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Finding the appropriate level of complexity for a simulation model:
An example with a forest growth model
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A B S T R A C T

The topic of model complexity is fundamental to model developers and model users. In this study, we

investigate how over- and under-fitting of a driving function in a simulation model influences the

predictive ability of the model. Secondly, we investigate whether model selection approaches succeed in

selecting driving functions with the best predictive ability. We address these issues through an example

with the forest simulator SORTIE-ND. Utilizing maximum likelihood methods and individual tree growth

data we parameterize five growth functions of increasing complexity. We then incorporate each growth

function into the simulation model SORTIE-ND and test predicted growth against independent data.

Compared to the independent data, the simplest and the most complex growth functions had the poorest

predictive ability while functions of intermediate complexity had the best predictive ability. The poor

predictive ability of the simplest model is caused by poor approximation of the system while the poor

predictive ability of the most complex model is caused by biased parameter estimates. A growth function

of intermediate complexity was the most parsimonious model where error due to approximation and

error due to estimation were simultaneously minimized. The model selection criteria AIC and BIC were

found to select complex functions that were over-fitted according to the independent data comparison.

BIC was closer to choosing the model that minimized prediction error than AIC. In this example, BIC is the

more appropriate model selection criterion. It is important that both model developers and models users

remember that more complex models do not always result in better predictive models.

� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Simulation models are increasingly popular in both ecology and
forest management (Messier et al., 2003). There is broad
agreement among model developers that parsimonious models
are preferable over more complex models (Gauch, 2003; McLeod,
1993; Pidd, 1996). Parsimony has been an important topic for both
philosophers of science and applied scientists for several hundred
years (Forster and Sober, 1994; Gauch, 2003). The meaning of
parsimony is often explained through various versions of Occham’s
razor: ‘‘entities should not be multiplied beyond necessity’’ (e.g.
Hoffmann et al., 1996; Young et al., 1996; Forster, 2000; Steel and
Penny, 2000; Gauch, 2003), a supposed Einstein quote: ‘‘as simple
as possible but no simpler’’ (e.g. Burnham and Anderson, 2002), or
in a more statistical sense as ‘‘the smallest possible number of
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parameters for adequate representation of data’’ (Box and Jenkins,
1970).

The objective of most simulation models is to make predictions
about a system of interest. The main benefit of utilizing a
parsimonious model is that it provides the best predictions
(Burnham and Anderson, 2002; Gauch, 1993, 2003). Parsimonious
models provide better predictions because the error due to
approximation (simplification of the system) and error associated
with parameter estimation are balanced to obtain the overall
lowest level of prediction error (Box and Jenkins, 1970; Burnham
and Anderson, 2002; Gauch, 2003).

Even though the benefits of parsimony are widely recognized,
the complexity of the available simulation models is increasing
rapidly (Pidd, 1996; Harte, 2002). For most systems and research
questions, our knowledge of the system has not increased at the
same rate as the complexity of our modeling tools. According to
Chwif and Paul (2000) there are several reasons for the observed
increase in model complexity: an ‘‘include all syndrome’’ that
tempts model developers to include everything they know about
a system even though a model should be an abstraction of the
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system, a ‘‘possibility factor’’ that relates to the accessibility of
computing power, and finally ‘‘unclear simulation objectives’’
which cause models to be unnecessarily complex. Alternatively, it
is possible that model complexity has increased because the
simpler models did not provide adequate answers to our questions.
The trend towards higher degrees of model complexity combined
with the importance of parsimony raises two main questions: (1)
how to achieve the appropriate level of complexity in modeling
and (2) what happens to model predictions when models are too
complex or too simple.

The way that many ecologists analyze data in order to make an
inference to a population has shifted in the last two decades (e.g.
Johnson and Omland, 2004). The shift has been from null-
hypothesis testing towards a model selection framework (e.g.
Burnham and Anderson, 2002; Dayton, 2003; Johnson and Omland,
2004) where multiple working hypotheses (Chamberlin, 1965)
represented as mathematical models are compared against data.
The best approximating model or set of best approximating models
is used to make inference to the population and selected with a
model selection criterion. The most frequently used model
selection criteria are AIC (Akaike, 1973) and BIC (Schwarz, 1978)
(Kuha, 2004).

In ecology and econometrics, AIC or the small sample size
equivalent AICC (Hurvich and Tsai, 1989) appears dominant while
BIC is prominent in social sciences (Kuha, 2004). Heuristic
interpretation of most model selection criteria include the concept
of parsimony as models are awarded for better fit but penalized for
increasing complexity measured by the number of parameters (e.g.
Bozdogan, 2000; Burnham and Anderson, 2002; Dayton, 2003). For
simulation models that are based on data, alternate formulations
of the driving functions can be derived within a model selection
framework. In this case, the goal of the model selection is to ensure
the selection of functions with the best predictive ability.

In this study, we purposely parameterize five tree growth
functions (models) of varying complexity from field data. We then
compare each model using two model selection criteria (AICC and
BIC). We use the forest dynamics simulator SORTIE-ND to evaluate
the predictive ability of each model against independent data. Our
analysis addresses two important issues of interest to model
developers and model users. First, it addresses how complexity
(over- or under-fitting) of a driving function in a simulation model
influences the predictive ability of the model. The absolute values
from this analysis will be specific to the evaluated model and data,
but the patterns will be general and valid across a wide range of
models and modeling approaches. Second, our analysis addresses
whether the use of standard model selection approaches ensures
selection of the function with the best predictive ability. The
results related to model selection criteria are limited to simulation
models where the driving functions are fitted directly from data.

2. Methodology

2.1. Mature tree growth functions

The growth functions used in our analysis predict annual radial
increment of individual trees and are variations of the models
developed by Canham et al. (2004, 2006). A thorough explanation of
the model structure and biological interpretation of the individual
parameters can be found in the original papers. In this analysis, we
use individual tree growth data collected in stem-mapped plots
from forests of the Sub-Boreal Spruce, moist cold subzone (SBSmc2;
Banner et al., 1993) located near the town of Smithers in central
British Columbia, Canada. We use data for the four dominant tree
species in these forests: interior spruce [a complex of white spruce
Picea glauca (Moench) Voss and Engelmann spruce (Picea engel-
mannii Parry ex Engelm.)], lodgepole pine (Pinus contorta var. latifolia

Engelm.), subalpine fir (Abies lasiocarpa (Hook.) Nutt.), and
trembling aspen (Populus tremuloides Michx.).

The utilized growth functions include tree species, tree size,
estimated shading, and a distance-dependent competition index (a
proxy for belowground competition) as predictor variables
(Canham et al., 2004). We investigated a total of five nested
models with decreasing levels of complexity and an associated
decreasing number of parameters. In the remainder of this paper
the five models are referred to as the: Full Model, Crowding–
Shading Model, Crowding Model, Shading Model and Size Model.
The most complex model is the Full Model and the other four
models are simplifications of this model. In the Full Model, the
predicted growth of an individual tree is a maximum growth rate
(Max Growth) modified by three individual effects: the tree size
(Size Effect), shading from neighbours (Shading Effect) and
competition from neighbours (Crowding Effect):

Growth ¼ Max Growth� Size Effect � Shading Effect

� Crowding Effect;

where Growth is the radial increment (mm/year), Max Growth is an
estimated parameter that determines the maximum radial
increment that can be predicted for an individual tree, and the
individual effects have the functional forms outlined in the
following equations:

Size Effect ¼ e�0:5 ln DBH=X0ð Þ=Xb½ �2 ; (1)

where DBH is the diameter of the target tree in centimeters (at 1.30
m height above ground level) and X0 and Xb are estimated
parameters that describe the mode and variance. As tree size
increases, the size effect allows for an initial increase in predicted
radial increment, followed by a peak where the Max Growth is
obtained (DBH = X0) and a slow decrease in radial increment as tree
diameter increases above DBH = X0.

Shading Effect ¼ e�m�S; (2)

where S is the amount of shading from neighbour trees (0 = no
shade and 1 = full shade) while m is an estimated parameter that
determines the rate of decrease in growth associated with shading.

Crowding Effect ¼ e�C�DBHD�NCI (3)

where DBH is the diameter of the target tree and NCI is a
competition index (Neighbourhood Crowding Index (4)) while C

and D are estimated parameters. The C parameter allows for a
decrease in growth with increased competition and the D

parameter allows different tree sizes to have differential sensitivity
to competition (Canham et al., 2004). NCI is calculated according to
(4) where the crowding is summed across i = 1 to s species and j = 1
to n neighbours, distij is the distance to a given neighbourij; ai and
bi are estimated species-specific parameters; and li is a species-
specific competition intensity factor, which ranges from 0 to 1, for
each neighbour species relative to the target tree (Canham et al.,
2004). Thus, when four species are analyzed, four species-specific
estimates of li are obtained for each target tree species.

NCI ¼
Xs

i¼1

Xn

j¼1

li

DBHi j=100
� �ai

disti j
bi

(4)

For each tree species, the Full Model has a total of 13 estimated
parameters and includes the Size Effect, the Crowding Effect where
different tree sizes are differentially influenced by competition,
and the Shading Effect. The Crowding–Shading Model contains 12
parameters and is the second most complicated model. Compared
to the Full Model, the Crowding–Shading Model is simplified by



Table 1
Summary of the main effects included in the five nested models

Size Effect Shading Effect Crowding Effect Differential Crowding Effect Number of parameters

Full Model Yes Yes Yes Yes 13

Crowding–Shading Model Yes Yes Yes No 12

Crowding Model Yes No Yes No 11

Shading Model Yes Yes No No 4

Tree Size Model Yes No No No 3
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fixing parameter D (Eq. (3)) in the crowding effect at zero. Thus, in
the Crowding–Shading Model, different tree sizes are equally
sensitive to competition. The Crowding Model has a total of 11
estimated parameters and is simplified from the Full Model by
setting both parameters D in the Crowding Effect and parameter m

in the shading effect equal to zero. Thus, the Crowding Model
represents a model where shading has no effect on predicted radial
growth and all tree sizes are equally sensitive to competition. The
Shading Model has a total of four estimated parameters and is
derived from the Full Model by excluding the Crowding Effect. Thus
the Shading Model only allows shading and tree size to influence
tree growth. The final and most simple of the five tested models is
the Size Model. The Size Model has three estimated parameters and
is derived from the Full Model by excluding both the Shading Effect

and the Crowding Effect. Thus in the Size Model, growth of each
species is exclusively dependent on tree size and independent of
the surrounding neighbourhood. A summary of the five utilized
models can be found in Table 1.

2.2. Fitting the growth functions

The five growth functions were fitted to individual tree data
from 14 stem-mapped stands (averaging 0.3 ha in size) that
included a large range of tree sizes (DBH range: 3–65 cm), ages, and
species mixtures. The positions of all trees taller than 130 cm were
recorded and the DBH of all trees were measured. To get estimates
of radial increment, an increment core was taken from a subsample
(nTotal = 600) of lodgepole pine (nPine = 135), subalpine fir
(nFir = 158), trembling aspen (nAspen = 57) and interior spruce
(nSpruce = 250). The five growth functions were fitted to the data by
maximum likelihood estimation (e.g. Edwards, 1992) with a
normal probability density function (e.g. Hilborn and Mangel,
1997) and utilizing the global optimization method simulated
annealing (Goffe et al., 1994). Average radial increment over the
past 5 years was the measure of tree growth.

2.3. Estimation of prediction error with independent data

To evaluate the performance of the five individual growth
functions we incorporated each function into the individual tree,
spatially explicit stand dynamics simulator SORTIE-ND and then
compared the SORTIE-ND growth predictions (basal area m2/ha) to
measured growth in 49 permanent sample plots over a 30-year
period. The permanent sample plot growth data was obtained
through the British Columbia Ministry of Forests long-term
database. The permanent plots were either 0.1 or 0.08 ha in size
and were established in either 1970 or 1971. All 49 plots were
conifer-dominated with either lodgepole pine or interior spruce as
the dominant species. Tree species other than interior spruce,
lodgepole pine, subalpine fir, and trembling aspen made up a
maximum of 4% of the crown cover in the initial year of
measurement. The 49 permanent sample plots were from similar
site types and age classes as the 14 stem-mapped plots used to
parameterize the five growth functions. The initial stand density in
the permanent sample plots ranged between 273 and 2645 stems/
ha with a mean density of 1389 stems/ha. The basal area ranged
between 10.3 and 54.5 m2/ha with a mean basal area of 29.7 m2/
ha.

To simulate the permanent sample plots in SORTIE-ND, the tree
list from the initial plot measurement (1970/1971) was repeated to
create a 9 ha stem-map file that was then input into SORTIE-ND.
Individual trees in each stem-map file were assigned random (x,y)
locations by SORTIE-ND. For fully stocked stands in the sub-boreal
forests of British Columbia, unpublished model tests have shown
that random locations for the individual trees are an appropriate
starting condition for SORTIE-ND simulations.

The growth of all 49 permanent sample plots was simulated
with each of the five growth functions. The predicted stand basal
areas were then compared to the measured growth of the
permanent sample plots. The accuracy of the predictions for each
plot was described by the mean actual residual (bias) calculated
with formula (5). The precision was described by calculating the
mean absolute residual calculated with formula (6). These two
performance measures are commonly used in the evaluation of
forest growth models (Vanclay and Skovsgaard, 1997).

mean actual residual ¼
Xr¼k

r¼1

ŷr � yr

k
(5)

mean absolute residual ¼
Xr¼k

r¼1

jŷr � yrj
k

(6)

where ŷr is the predicted increment for plot r, yr is the observed
increment for plot r and k is the total number of plots.

3. Results

In general, both AICC and BIC decreased with increasing model
complexity for the three conifer species resulting in one of the two
most complex models always having the lowest AICC and BIC
values (Table 2 and Fig. 1). For trembling aspen growth, AICC and
BIC both indicated similar levels of support for the simpler Shading
and Size Models (Table 2). Neither model selection criteria
suggested a more complex model for aspen. BIC appeared to
favour slightly simpler models than AICC (Table 2).

For interior spruce, BIC suggested similar levels of support for
the three most complex models with the Crowding Model having
the least support of the three. AICC indicated similar levels of
support for the interior spruce Full and Crowding–Shading Models
and no support for other models (Table 2). Both AICC and BIC
clearly selected the Full Model for lodgepole pine growth. Results
for subalpine fir were similar to those for lodgepole pine except the
BIC method also showed support for the Crowding Model (Table 2).

Similar R2-values were observed for the Full Model, the
Crowding–Shading Model, and the Crowding Model by tree
species. The R2-values for the three models were within a range
of 0.04 within a species, while the range among species was 0.56–
0.87 (Table 2 and Fig. 1). The R2-values for the Shading Model and
the Size Model were much lower than for the other models (Table 2
and Fig. 1).



Table 2
AICC and BIC for the five mature tree growth functions

Model Interior spruce Lodgepole pine Subalpine fir Trembling aspen

Full DAICC = 0.0 (1) DAICC = 0.0 (1) DAICC = 0.0 (1) DAICC = 18.5 (5)

DBIC = 2.2 (2) DBIC = 0.0 (1) DBIC = 0.0 (1) DBIC = 29.1 (5)

R2 = 0.66 R2 = 0.87 R2 = 0.74 R2 = 0.56

Crowding–Shading DAICC = 1.1 (2) DAICC = 7.3 (2) DAICC = 18.4 (3) DAICC = 11.2 (4)

DBIC = 0.0 (1) DBIC = 4.9 (2) DBIC = 6.8 (3) DBIC = 21. 2 (4)

R2 = 0.67 R2 = 0.86 R2 = 0.70 R2 = 0.59

Crowding DAICC = 7.3 (3) DAICC = 25.6 (3) DAICC = 16.3 (2) DAICC = 8.4 (3)

DBIC = 3.22 (3) DBIC = 30.8 (3) DBIC = 2.0 (2) DBIC = 17.9 (3)

R2 = 0.65 R2 = 0.84 R2 = 0.70 R2 = 0.59

Shading DAICC = 149.2 (4) DAICC = 136.7 (4) DAICC = 78.3 (4) DAICC = 0.0 (1)
DBIC = 118.0 (4) DBIC = 111.2 (4) DBIC = 41.6 (4) DBIC = 0.5 (2)

R2 = 0.34 R2 = 0.59 R2 = 0.50 R2 = 0.46

Size DAICC = 240.9 (5) DAICC = 221.9 (5) DAICC = 183.7 (5) DAICC = 1.2 (2)

DBIC = 206.2 (5) DBIC = 193.6 DBIC = 144.1 (5) DBIC = 0.0 (1)
R2 = 0.04 R2 = 0.21 R2 = 0.01 R2 = 0.43

Values in bold represent the models selected by AICC and BIC. The numbers in parentheses are the ranking from 1 to 5.
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In no cases would AICC have selected the Crowding Model for
any of the four tree species. It was 7.3–25.6 units greater than the
lowest AICC value for the Full Model (Table 2). The BIC method
indicated limited support for the Crowding Model for subalpine fir
only (2 units lower than the best model).

When the individual growth models were incorporated into the
SORTIE-ND simulation model and tested against independent data,
the Crowding Model provided the best approximation to the
permanent sample plot data while the Full Model resulted in the
Fig. 1. Mean absolute residual from 49 permanent sample plots as a function of the prope

the number of parameters/species in the growth function; (B) AICC summed across the

species-specific models.
poorest approximation (Table 3 and Fig. 1). The most complex
model with the most parameters did not provide the best
predictions for the permanent sample plot data (Fig. 1). All five
models had positive mean actual residual and positive mean
absolute residual and their values were almost identical (Table 3).
This indicates that all five models consistently over-predict the
growth of the permanent sample plots. The high degree of
similarity between the two types of residuals suggests that basal
area was under-predicted in only a few of the permanent plots.
rties of the mature tree growth function. Mean absolute residual plotted against: (A)

four species; (C) BIC summed across the four species; and (D) mean R2 for the four



Table 3
Summary statistics for the 30-year simulation of 49 permanent sample plots

Response variable Year Mean observed value Presence in no. of plots Mean actual residual Mean absolute residual

Full Model 10 34.2 49 16.4 18.7

20 37.7 49 32.8 34.0

30 38.8 49 47.9 48.4

Crowding–Shading Model 10 34.2 49 3.56 3.78

20 37.7 49 6.38 6.74

30 38.8 49 10.2 10.4

Crowding Model 10 34.2 49 2.10 4.06

20 37.7 49 4.89 5.91

30 38.8 49 7.17 8.11

Shading Model 10 34.2 49 3.93 4.97

20 37.7 49 8.14 9.72

30 38.8 49 13.9 15.5

Size Model 10 34.2 49 6.94 7.71

20 37.7 49 15.0 16.0

30 38.8 49 24.9 26.0

A negative mean actual residual indicates that basal areas predicted by the model were on average lower than the plot values. The mean actual residual value illustrates the

average difference between the predicted basal areas and the observed basal areas.

Fig. 2. Explaining the prediction error. (A) A theoretical illustration of error at

different levels of model complexity (modified from Burnham and Anderson, 2002)

and (B) explaining the shape of the curve in Fig. 1 as error due to approximation and

error due to estimation.
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4. Discussion

We utilized the spatially explicit forest growth model SORTIE-
ND to investigate the relationship between model complexity and
predictive ability. There are two levels to determining the
appropriate complexity for a simulation model. The higher level
is related to the overall objectives of the model. Here, the main
concern is that the model structure matches the modeling
objectives (e.g. Ward, 1989; Pidd, 1996; Burkhart, 2003). The
second level of model complexity, which is the main topic of this
paper, is whether the complexity of the individual functions
applied within the overall model type and structure is appropriate
to the available data.

Our analysis illustrates problems with both under- and over-
fitting of relationships in simulation models. This can be best
demonstrated by looking at the Size Model and the Full Model. The
Size Model was clearly under-fitted and represents an over-
simplification of the system. This model omits key processes that
influence individual tree growth (see Canham et al., 2004; Stadt
et al., 2007) resulting in a model with poor predictive ability
(Fig. 1). The main flaw of the Size Model is that growth of an
individual tree was considered independent of the surrounding
trees which results in prediction errors when densities or sizes of
neighbouring trees change.

The Full Model includes more key processes than the
Size Model, but in the comparison to the permanent sample
plots, the Full Model performs worse than all other models,
including the oversimplified Size Model. The main flaw of the
Full Model is related to parameter D in (3) which allows
different trees sizes to have differential sensitivity to competi-
tion. The species-specific parameter estimates for the D

parameter were approximately �0.5 for all species which
indicates that large trees are quite insensitive to competition.
The poor predictive ability of the Full Model (Fig. 1) illustrates
that the D parameter estimates are biased and cannot be
generalized from the sample to the population at large (the
permanent sample plots). If the parameter estimates for D had
been approximately zero (equivalent to the Crowding–Shading
Model) the predictive ability would have been better (Fig. 1).
The Full Model was over-fitted and it was not the lack of key
processes (as in the Size Model) but problems with estimation of
the parameter values that resulted in the poor predictive ability
of the Full Model.
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Through the process of model selection and model testing we
found an appropriate level of model complexity for predicting tree
growth in SORTIE-ND given our data availability. If the para-
meterization dataset had been larger, a more complex model
would likely have been the best predictive model. In the same way,
other forest simulation models have a complexity level that
optimizes the predictive ability dependent on data availability. The
more general and important result, which is valid across
simulation model approaches and types, is the pattern in the
results. The observed pattern of high prediction error for simple
models caused by poor approximation of the system (over-
simplification) and poor parameter estimation for complex models
(Fig. 2A) is well known (e.g. Box and Jenkins, 1970; Burnham and
Anderson, 2002; Gauch, 2003), however, actual examples where
researchers have independent data and have taken the opportunity
to illustrate this pattern for simulation models are rare. The best
predictive model should simultaneously minimize error caused by
approximation of the system and error caused by estimation of
parameters. Selecting a parsimonious model is crucial to achieving
good predictive ability. This was clearly demonstrated in our
comparison of growth rate predictions by the five different growth
functions in the SORTIE-ND model simulations to the measured
growth rates in actual forests (permanent sample plot data). In our
comparative study, the most parsimonious model was the
Crowding Model (Fig. 2B). The more complex models were too
dataset specific and had poor predictive ability mainly due to
estimation error, while the more simple models were too general
and the error was mainly caused by oversimplification of the
system.

Most researchers do not have the benefit of a simulation model
and independent data to test different functions that represent
alternate hypotheses of system behavior. Thus, the problem is
choosing which function to utilize (Forster, 2000). A common,
easily applicable, and holistic approach is to use a model selection
criterion (e.g. Burnham and Anderson, 2002; Dayton, 2003;
Johnson and Omland, 2004). We calculated the widely utilized
model selection criteria AICC and BIC and found that, in general,
both criteria favoured more complex models than the Crowding
Model that we found to be most parsimonious by evaluation
against independent data. With one exception, the two model
selection techniques favoured the Full Model, yet this model had
poor predictive ability. The Full Model was favoured by the model
selection techniques because the data showed a strong tree-size
dependent sensitivity to competition which was accommodated
by the Full Model. However, our independent dataset indicate that
this strong tree-size dependent sensitivity was dataset specific and
did not apply to the population at large. In a larger dataset, we
assume that the parameter for the tree-size dependent sensitivity
to competition would be estimated at a more realistic value.

Our results should not be seen as a flaw in the model selection
approach or criteria. It is impossible to create a technique that
safeguards against the unfortunate combination of a strong but
non-general trend in data and a model created to accommodate
this effect or a generally poor model formulation. The risk of either
problem occurring can be minimized by avoiding data dredging
and data mining and by careful a priori model formulation
(Burnham and Anderson, 2002). However, it still occurred in our
analysis even though we carefully avoided these known pitfalls.

Our results suggested that BIC was closer to choosing the model
that minimized prediction error than AICC (Table 3). The literature
contains several studies that compare the performance of AIC, AICC

and BIC and depending on the application either criterion has been
shown to be ‘‘best’’ (Huang and Dayton, 1995; Lin and Dayton,
1997; Burnham and Anderson, 2002, 2004; Gagne and Dayton,
2002; Dayton, 2003; Kuha, 2004).
AIC/AICC and BIC have different assumptions (Kuha, 2004) and
are appropriate in different situations (Burnham and Anderson,
2004). BIC approaches its target model from below and for common
(smaller) sample sizes generally favours less complex models than
AIC/AICC (Burnham and Anderson, 2004). AIC/AICC should generally
be used in scenarios with many tapering effects that all contribute
strongly to the overall system behavior while BIC is appropriate in
the case of a few major effects (often represented as nested models)
and small tapering effects (Burnham and Anderson, 2004). There are
many factors that influence tree growth, but for healthy trees on a
given site there are really only a few major factors that influence
growth. This can be seen in the change in R2-values illustrated in
Fig. 1D. Our analysis is an example of a scenario where BIC should be
applied rather than AIC/AICC.

In summary, our results illustrate the importance of complexity
in modeling. To achieve good predictive ability, it is important to
use a parsimonious model. Model selection techniques can aid in
the selection of the most parsimonious model but consideration
should be given to using the most appropriate model selection
criterion. Additionally, model selection does not prevent a poor
model or the combination of a strong data-specific effect and a
model that accommodates this to be selected. To assess predictive
ability we maintain that as often as possible models should be
tested against independent data. There is a growing tendency for
simulation models to become more complex. It is important for
both model developers and models users to remember that more
complex models do not always result in better predictive models.
We generally know more about a system than we have data to
include in a model.
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