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† Background and Aims Natural and anthropogenic disturbances can act as stresses on tree vigour. According to
Manion’s conceptual model of tree disease, the initial vigour of trees decreases as a result of predisposing
factors that render these trees more vulnerable to severe inciting stresses, stresses that can then cause final
vigour decline and subsequent tree death. This tree disease model was tested in sugar maple (Acer saccharum)
by assessing the roles of natural and anthropogenic disturbances in tree decline and death.
† Methods Radial growth data from 377 sugar maple trees that had undergone both defoliations by insects and
partial harvest were used to estimate longitudinal survival probabilities as a proxy for tree vigour. Radial growth
rates and survival probabilities were compared among trees subjected to different levels of above- and below-
ground disturbances, between periods of defoliation and harvest, and between live and dead trees.
† Key Results Manion’s tree disease model correctly accounts for vigour decline and tree death in sugar maple; tree
growth and vigour were negatively affected by a first defoliation, predisposing these trees to death later during the
study period due to a second insect outbreak that initiated a final vigour decline. This decline was accelerated by the
partial harvest disturbance in 1993. Even the most severe anthropogenic disturbances from partial harvest did not
cause, unlike insect defoliation, any growth or vigour declines in live sugar maple.
† Conclusions Natural disturbances acted as predisposing and inciting stresses in tree sugar maple decline and death.
Anthropogenic disturbances from a partial harvest at worst accelerated a decline in trees that were already weakened
by predisposing and inciting stresses (i.e. repeated insect defoliations). Favourable climatic conditions just before
and after the partial harvest may have alleviated possible negative effects on growth resulting from harvesting.
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INTRODUCTION

Tree decline is a gradual process that can take several years or
even decades before tree death occurs (Pedersen, 1998b).
Manion (1981) developed a conceptual model of tree
disease that relates initial tree condition (i.e. vigour) to
stress vulnerability and decline. According to this model,
long-lasting predisposing factors such as soil compaction,
genetic potential, or air pollutants reduce initial tree vigour
and predispose affected trees, now less resistant against
further disturbance, to more severe inciting stresses such as
defoliating insects or drought. These stresses cause sharp
and irreversible vigour declines. While contributing stresses,
such as secondary pathogens or unfavourable climatic con-
ditions, may accelerate this process and act as the ‘coup de
grâce’ for declining trees, their role in decline may not be
essential (Muller-Dumbois, 1987; Pedersen, 1998b).

Tree vigour is a somewhat arbitrary concept describing a
tree’s genetic capacity to survive subsequent stresses. It is
often used synonymously with tree vitality, the status of
tree health at any one time in response to environmental stres-
ses (Shigo, 1986). Generally, tree vigour is estimated in the
field based on visual criteria, such as crown condition, stem
characteristics or pathological symptoms (Ouellet and
Zarnovican, 1988; Millers et al., 1991; Ontario Ministry of
Natural Resources, 2004). More empirically, radial growth

rates can be interpreted as an integrative measure of tree
physiological condition (Gehrig, 2004), carbon balance
(Givnish, 1988) and tree vigour (Dobbertin, 2005).
Tree-ring chronologies can then be used to estimate survival
probabilities for the entire lifespan of trees (Bigler and
Bugmann, 2004). Because longitudinal survival probabil-
ities are estimated for the entire period covered by tree-ring
chronology, they can be a valuable tool to evaluate the
impact of past stresses on tree vigour (Hartmann et al., 2008).

Stress factors in sugar maple decline, an ecologically and
economically important tree species in north-eastern North
America (Godman et al., 1990), can result from natural dis-
turbances such as droughts or insect defoliations (Allen
et al., 1992; Parshall, 1995; Kolb and McCormick, 1993;
Payette et al., 1996). Sugar maple is among the principal
hosts of the forest tent caterpillar (FTC, Malacosoma dis-
stria; Fitzgerald, 1995). Repeated heavy defoliations over
two or more years can cause a severe reduction in radial
growth, branch and twig mortality, and weaken trees by
exhausting carbon reserves from repeated refoliation
(Wargo et al., 1972; Wargo, 1981). This process makes
trees more susceptible to subsequent stresses such as
droughts (Renaud and Mauffette, 1991; Canadian Forest
Service, 2001) or pathogens (Wargo and Houston, 1974).

While the impact of natural stresses on sugar maple
growth and survival has been well studied (e.g. Gross,
1991; Payette et al., 1996; Duchesne et al., 2002, 2003),
studies on the impacts of partial harvest disturbance have* For correspondence. E-mail henrik333@sympatico.ca
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investigated only growth release or tree physiology (e.g.
Singer and Lorimer, 1997; Jones and Thomas, 2004,
2007) and not considered tree survival or vigour.

Residual trees near skid trails may suffer from a com-
bination of soil compaction and root damage (Kozlowski,
1999; Rönnberg, 2000; Ouimet et al., 2005; Nadezhdina
et al., 2006) that reduce water availability and uptake,
respectively (Starsev and NcNabb, 2001; Komatsu et al.,
2007). Sudden canopy opening, on the other hand, may
cause severe post-disturbance water stress due to increased
water demand from fully exposed leaves (Bréda et al., 1995).
These stresses affect vigour of residual trees and may be
important stress-inciting factors that cause growth reductions
and mortality (Murphy, 1983; Helms and Hipkin, 1986).

The aim of the study was to investigate the influence of
insect defoliation and harvest disturbance on radial growth
and tree vigour of sugar maple (Acer saccharum) by asking
the following questions: (a) Is observed tree decline driven,
as predicted by Manion (1981), by an interaction of predis-
posing, inciting and contributing stresses, and can these
stresses be associated with growth declines and decreases
in survival probability? (b) How is growth and vigour of
residual trees affected by disturbances from partial harvests?
(c) Do FTC defoliations and harvest disturbances have a
similar impact on tree radial growth and vigour?

MATERIALS AND METHODS

Study region

This study focused on sugar maple (Acer saccharum Marsh.)
trees in forests near Temiscaming in western Quebec, Canada
(468430N, 798040W). The forests of this region are part of
the western sugar maple-yellow birch bioclimatic domain
(Robitaille and Saucier, 1998). Mean annual temperatures
range from 2.5 to 5.0 8C, the growing season spans 170–180
d, and mean annual precipitation is 800–1000 mm, with
snowfall comprising roughly 25 % of total precipitation
(Gosselin et al., 2000). Soils of the region originate mainly
from glacial tills (Robitaille and Saucier, 1998).

Study plots

In 2004 and 2005, 19 plots (26 � 56 m) were established in
stands that had undergone a partial harvest in either 1993 or
1994. The partial harvest aimed at removing individual trees
of low growth potential by reducing the pre-harvest average
stand density of 27 m2 ha21 to 21 m2 ha21. Sugar maple was
the most abundant tree species (approx. 68 % of total post-
harvest basal area), followed by yellow birch (Betula allegha-
niensis, approx. 18 %), and red oak (Quercus rubra, approx.
3.5 %), and then others (e.g. Fagus grandifolia, Thuja occiden-
talis, Tsuga canadensis, Abies balsamea, Picea glauca and
Acer rubrum) in smaller proportions.

The diameter was measured and the position of all live
and dead trees .9.1 cm in diameter at breast height (dbh,
1.3 m above ground), together with all stumps (dsh,
�0.5 m above ground) from the 1993/1994 harvest, was
mapped. Mapping involved laying out a virtual grid on the
forest floor. The plot centre line provided the y coordinates

and perpendicular distances from this line (x co-ordinates)
were measured using a Hägloff Vertex IIIw hypsometer
(Haglöf Sweden AB). Also mapped were skid trail networks
from the 1993/1994 partial harvest using soil disturbance,
tree positions and regeneration as indicators for the original
path. Path width was assumed to be 4 m, a conservative esti-
mate of the original width of the skid trail.

Tree growth data

Growth data for live trees were obtained from increment
cores (three per tree at 1.3 m above ground) taken from trees
within the 19 plots. Recently dead trees (1993 or later) had
to be searched for throughout the entire area harvested in
1993 and 1994. Presence of bark and fine branches and
absence of advanced trunk decay were used as selection cri-
teria for recently dead trees (Sénécal et al., 2003).

To preclude growth-independent factors from influencing
the parameter estimates of the growth-driven model of survi-
val probability (see below), cross-sections of tree trunks at
1.3 m above ground level were collected only from dead
trees without any evidence of obvious causes of instan-
taneous death (uprooting, bole breakage, etc.).

A total of 321 live and 56 dead trees were growth-
sampled, distributed roughly uniformly among dbh classes
(19.1–29.0 cm, 29.1–39.0 cm, 39.1–49.0 cm). These
diameter limits (�19.0 cm and �49.0 cm at 1.3 m above
ground) were imposed to prevent heavily suppressed (i.e.
smaller diameter) and senescent (i.e. large diameter) trees
from being sampled, since both suppression and senescence
can strongly influence growth.

Increment cores and cross-sections were progressively
sanded (down to grain 400) to make the final cell layer in
each tree-ring clearly visible. Tree-rings were then measured
using a microscope equipped with a computer-assisted
micrometer (0.001 mm precision). In most cases, at least two
cores per tree were readable. For the dead trees, two radii per
treewere measured on cross-sections for radial growth measure-
ments. These tree-level measurements were averaged to account
for intra-tree variability of radial increment due to growing con-
ditions or leaning (Kienholz, 1930; Peterson and Peterson,
1995), thereby obtaining a single growth chronology per tree.

Twenty-nine dominant live trees were subsampled to con-
struct a master chronology by using the COFECHA software
(Holmes, 1983) to progressively add highly correlated
tree-ring series to the already existing ones. We considered
r-values �0.3 as good cross-correlations with the master
chronology (Tardif et al., 2001), which had a final overall
cross-correlation coefficient of 0.479. Tree-rings with calendar
years were matched by cross-dating live and dead tree-ring
series based on (a) visual examination of marker years (prin-
cipally a severe growth decline in 1971 and 1988) and (b)
cross-correlation coefficients of chronology segments with
the master chronology. COFECHA assisted in detecting
missing or false rings in individual segments of tree-ring
series. In suspect cases, false or missing rings on the cores or
cross-sections were identified, and these added (with zero
growth) or removed from the series. Corrected series were
then run again in COFECHA to verify the cross-correlation
with the master chronology.
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Also collected were data from 90 live yellow birch trees
from within the plots and a yellow birch chronology con-
structed by the means described above. The resulting chron-
ology contained data from 20 individual trees and had a
cross-correlation coefficient of 0.392. This chronology
helped identify defoliation events in maple since yellow
birch is not a host species of the FTC (see below).

Tree-ring series were standardized by dividing each indi-
vidual tree-ring series by its growth trend estimate using a
cubic smoothing spline. This procedure was done after visu-
ally checking the adequacy of the growth trend estimate
(i.e. a close match was present between the growth trend
estimate and the growth chronology) and produced dimen-
sionless ring-width indices that can adequately be compared
among trees of different ages and from different sites.
Standardizing was done using the i.detrend function from
the contributed R package dplR (Bunn, 2007) in R software
(version 2.6.0; R Development Core Team, 2007).

Natural disturbances

Periods of FTC outbreaks were identified by subtracting a
non-host (yellow birch) chronology of growth indices from
chronologies of growth indices from sugar maples
(Swetnam et al., 1985). Residuals from the mean of the
yellow birch (By) series were first rescaled to the variance
of the host series to obtain predicted residual indices
(PRI) that were then subtracted from the raw sugar maple
(Ms) indices to produce the corrected sugar maple indices
(CI; Swetnam and Lynch, 1989):

PRI ¼ ðSDMs=SDByÞ � ðIndexBy �MeanByÞ ð1Þ

CI ¼ IndexMs � PRI ð2Þ

Periods were inferred as insect outbreaks when corrected
indices were negative for at least three consecutive years
because FTC outbreaks typically last about 2–4 years
(Fitzgerald, 1995). Moreover, at least one of these indices
had to be at least one standard deviation (SD) below the
series mean. This stipulation allowed a close match
between the inferred frequency of outbreak and the approxi-
mate average frequency of FTC outbreaks observed in this
region (9þ years; Ministère des Ressources naturelles, de
la Faune et des Parcs du Québec, 2002).

Measures of harvest disturbance

In the study stands, disturbance from logging (i.e. machinery
traffic causing soil compaction and root damage or major
canopy removal) did not occur until the 1993/1994 selection
cut (D. Boileau, MRNFQ, Canada, pers. comm.).

Sudden exposure to higher light levels due to partial cutting.
Because harvesting occurred 11 years prior to the field work
in the present study, changes in light levels following partial
harvest were simulated using a light-driven, spatially explicit
model of stand dynamics, SORTIE (Pacala et al., 1993,
1996). The simulation involved converting our diameter at

stump height estimates to dbh using standard conversion
tables (Ministère des Ressources naturelles, de la Faune et
des Parcs du Québec, 2003). These dbh estimates were then
used to ‘resurrect’ harvested trees (see below) and create
maps of pre-harvest dbh that were then used as input to
SORTIE to estimate light availability for individual trees.

SORTIE was parameterized with region-specific par-
ameters of tree species allometry and species-specific
light extinction coefficients (Canham et al., 1994; Poulin
and Messier, 2007; Lefrançois et al., 2008; M. Beaudet,
UQAM, Montreal, Canada, unpubl. res.). SORTIE then
modelled tree and crown dimensions for each tree in the
stand and computed their light availability as the seasonally
averaged percentage of full sun (Canham, 1988). This
routine was initially run on the plots, with the inclusion
of harvested and recently dead trees, and then with residual
trees only, viz. the actual post-harvest plots. Light avail-
ability was estimated individually for each tree at the
centre of the simulated crowns at 0.75 � crown height.
The ratio of post- to pre-harvest light availability was
then computed as the measure of changes in light.

Soil disturbance in the proximity of trees. Based on the
assumptions that (a) tree crown dimensions can be pre-
dicted from tree diameter and (b) tree crown dimensions
are a proxy for the areal coverage of the root system
(Tubbs, 1977), a circular ‘influence zone’ was estimated
around each tree. These estimates were based on species-
specific parameters of diameter–crown relationships that in
turn yielded diameter-dependent influence zones with radii
(m) ¼ 0.100 � dbh (cm) for sugar maple (Beaudet et al.,
2002). The intersection of these influence zones with the
mapped skidding trails yielded a proportion of the influence
zone disturbed by machinery traffic. This proportion,
expressed as a percentage of the total area of the influence
zone, was our measure of soil disturbance close to trees.

Longitudinal survival probability estimation

Longitudinal survival probabilities served as the proxy
for tree vigour. Of the 321 live trees, a number equivalent
to the sample size of dead trees (n ¼ 56) were randomly
selected and used to parameterize the survival probability
model. Longitudinal logistic regression (Bigler and
Bugmann, 2004), an approach that uses growth data from
the entire lifespan of the trees, was used. Predictor variables
(e.g. mean values and linear regression coefficients) were
computed within a moving window of n years across the
time-series. Data points containing the last year of growth
of a dead individual are marked as ‘dead’. All other data
points are marked as ‘live’.

In a companion study (Hartmann, et al., 2008), the model
best supported by the data from a set of candidate models com-
posed of different predictor variables based on Akaike’s
Information Criterion (Burnham and Anderson, 2002) was
selected. This model was:

PðsurvivalÞ ¼
e�7�115þ2�017av3logþ0�006slp5

1þ e�7�115þ2�017av3logþ0�006slp5
ð3Þ
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where P(survival) is the probability that an individual survives,
av3log is the log-transformed average over the previous 3 years
of radial growth and slp5 is the linear trend over the previous 5
years of radial growth.

R was used for parameter estimation using maximum
likelihood methods. Non-parametric confidence intervals
for the parameter estimates were computed with the bootcov
bootstrap resampling procedure from the Design library
(Harrell, 2005), based on 1000 iterations, with the 25th
and the 975th quantiles serving as interval limits.

Model performance was estimated with Somer’s DXY

index (Somers, 1962). This index indicates a model’s dis-
criminative ability and is closely related to the area under
the curve (AUC) of a receiver operating characteristic
(ROC) plot (Engelmann et al., 2003). The bootstrap resam-
pling procedure validate.lrm (Harrell, 2005) was used to
account for over-optimistic classification measures when
validating models on training data (data specificity). The
validate.lrm procedure eliminates overfitting-induced opti-
mism of DXY and produces a more conservative estimate
of the model’s discriminative ability (Harrell, 2001). The
model used in this study had a DXY value of 0.783, corre-
sponding to an AUC of 0.892 and indicating excellent
model performance (Manel et al., 1999; Table 1).

Interpretation of survival probabilities

The above procedure leads to an unbalanced data distri-
bution (i.e. many live data points and few dead data
points) and yields, based on logistic regression, survival
probability estimates biased to the more abundant group
(Fielding and Bell, 1997). Hence, survival probability esti-
mates were all very close to unity and could not be directly
interpreted as absolute measure of probability of survival
unless adjustments were made for the unbalanced data dis-
tribution. However, in the present study, survival probabil-
ities were interpreted only as a relative measure of tree
vigour among groups of trees (see below), making threshold
adjustments unnecessary.

Comparison of growth indices and survival probabilities
among disturbance classes and dead trees

Live trees with available growth data were grouped into
four classes of anthropogenic disturbance: (1) trees with
neither machinery disturbance in their proximity nor a sub-
stantial (.50 %) increase in post-harvest light levels (N ¼
no disturbance, n ¼ 134), (2) trees with machinery

disturbance in their proximity, but no substantial increases
in light levels (M ¼ machinery, n ¼ 71); (3) trees without
machinery disturbance, but showing a substantial
(.50 %) increases in post-harvest light levels (L ¼ light,
n ¼ 28); and (4) trees with both machinery disturbance
and substantial (.50 %) increases in post-harvest light
(L&M ¼ light and machinery, n ¼ 16). Of the 321 live
trees, 249 fell within these classes, with the remainder
being trees with either no machinery disturbance but light
increases �50 % (n ¼ 51), or trees with machinery dis-
turbance but only small increases (�50 %) in light levels
(n ¼ 21).

Since ring-width measurement and survival probabilities
are usually not normally distributed, the non-parametric
Kruskal–Wallis test was used for annual comparisons of
ring-width indices among disturbance classes and with
dead trees in the years prior to and following harvest
(1990–2004). A non-parametric simultaneous rank test pro-
cedure was employed for multi-comparisons using the
npmc function from the R package npmc (Helms and
Munzel, 2008). This procedure is based on estimations of
simultaneous relative effects and variance among pairs,
and does not assume continuity of the underlying distri-
bution functions thereby allowing arbitrary ties. The pro-
cedure can be applied to all relevant multiple testing
problems in the one-way layout and derives the test statistic
(WN

BF) and P-values with the Behrens–Fisher test (Munzel
and Hothorn, 2001). Survival probabilities were analysed
with the same procedure described above.

To test for differences between natural (FTC defoliation)
and anthropogenic (partial harvest) disturbances, corrected
growth indices were used as these are likely to be free of the
effects of climate and other environmental factors on growth
(Swetnam et al., 1985). As the natural disturbance source,
the 1986–92 FTC outbreak was selected, which had the
strongest influence on growth rates among all inferred and
documented FTC outbreaks. The within-tree-averaged
growth indices were compared over the 1986–92 period with
those over the 1994–98 post-harvest period (and just before
the onset of the next FTC outbreak in 1999), within each
disturbance class and within dead trees. Since observations
were compared within growth chronologies of the same
trees, a Wilcoxon signed-rank test was used. This test requires
equal sample sizes between the two groups, a condition that
was not met for dead trees for the 1994–98 period due to
mortality dropout. Therefore data were compared from this
period with a random subsample (without replacement) of
the 1986–92 period, a Wilcoxon signed-rank test on this
balanced sample was applied, this procedure repeated 1000
times and test P-values averaged.

Definition of stresses on tree growth and vigour

The factors that influence initial vigour and predispose
trees to subsequent stress (Manion, 1981) are difficult to
assess since an unambiguous benchmark for the absence of
stress needs to be defined. However, predisposing factors
have a diffuse impact on tree vigour, allowing trees to
survive with modified vital functions (Waring, 1987). In
this study, predisposing factors were defined as stresses

TABLE 1. Parameter estimates, bootstrapped 95 % confidence
intervals (CI), AUC (ROC) and optimism-corrected DXY of the

logistic survival probability model

CI (95 %)

Variables Estimate Lower Upper DXY AUC

Intercept 27.115 28.974 25.337 0.783 0.892
av3log 2.017 1.713 2.375
slp5 0.006 0.004 0.007
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with a moderate impact on tree vitality, i.e. as measured by
radial growth. These stresses decrease radial growth levels
but do not lead ultimately to tree death.

In contrast, according to Manion (1981), inciting factors
are severe stresses, such as defoliations or drought, that
cause severe declines in vigour and lead to tree death.
This definition was used with respect to radial growth and
survival probabilities. In an accompanying study, trees
with survival probabilities permanently ,0.987 eventually
died (H. Hartmann, unpubl. data). Hence, this value was
considered as a threshold for definite vigour decline and a
benchmark for inciting stresses.

Contributing stresses may not play an essential role in
tree decline (Muller-Dumbois, 1987; Pedersen, 1998b) but
can deal the death blow to declining trees by accelerating
their decline. Contributing stresses were defined as
decreases in survival probabilities when these probabilities
were already below the threshold of definite vigour decline.

Summer climate data as indicator of growth conditions

An indicator of growth conditions was computed based
on mean summer monthly precipitation and temperature
(April–August) using climate data from the two closest
(approx. 60 km) weather stations (Environment Canada,
http://climate.weatheroffice.ec.gc.ca).

RESULTS

Growth dynamics of undisturbed trees

Sugar maple trees undisturbed by the 1993/1994 partial
harvest showed a sudden increase in growth in the late
1950s (Fig. 1A), a pattern evident for trees both live and
dead at the time of sampling. Shortly after this increase, in

about 1960, growth rates of dead trees deviated from those
of live trees. In 1971, a major drop in growth rates of both
live and dead trees occurred, followed by a continuous
growth decline for both groups. In 1988, another major
drop in growth rates occurred for both live and dead trees
(Fig. 1A). The 1993/1994 harvest was followed by a tempor-
ary increase in growth rates of dead trees, but these sub-
sequently declined and died. In live trees, the 1988 growth
decline was followed by a growth increase after the partial
harvest that was then maintained until 2004.

Average ring-width indices do not show the difference
between live and dead tree growth patterns as clearly as
ring-width measurements, at least for earlier years. Until
1965, although standardized growth rates of dead trees
were more variable than live tree growth indices, they oscil-
lated around the same values (Fig. 1B). From 1965 to 1995,
growth indices of live and dead trees were almost identical
and both groups experienced a major drop in 1988, fol-
lowed by an increase. From 1995 onwards, shortly after
the 1993/1994 harvest (Fig. 1B), growth indices of dead
trees declined whereas those of live trees maintained
increased growth levels until 2004.

Yellow birch had a different pattern of growth from that
of sugar maple during several periods, especially in the
1930s, 1940s and 1960s (Fig. 2A). Corrected sugar maple
ring-width indices showed that growth of dead trees was
affected more than that of live trees by FTC defoliations
between the 1930s and mid-1940s, but dead trees exhibited
higher growth rates from about 1945 until 1965 (Fig. 2B).
Decreases in growth rates of dead trees lasted longer than
those of live trees during the 1986–92 outbreaks
(Fig. 2B). Although dead trees achieved a small, brief
increase in growth rates in 1994 and 1995, growth declined
again shortly after harvest in 1996 (Fig. 2B) and trees died
shortly afterwards.
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Eight insect outbreaks were identified between 1910 and
2004, with an average outbreak cycle of 11.75 years and an
average outbreak length of 4.6 years (data not shown). All
but the 1957–60 FTC outbreak could be confirmed by
MRNFQ survey data (1938–2002). However, the Ministry
survey indicated a continuous occurrence of FTC defolia-
tions from 1950 until 1956, suggesting that both the
1950–54 and 1957–60 growth declines were caused by
this single FTC outbreak.

Growth dynamics of disturbed trees

To evaluate the impact of partial harvest disturbance on
radial growth, growth indices were examined between
1990 and 2004, i.e. from 3 years prior to until 10 years
after partial harvest. In 1990, growth of dead trees was sig-
nificantly lower than that of undisturbed live trees only
(Table 2). From 1991 until 1994, there were no significant
differences in growth indices among disturbance classes.
Indices of dead trees were significantly different from all
live trees in 1998, 2001 and 2003, from L, M and N trees
in 1999 and 2000, from L and L&M trees in 1995, 1996,
1997 and 1998 and from N trees in 1995 (Table 2).
Among live trees only, the growth indices of L trees were
different from those of M trees in 1995 and 1997 and
from N trees in 1995 (Table 2).

The FTC outbreak had a greater impact on growth of live
sugar maple than any of the harvest disturbance types but
this was not the case for dead sugar maple. Means of the
averaged corrected indices during the natural disturbance
(1986–92) varied between 0.627 for L trees and 0.727 for
N trees (Table 3). During the anthropogenic disturbance

(1994–1998), corrected indices were consistently higher
for all trees, ranging from 0.809 (D) to 1.267 (L) (Table 3).
Differences in average corrected indices between periods
of natural and anthropogenic disturbance were highly sig-
nificant (P , 0.001) within disturbance classes of all live
trees, but not significant for dead trees (Table 3).

As indicated by survival probabilities, dead trees exhibited
the first signs of vigour decline in 1977, following the FTC
outbreak in 1974–76 (Fig. 3). Vigour of dead trees was
lower before the 1986–92 FTC outbreak than vigour of
live trees. Also, vigour of dead trees declined more severely
during the 1986–92 FTC outbreak than vigour of live trees.
Dead trees never regained their pre-FTC outbreak vigour and
their vigour stayed below that of live trees (Fig. 3). Multiple
comparisons (Behrens–Fisher tests) indicated that survival
probabilities of dead trees were significantly different from
those of all four disturbance classes from 1992 until 2001
(Fig. 3, table inset). In the post-harvest period (1994
onwards), no differences of survival probabilities among
disturbance classes were detected (Fig. 3).

Mean summer temperatures were only slightly above the
long-term average (1910–2003) in the years following
harvest (1994–97) while mean summer precipitation was
above average in 1994, on average in 1995 and again
above average in 1996 (Fig. 4).

DISCUSSION

The nature of predisposing and inciting stresses
and their interaction

In the present study, dead trees were predisposed to inciting
stresses by a first FTC outbreak in 1974–76 that initially
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arrows) FTC defoliations (see text for details). The downward-pointing arrow in (B) indicates the year of the selection harvest.
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decreased their vigour. The 1986–92 FTC outbreak acted
then as a second inciting stress, having a longer lasting and
more severe negative effect on growth rates and vigour of
dead trees than the 1974–76 outbreak. Although growth
rates and survival probabilities of dead trees temporarily
recovered shortly after partial harvest, their decline
resumed and accelerated drastically from 1997 onwards
(Fig. 3). Partial harvest disturbances may have acted as a con-
tributing stress in these already weakened trees.

Successive defoliation events can deplete carbon reserves,
readily weaken sensitive trees and trigger sugar maple

decline (Parker and Houston, 1971; Kolb and McCormick,
1993; Payette et al., 1996). The severe defoliation in
1986–92 may have acted as an inciting stress in the decline
of already weakened trees (Horsley et al., 2002). In the live
trees, abundant carbon reserves may explain their greater
potential for recovery than in dead trees, since these reserves
allow trees to quickly rebuild leaf area after defoliation and,
subsequently, their photosynthetic apparatus (Landhäusser
and Lieffers, 2002).

Sugar maple tree decline and death was driven by an
interaction between predisposing and inciting stresses, as

TABLE 2. Behrens–Fisher tests on relative effect estimates of ring-width indices (1990–2003) between disturbance classes
using a non-parametric simultaneous rank test

Relative effect estimate

Year Comparison n Effect CI (lower) CI (upper) Var. s.e. WN
BF P

1990 D vs. N 189 0.648 0.518 0.778 0.382 0.045 3.290 0.021
1995 D vs. L 78 0.759 0.592 0.927 0.251 0.057 4.571 0.002

D vs. L&M 66 0.719 0.531 0.906 0.267 0.064 3.441 0.019
D vs. N 184 0.669 0.506 0.832 0.563 0.055 3.057 0.040
L vs. M 99 0.296 0.106 0.487 0.413 0.065 23.155 0.035
L vs. N 162 0.281 0.091 0.471 0.671 0.064 23.403 0.020

1996 D vs. L 71 0.694 0.512 0.877 0.273 0.062 3.133 0.034
D vs. L&M 59 0.725 0.524 0.926 0.275 0.068 3.301 0.024

1997 D vs. L 69 0.748 0.575 0.921 0.242 0.059 4.189 0.003
D vs. L&M 57 0.729 0.537 0.920 0.245 0.066 3.485 0.015
L vs. M 99 0.302 0.112 0.492 0.420 0.065 23.035 0.039

1998 D vs. L 67 0.799 0.638 0.960 0.202 0.055 5.455 0.000
D vs. L&M 55 0.747 0.551 0.942 0.244 0.067 3.705 0.010
D vs. M 110 0.681 0.502 0.861 0.412 0.061 2.965 0.047
D vs. N 172 0.729 0.566 0.893 0.534 0.056 4.115 0.004
L vs. M 99 0.259 0.082 0.435 0.359 0.060 24.012 0.005

1999 D vs. L 62 0.777 0.593 0.962 0.242 0.062 4.441 0.002
D vs. M 105 0.692 0.502 0.883 0.437 0.065 2.979 0.047
D vs. N 165 0.715 0.534 0.895 0.615 0.061 3.519 0.016

2000 D vs. L 55 0.749 0.545 0.953 0.261 0.069 3.611 0.014
D vs. M 99 0.737 0.543 0.932 0.428 0.066 3.610 0.013
D vs. N 159 0.728 0.540 0.917 0.646 0.064 3.584 0.014

2001 D vs. L 45 0.749 0.520 0.978 0.267 0.077 3.234 0.030
D vs. L&M 34 0.754 0.503 1.005 0.243 0.085 3.009 0.046
D vs. M 89 0.767 0.557 0.977 0.445 0.071 3.775 0.010
D vs. N 141 0.758 0.550 0.965 0.688 0.070 3.688 0.012

2003 D vs. L 30 0.872 0.572 1.172 0.168 0.075 4.973 0.022
D vs. L&M 20 0.880 0.556 1.204 0.130 0.081 4.708 0.027
D vs. M 72 0.845 0.558 1.132 0.368 0.072 4.822 0.024
D vs. N 113 0.870 0.629 1.111 0.407 0.060 6.174 0.009

Only significant (P , 0.05) tests are shown.

TABLE 3. Mean, standard error (s.e.) and range of averaged corrected indices during FTC outbreak (1986–1992) and harvest
disturbances (1994–1998)

FTC outbreak Harvest disturbance

Disturbance class Mean s.e. Range Mean s.e. Range P

N 0.727 0.185 0.26021.281 1.033 0.255 0.56122.048 ,0.001
M 0.704 0.177 0.32921.230 0.972 0.248 0.26021.664 ,0.001
L 0.627 0.234 0.22321.022 1.267 0.372 0.49522.047 ,0.001
L&M 0.687 0.151 0.28320.876 1.156 0.292 0.61421.752 ,0.001
D 0.688 0.247 (0.189)21.252 0.809 0.419 0.13221.859 0.352

P-values refer to a Wilcoxon signed-rank test between periods.
Negative values are in parenthesis.
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suggested by Manion’s conceptual tree disease model
(Manion, 1981). Similarly, Hogg et al. (2002) found that
FTC defoliation combined with other environmental stres-
ses led to reduced growth and crown dieback in trembling
aspen (Populus tremuloides). The present results are in
general agreement with other findings that identified
defoliating insects (Payette et al. 1996), fungal pathogens
(Cherubini et al., 2002; Marçais and Bréda, 2006) or
drought (Pedersen, 1998a; Suarez et al., 2004) as inciting
stresses in tree decline and death.

Impact of partial harvest on tree growth and vigour

Radial growth rates of live trees in all partial harvest
disturbance classes quickly regained or even surpassed pre-
disturbance growth levels after partial harvest. None of
these trees showed a growth stagnation known as ‘thinning
shock’ (e.g. Staebler, 1956; Harrington and Reukema,

1983). On the contrary, trees experiencing strong increases
in light showed the greatest increases in post-disturbance
growth, increases that lasted in some cases until 1998
(Table 2). Although photoinhibitive effects of significant
and sudden increases in light have been observed in seed-
lings of shade-tolerant beech (Fagus sylvatica; Tognetti
et al., 1997) and in saplings of shade-tolerant sugar maple
(Naidu and DeLucia, 1997), this photoinhibition was not
the case for adult sugar maple trees in the present study,
even though mean increases in light levels were remarkably
high (.600 %, data not shown). Hence, sudden changes in
light availability from partial harvest did not act as a stress
causing growth declines.

Soil disturbance is thought to negatively impact radial
growth of trees (Clayton et al., 1987). The impacts occur
through disturbance effects on soil physical properties
(Kozlowski, 1999) or potential damage to the root system
(Wästerlund, 1992) but also through fungal infections of
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the root system (Nadezhdina et al., 2006). However, growth
of trees that experienced machinery disturbance was only
lower than those of trees with increased light, but not sig-
nificantly different from those of undisturbed trees
(Table 2). This finding is surprising since these trees had
a mean soil disturbance of 34.7 % (data not shown). The
coarse soil texture in the study plots (either sandy, sandy
loam or, in one plot, rocky) may explain the absence of
negative effects of machinery disturbance on growth since
these soils are not compacted easily (Horn, 1988;
McBride and Joosse, 1996). Furthermore, the dense root
network of the abundant woody understorey vegetation
(mostly tree regeneration, beaked hazel, Corylus cornuta,
and hobblebush, Viburnum lantanoides) in the humus
layer of the maple stands studied may have increased soil
strength and thus resistance to mechanical forces from
logging equipment (Wästerlund, 1989). Machinery disturb-
ance apparently did not cause fungal infections of the tree
root systems and associated severe growth declines, as has
been observed, for example, in trees infected with root rot
(Mallet and Volney, 1999; Cherubini et al., 2002).

Impacts of insect outbreaks and partial harvest
on radial growth and tree vigour

As indicated by the average corrected growth indices,
tree growth was lower during natural disturbance than
during the post-harvest period (Table 3), meaning FTC
defoliation had a stronger negative effect on growth rates
than any harvest disturbance. These results show that dis-
turbances from partial harvest, even in their most severe
form, had no significant negative effect on the growth of
the trees sampled. However, trees that had incurred obvious
damage from harvest (uprooting, bole breakage, girdling,
etc.) were not sampled. This type of ‘disturbance’ would
most probably cause growth reduction and has been found
to cause high post-harvest tree mortality (Nyland, 1994).

Conclusions

The present findings showed that FTC defoliations acted
as both predisposing and inciting stresses on maple,
whereas partial harvest acted, at worst, as contributing stres-
ses and only in already declining trees. Since the full range
of above- and below-ground disturbance severity caused by
a partial harvest was sampled, it is concluded that partial
harvest disturbances did not contribute to maple decline
and death. However, the rather favourable climatic con-
ditions found in the post-harvest period could have
reduced any negative impact of partial harvesting through
its positive effect on tree growth (Hanson et al., 2001).
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vigueur des érables dans les érablières. Note de recherche forestière
no. 130. Ministère des ressources naturelles et de la faune du Québec.
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