occurrence of a
certain specified sample. For which we know that

log ¢ = C + S(log f),
the summation being taken over the individual members of the sample.
If now we expand log f in the form
—2

0,
T 108 £(0,) +

log f(0) = log f6,) + 5= 0, 2 log f(6,) + -1
00



On the Mathematical Foundations of Theoretical Statistics 31

or

logf=logf1+a0—01+g¢9——012+---,

we have
logd=C+0—0,S(a)+310—0,°S(b) + ;
now for optimum statistics
S(@) =

and for sufficiently large samples‘S(b) differs from nb only by a quantity of
order \/;a,,; moreover, § — 0; being of order n~2, the only terms in log ¢
which are not reduced without limit, as n is increased, are. . .

loggp=C +4nb0—06,%

hence

¢ e e(1/2)n50-012'

Now this factor is constant for all samples which have the same value of
0, hence the variation of ® with respect to 0 is represented by the same factor,
and consequently

log®=C +4nb 0 -6,%

whence
1 0?
—(—7;2: 602 log ® = nb,
where
0?
= 57 108 SO

0, being the optlmum value of 6.
The formula
1 0?
_—— = X 1
2~ o2 8 s

~ supplies the most direct way known to me of finding the probable errors of
statistics It may be seen that the above proof applies only to statistics ob-
tained by the method of maximum likelihood.*

* A similar method of obtaining the standard deviations and correlations of statistics derived
from large samples was déeveloped by Pearson and Filon in 1898 (16). It is unfortunate that in
this'memoir no sufficient distinction' is drawn between ‘the population and the sample, in conse-
quence of which the formulae obtained indicate that the likelihood is always 2 maximum (for
continuous distributions) when the mean of each variate in the sample is equated to the corre-
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For example, to find the standard deviation of
x

in samples from an infinite population of which the true value is p,

~log f = xlogp+ ylog(l —p),

_x_ Yy
R
2 x y
| T T T T
Now the mean value of x is pn, and of y is (1 — p)n, hence the mean value
o2
of — o log fis
1 4 1 n:
1—-p/"”
therefore | V
of = pl—p)

n

the well-known formula for the standard error of p.

sponding mean in the population (16, p. 232, “A, = 0”). If this were so the mean would always
be a sufficient statistic for location; but as we have already seen, and will see later in more detail,
this is far from being the case. The same argument, indeed, is applied to all statistics, as to which
nothing but their consistency can be truly affirmed.

The probable errors obtained in this way are those appropriate to the method of maximum
likelihood, but not in other cases to statistics obtained by the method of moments, by which
method the examples given were fitted. In the “Tables for Statisticians and Biometricians’ (1914),
the probabile errors of the constants of the Pearsonian curves are those proper to the method of
moments; no mention is there made of this change of practice, nor is the publication of 1898
referred to. )

It would appear that shortly before 1898 the process which leads to the correct value, of the
probable errors of optimum statistics, was hit upon and found to agree with the probable errors
of statistics found by the method of moments for normal curves and surfaces; without further
enquiry it would appear to have been assumed that this process was valid in all cases, its direct-
ness and simplicity being peculiarly attractive. The mistake was at that time, perhaps, a natural
one; but that it should have been discovered and corrected without revealing the inefficiency of
the method of moments is a very remarkable circumstance.

In 1903 the correct formulae for the probable errors of statistics found by the method of mo-
ments are given in ‘Bjometrika’ (19); references are there given to Sheppard (20), whose method
is employed, as well as-to Pearson and Filon (16), although both the method and the results differ
from those of the latter.
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7. Satisfaction of the Criterion of Sufficiency

That the criterion of sufficiency is generally satisfied by the solution ob-
tained by the method of maximum likelihood appears from the following
considerations.

If the individual values of any sample of data are regarded as co-ordinates
in hyperspace, then any sample may be represented by a single point, and the
frequency distribution of an infinite number of random samples is represented
by a density distribution in hyperspace. If any set of statistics be chosen to be
calculated from the samples, certain regions will provide identical sets of sta-
tistics; these may be called isostatistical regions. For any particular space
element, corresponding to an actual sample, there will be a particular set of
parameters for which the frequency in that element is a maximum,; this will
be the optimum set of parameters for that element. If now the set of statistics
chosen are those which give the optimum values of the parameters, then all
the elements of any part of the same isostatistical region will contain the
greatest possible frequency for the same set of values of the parameters, and
therefore any region which lies wholly within an isostatistical region will con-
tain its maximum frequency for that set of values.

Now let 0 be the value of any parameter, 8 the statistic calculated by the
method of maximum likelihood, and 6, any other statistic designed to esti-
mate the value of 6, then for a sample of given size, we may take

116, 6, 6,) d do,

to represent the frequency with which 6 and 6, lie in the assigned ranges do
and d0,. The region d do, evidently lies wholly in the isostatistical region dé
Hence the equation

0
T log (6, 6,6,) = 0

is satisfied, irrespective of 8,, by the value 8 = 0. This condition is satisfied
if

116,6,6,) = $(6, 6)- 48, 6,);
for then

d d
%logf=5510g¢,

and the equation for the optimum degenerates into

0
39108 ¢(6; 9) =

which does not involve ;.
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But the factorisation of f into factors involving (6, 8) and (6, 6,) respec-
tively is merely a mathematical expression of the condition of sufficiency; and
it appears that any statistic which fulfils the condition of sufficiency must be
a solution obtained by the method of the optimum

It may be expected, therefore, that we shall be led to a sufficient solution
of problems of estimation in general by the following procedure. Write down
the formula for the probability of an observation falling in the range dx in the
form :

(0, x) dx,

where 6 is an unknown parameter. Then if

L = S(log f),

the summation being extended over the observed sample, L differs by a con-
stant only from the logarithm of the likelihood of any value of 6. The most
likely value, 6, is found by the equation

oL
%=
and the standard deviation of 0, by a second differentiation, from the formula
o’L _ 1
802 o}’

this latter formula being applicable only where 8 is normally distributed, as
is often the case with considerable accuracy in large samples. The value g
so found is in these cases the least possible value for the standard deviation
of a statistic designed to estimate the same parameter; it may therefore be
applied to calculate the efficiency of any other such statistic.

When several parameters are determined simultaneously, we must equate
the second differentials of L, with respect to the parameters, to the coefficients
of the quadratic terms in the index of the normal expression which represents
the distribution of the corresponding statistics. Thus with two parameters,

PL_ 11 oL _ 11
6 1-r, oi’ 06; 1-r}, o}’
oL 1 r

= 5" s
00, 60? 1-— T5.6, 9,%,
or, in effect, %z is found by dividing the Hessian determinant of L, with respect
to the parameters, into the corresponding minor.

The application of these methods to such a series of parameters as occur in
the specification of frequency curves may best be made clear by an example....
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12. Discontinuous Distributions

The applications hitherto made of the optimum statistics have been problems
in which the data are ungrouped, or at least in which the grouping intervals
are so small as not to disturb the values of the derived statistics. By grouping,
these continuous distributions are reduced to discontinuous distributions,
and in an exact discussion must be treated as such.

If p, be the probability of an observation falling in the cell (s), p; being a
function of the required parameters 8,, 6,...; and in a sample of N, if n, are
found to fall into that cell, then

S(log f) = S(n, log p;). -
If now we write 77, = p,N, we may conveniently put

n,
L= S(ns log i>’

where L differs by a constant only from the logarithm of the likelihood, with
sign reversed, and therefore the method of the optimum will consist in finding
the minimum value of L. The equations so found are of the form

oL ngon,\ _
a—e'= —_S<i-a_0)—-0. (6)

It is of interest to compare these formulae with those obtained by making the
Pearsonian x* a minimum.

For
XZ P S(ns __- '—ls)z’

S

2
2 __ ns
14+ x° = S(ﬁs>’

so that on differentiating by d6, the condition that x’ should be a rm’n!mum

for variations of 8 is
| n? on,
—s<ﬁ—3 5.0_) —o. ™

Equation (7) has actually been used (12) to “improve” the values obtained
by the method of moments, even in cases of normal distribution, and the
Poisson series, where the method of moments gives a strictly sufficient solu-
tion. The discrepancy between these two methods arises from the fact that x?
is itself an approximation, applicable only when 7, and n, are large, and the
difference between them of a lower order of magnitude. In such cases

and therefore
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Nosles B X
- 2m  6m> ’

L= S<nslog%> = S(m + xlogm +
and since
S(x) =

we have, when x is in all cases small compared to m,

T (x*\ 1,
-zs(z>—ix

as a first approximation. In those cases, therefore, when x? is a valid measure
of the departure of the sample from expectation, it is equal to 2L; in other
cases the approximation fails and L itself must be used.

The failure of equation (7) in the general problem of finding the best values
for the parameters may also be seen by considering cases of fine grouping, in
which the majority of observations are separated into units. For the formula

in equation (6) is equivalent to
1 on,
(%)

where the summation is taken over all the observations, while the formula of
equation (7), since it involves nZ, changes its value discontinuously, when one
observation is gradually increased, at the point where it happens to coincide
with a second observation.

Logically it would seem to be a necessity that that population which is
chosen in fitting a hypothetical population to data should also appear the
best when tested for its goodness of fit. The method of the optimum secures
this agreement, and at the same time provides an extension of the process of
testing goodness of fit, to those cases for which the y? test is invalid.

The practical value of y2 lies in the fact that when the conditions are satis-
fied in order that it shall closely approximate to 2L, it is possible to give a
general formula for its distribution, so that it is possible to calculate the prob-
ability, P, that in a random sample from the population considered, a worse
fit should be obtained; in such cases y? is distributed in a curve of the Pear-

sonian Type III.,
2\ (' -3)2 2
X —y2 X
d 222
If oc ( 2) e d ( 2)

df oc L3271 g1,

where n’ is one more than the number of degrees of freedom in which the
sample may differ from expectation (17).

In other cases we are at present faced with the difficulty that the distribu-
tion L requires a special investigation. This distribution will in general be

or
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discontinuous (as is that of x2), but it is not impossible that mathematical
research will reveal the existence of effective graduations for the most impor-
tant groups of cases to which y? cannot be applied.

We shall conclude with a few illustrations of i unportant types of discontinu-
ous distribution.

1. The Poisson Series

e ™1 m’ m”
,m,—ﬂ,...,g—,...

involves only the single parameter, and is of great nnportanoe in modern
statistics. For the optimum value of m, :

S{%(——m + x log m)} =0,

whence

or
m=X.

The most likely value of m is therefore found by taking the first moment of
the series.
Differentiating a second time,

_L_s( xz> - "
o2 m m

so that

as is well known.

2. Grouped Normal Data

In the case of the normal curve of distribution it is evident that the second
moment is a sufficient statistic for estimating the standard deviation; in inves-
tigating a sufficient solution for grouped normal data, we are therefore in
reality finding the optimum correction for grouping; the Sheppard correction
having been proved only to satisfy the criterion of consistency.
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For grouped normal data we have

0'\/_2‘7; X4

and the optimum values of m and ¢ are obtained from the equations,

JL n,0p,\
om "~ S(m 6m) O

JL n,op,\
w=s(xi)-o

Zz = 1 e—(me2)/2¢2 y

g

—(x m2)/2¢r2 dx,

or, if we write,

we have the two conditions,

S(g-"zs = z_,+1> =0
oG -a)o

As a simple example we shall take the case chosen by K. Smith in her investi-
gation of the variation of y? in the neighbourhood of the moment solution
(12).

Three hundred errors in right ascension are grouped in nine classes, posi-
tive and negative errors being thrown together as shown in the following
table: :

and

-1 arc 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 89
Frequency . . 114 84 53 24 14 6 3 1 1
The second moment, without correction, yields the value
o, = 2.282542.
Using Sheppard’s correction, we have
o, = 2264214,

while the value obtained by making 32 a minimuni is
6,2 = 2.355860.

If the latter value were accepted we should have to conclude that Sheppard’
correction, even when it is small, and ‘applied to normal data, might be alto-
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gether of the wrong magnitude, and even in the wrong direction In order to

JL . .
obtain the optimum value of ¢, we tabulate the values of 3 in the region
under consideration; this may be done without great labour if values of o be
chosen suitable for the direct application of the table of the probability inte-
gral (13, Table I1.). We then have the following values:

% 043 044 045 0.46
oL
% +15.135 | +2.149 | —11.098 | —24.605
a2l —0261 | —0260
do
By interpolation,
1
-~ = 0441624
é
6 = 2.26437.
We may therefore summarise these results as follows:—
Uncorrected estimateofe . . . . . . . . . . 2.28254
Sheppard’s correction .. . e e o o . . —001833
. Correction for maximum hkehhood e oo —001817
“Correction” for minimum x? e e v oo . 4007332

Far from shaking our faith, therefore, in the adequacy of Sheppard’s cor-
rection, when small, for normal data, this example provides a striking in-
stance of its effectiveness, while the approximate nature of the x* test renders
it unsuitable for improving a method which is already very accurate.

It will be useful before leaving the subject of grouped normal data to calcu-
late the actual loss of efficiency caused by grouping, and the additional loss
due to the small discrepancy between moments with Sheppard’s correction
and the optimum solution.

To calculate the loss of efficiency involved in the process of grouping nor-

mal data, let
1 (e
v="- J- f(&)d¢g,
a4 Je-(12)a

when q, is the group interval, then
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¥ g 6
v 03 “f’ * mof O+ 7355570+
e YL . J: <~ )
=/ ‘9{1 izaf‘fz 192@ 6243
g L
+ m(ﬁs - 15‘:4 + 4562 - 15) + },
whence
a2
lor=log /424" - 2880 +48% -2
6 .
¥ i 440(‘56 +68% 432 — 1) — -
and
0

12 720 30,240

of which the mean value is

2 1 1 fa? oo
Wlogv= =t { (3€2+2)+ (5¢‘+12§2+1)— }

+;t31as 33010

Now ﬁar the mean of ungrouped data

6>
.

3

so that the loss of eﬂicxency due to groupmg ls nearly 12

small for
neglectmg the periodic terms, the loss of efﬁctency by using v, therefore is
-~ only .

86400

Smularly for the efficiency for scaling,
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6a210gv
138 1 fa 2 4 2
-?_7+?{ﬁ(10¢ —y- Lo ap -

6

30 240

8

————(26£% + 110&* + 36£%2 — 7)
a
1,814,400
f which the mean value is
2 1 a2+ at a° + 8348 1
o? 6 40 270 129,600 |’
ieglecting the periodic terms; and consequently

, 0’ a? at at
% = 2n{1+6"°360 10,800"'}‘

(518° + 31565 + 3518 — 5562 + 9) + }

‘or ungrouped data

2

o that the loss of efficiency in scaling due to grouping is nearly rx This may

e made as low as 1 per cent by keeping a less than .
The further loss of efficiency produced by using the grouped second mo-
aent with Sheppard’s correction is again very small, for

.2 4 2 a
Vy—V 20 a a
0'32= : 2=’—‘_<1+€+—>

n n 360

ieglecting the periodic terms.
Whence it appears that the further loss of efficiency is only

a8

10,800°

We may conclude, therefore, that the high agreement between the opti-
num value of ¢ and that obtained by Sheppard’s correction in the above
xample is characteristic of grouped normal data. The method of moments
7rith Sheppard’s correction is highly efficient in treating such material, the
ain in efficiency obtainable by increasing the likelihood to its maximum
alue is trifling, and far less than can usually be gained by using finer groups.
"he loss of efficiency involved in grouping may be kept below 1 per cent. by
naking the group interval less than one-quarter of the standard deviation.
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Although for the normal curve the loss of efficiency due to moderate group-
ing is very small, such is not the case with curves making a finite angle with
the axis, or having at an extreme a finite or infinitely great ordinate. In such
cases even moderate grouping may result in throwing away the greater part
of the information which the sample provides....

13. Summary

During the rapid development of practical statistics in the past few decades,
the theoretical foundations of the subject have been involved in great obscuri-
ty. Adequate distinction has seldom been drawn between the sample recorded
and the hypothetical population from which it is regarded as drawn. This
obscurity is centred in the so-called “inverse” methods.

On the bases that the purpose of the statistical reduction of data is to
obtain statistics which shall contain as much as possible, ideally the whole, of
the relevant information contained in the sample, and that the function of
Theoretical Statistics is to show how such adequate statistics may be calcu-
lated, and how much and of what kind is the information contained in them,
an attempt is made to formulate distinctly the types of problems which arise
in statistical practice. :

Of these, problems of Specification are found to be dominated by consider-
ations which may change rapidly during the progress of Statistical Science. In
problems of Distribution relatively little progress has hitherto been made,
these problems still affording a field for valuable enquiry by highly trained
mathematicians. The principal purpose of this paper is to put forward a
general solution of problems of Estimation.

Of the criteria used in problems of Estimation only the criterion of Consis-
tency has hitherto been widely applied; in Section 5 are given examples of the
adequate and inadequate application of this criterion. The criterion of Effi-
ciency is shown to be a special but important case of the criterion of Suf-
ficiency, which latter requires that the whole of the relevant information
supplied by a sample shall be contained in the statistics calculated.

In order to make clear the nature of the general method of satisfying the
criterion of Sufficiency, which is here put forward, it has been thought neces-
sary to reconsider Bayes’ problem in the light of the more recent criticisms to
which the idea of “inverse probability” has been exposed. The conclusion is
drawn that two radically distinct concepts, both of importance in influencing
our judgment, have been confused under the single name of probability. It is
proposed to use the term likelihood to designate the state of our information
with respect to the parameters of hypothetical populations, and it is shown
that the quantitative measure of likelihood does not obey the mathematical
laws of probability.
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A proof is given in Section 7 that the criterion of Sufficiency is satisfied by
that set of values for the parameters of which the likelihood is a maximum,
and that the same function may be used to calculate the efficiency of any other
statistics, or, in other words, the percentage of the total available information
which is made use of by such statistics.

This quantitative treatment of the information supplied by a sample is
illustrated by an investigation of the efficiency of the method of moments in
fitting the Pearsonian curves of Type IIL

Section 9 treats of the location and scaling of Error Curves in general,
and contains definitions and illustrations of the intrinsic accuracy, and of the
centre-of location of such curves.

In Section 10 the efficiency of the method of moments in fitting the general
Pearsonian curves is tested and discussed. High efficiency is only found in the
neighbourhood of the normal point. The two causes of failure of the method
of moments in locating these curves are discussed and illustrated. The special
cause is discovered for the high efficiency of the third and fourth moments in
the neighbourhood of the normal point.

It is to be understood that the low efficiency of the moments of a sample
in estimating the form of these curves does not at all diminish the value of the
notation of moments as a means of the comparative specification of the form
of such curves as have finite moment coefficients.

Section 12 illustrates the application of the method of maximum likelihood
to discontinuous distributions. The Poisson series is shown to be sufficiently
fitted by the mean. In the case of grouped normal data, the Sheppard correc-
tion of the crude moments is shown to have a very high efficiency, as com-
pared to recent attempts to improve such fits by making ¥? a minimum,; the
reason being that y2 is an expression only approximate to a true value deri-
vable from likelihood. As a final illustration of the scope of the new process,
the theory of the estimation of micro-organisms by the dilution method is
investigated.

Finally it is a pleasure to thank Miss W.A. Mackenzie, for her valuable
assistance in the preparation of the diagrams.
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