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Abstract

Mechanistic modelling approaches that explicitly translate from individual-scale resource selection to the distribution and
abundance of a larger population may be better suited to predicting responses to spatially heterogeneous habitat
alteration than commonly-used regression models. We developed an individual-based model of home range establishment
that, given a mapped distribution of local habitat values, estimates species abundance by simulating the number and
position of viable home ranges that can be maintained across a spatially heterogeneous area. We estimated parameters for
this model from data on red-backed vole (Myodes gapperi) abundances in 31 boreal forest sites in Ontario, Canada. The
home range model had considerably more support from these data than both non-spatial regression models based on the
same original habitat variables and a mean-abundance null model. It had nearly equivalent support to a non-spatial
regression model that, like the home range model, scaled an aggregate measure of habitat value from local associations
with habitat resources. The home range and habitat-value regression models gave similar predictions for vole abundance
under simulations of light- and moderate-intensity partial forest harvesting, but the home range model predicted lower
abundances than the regression model under high-intensity disturbance. Empirical regression-based approaches for
predicting species abundance may overlook processes that affect habitat use by individuals, and often extrapolate poorly to
novel habitat conditions. Mechanistic home range models that can be parameterized against abundance data from different
habitats permit appropriate scaling from individual- to population-level habitat relationships, and can potentially provide
better insights into responses to disturbance.
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Introduction

Relationships between a species’ abundance and its habitat are

commonly described using statistical methods such as regression

analysis, but resulting empirical models do not directly capture the

processes involved in determining abundance, nor can they be

reliably extrapolated outside the conditions for which data were

collected. Alternatively, mechanistic approaches for modelling

species abundance in different habitats can offer a powerful means

of predicting population responses to habitat alteration [1,2].

Towards this end, greater understanding and generality may be

obtained by developing models that explicitly translate from

individual-scale resource selection in heterogeneous environments,

to the spatial distribution and abundance of a larger population

[3]. This individual-to-population scaling can be achieved by

formulating the process of home range establishment as an

individual’s optimization of trade-offs between resource acquisi-

tion, home range size, and overlap with conspecifics [4].

Various methods have been developed for predicting home

range behaviour using location or movement data for individual

animals (reviewed in [5]), with recent work seeking to link

mechanistic models with resource selection analysis [6]. In a more

general approach, Mitchell and Powell [7,8] formulated home

range models within an optimal patch-selection framework, then

tested these against empirical data for American black bears (Ursus

americanus). Their models describe individual home ranges as a

spatially explicit collection of habitat patches that either maximize

resource accrual per unit area or minimize the area required to

meet a specified resource threshold, where the resource value of

patches is determined by their inherent quality, their travel cost,

and their use by other individuals. Buchmann et al. [9] have

presented a similar approach, generalizing it to the community

level to understand how home range size and species abundance

scale with body mass. With a given set of parameters and a map

describing the distribution of habitat quality, these home range

models can be scaled up to predict a species’ carrying capacities for
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different landscapes. However, while the models present important

conceptual advances, their predictions for species abundance have

not been calibrated against data at the population scale, nor have

such predictions been compared with those derived from simpler

alternative approaches.

Models for species abundance that scale from a collection of

individual home ranges hold particular promise for spatially

heterogeneous habitats that are subject to anthropogenic or

natural disturbance. In many forest ecosystems, stands develop a

high level of fine-scale heterogeneity as they reach late stages of

development and are subject to gap-phase disturbance dynamics

[10,11,12]. Such patterns of within-stand disturbance have, in

turn, inspired stand management ideas focused on creating a

variable distribution of gap sizes that aim to maintain the

ecosystem functioning of old, complex stands [13]. Conversely,

retention of residual trees in different spatial configurations is also

important under clearcut harvesting for maintaining structural and

biological legacies that persist following stand-replacing distur-

bances [14]. A home range modelling approach may be better

suited to predicting the consequences of natural and induced

heterogeneity in habitat structure than empirical models that

presume conditions are relatively uniform within stands.

Here we developed a simple, mechanstic, and spatially explicit

model of optimal home range establishment and used it to predict

abundances of a common late-successional microtine rodent in

North American boreal forests, the southern red-backed vole

(Myodes gapperi). We estimated parameters for this model from live-

trapping data in 31 sites with mapped habitat distributions, and

compared its performance to non-spatial regression models

relating vole abundance to either a series of stand-level habitat

attributes, or to a metric for average habitat value derived from

these attributes. To illustrate the utility of our approach, we then

applied these home range and regression models to simulations of

various partial harvesting scenarios and compared predictions of

vole abundance between the different models.

Methods

We previously developed an empirical model of fine-scale red-

backed vole habitat associations for mixedwood forest stands in

Ontario, Canada [15]. Using live-capture data from 30 managed

(31–64 year old) and 10 fire-origin (82–156 year old) sites, our

results indicated that within-stand locations of spring vole captures

were associated with localized shrub cover, late-decay downed

woody debris (DWD), shade-tolerant understory composition, and

conifer-associated litter on the forest floor. Here, we used these

results as a basis for mapping local habitat resources at a 15-m

resolution within 31 of these sites (21 managed and 10 fire-origin

for which live-trapping data were available over two years; the

remaining sites were subjected to experimental manipulations

between the two trapping years). We then used estimated vole

abundances within these sites to parameterize a spatially explicit

optimization model of home range establishment that predicts vole

population density, as described below. Along with the description

of the model that follows, we have created a spreadsheet that

provides a detailed walkthrough of the model calculations for one

example site (see Appendix S1).

Mapping Local Habitat Value
The habitat model in [15] describes how red-backed voles

exhibit increased use of localities where particular habitat

resources are abundant relative to the average habitat conditions

across 1.4 ha sites:

ln
PSta

1{PSta

� �
~ln

PSite

1{PSite

� �
z
X

i

Bi
:(Hi,Sta{Hi,Site) ð1Þ

where the response variable, PSta, is the probability of a new

capture at an individual live-trap station. PSite is the new capture

frequency for the site as a whole. For each of i habitat predictor

variables, Hi,Sta represents mean value within 26 m of the trap

station, and Hi,Site is the overall site mean. The predictors are

related to the response by the coefficients Bi, which could either (1)

take on a constant value among sites (Bi = bi,0); or (2) vary as a

logistic function of the site-level availability of that habitat feature:

Bi~bi,1
: exp(bi,2zbi,3

:Hi,Site)

1zexp(bi,2zbi,3
:Hi,Site)

ð2Þ

where all subscripted instances of b are estimated parameters for

the existing habitat model. The logistic functional response (eqn 2)

represented situations where associations with local habitat

features were conditional on their availability [16], as may occur

if the habitat features are not limiting in all sites. Voles showed

consistent associations with shade and substrate-related features

across the observed range of sites (case 1 above), but were only

associated with shrub cover and late-decay DWD in sites where

these features were relatively sparse (case 2).

To calculate the value of local habitat resources for our new

home range model, it was necessary to translate the relative effects

of these habitat features within sites to an absolute measure that

could be compared among sites. To do so, we first integrated each

feature’s per-unit effect on the probability of local occurrence:

Vi~

ða
0

BidHi ð3Þ

where Vi represents the contribution of amount a of habitat

resource Hi to local vole habitat value. Note that the coefficients Bi

in eq. 1 express rates of change in (logit of) occurrence probability

with respect to local habitat resources (dLogit(PSta)/dHi,Sta), and so

each Vi expresses the cumulative positive effects of a given resource

on habitat use (Fig. 1). These cumulative measures of local habitat

value reach an upper limit if voles are no longer associated with a

resource where it is highly abundant.

We next calculated overall local habitat value (V) for all habitat

resources as:

V~
X

i

Vi

 !
{min

X
i

Vi

 !
ð4Þ

where the summations are across the four habitat terms (shrub

cover, DWD, shade, and substrate), and min(gVi) represents the

lowest-value local habitat found in the data used to parameterize

the model. Given a mapped distribution of V across a site, we

sought to estimate the maximum number of viable red-backed vole

home ranges that could be established there.

Home Range Model Description
Our home range model estimates the number, size, and position

of viable home ranges that can be established in a given site, where

viability is defined by a positive net balance between expected

access to habitat resources and both fixed and area-dependent

home range costs (Fig. 2). For each individual, a home range is

A Home Range Model for Predicting Abundance
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represented by a contiguous set of at least four 15-m resolution

cells (opposite edges were considered adjacent to one another to

prevent partial home ranges from extending outside the grid of

cells). All habitat cells were available for individuals to include in

their home range, but the value of each cell varied inversely with

the number of home ranges in which it was included. The resource

benefits derived from a given home range scaled with the total

habitat value of cells encompassed, asymptotically approaching an

upper bound where additional resources provided no incremental

value (Fig. 2). Accordingly, home range benefits (HRB) were

calculated as:

HRB~p1
:(1{exp({p2

:
XA

c~1

Vc

Ncz1
)) ð5Þ

where A is the number of cells included in the home range, Vc is

the habitat value of cell c, Nc is the number of other home ranges

that overlap cell c, and p1 and p2 are free parameters that

determine the shape of the curve. The costs (HRC) associated with

a given home range were represented by a fixed constant,

expressing basal metabolic demands to be met through resource

acquisition, plus the square root of home range area, expressing

the costs of travel and exposure to predation (Fig. 2):

HRC~p3z
ffiffiffiffi
A
p

ð6Þ

where p3 is a free parameter representing area-independent home

range costs. These fixed costs determine the minimum resource

benefits that need to be accrued, before accounting for additional

costs of home range size. The net value (HRNV) of a given home

range, measured in arbitrary units related to area, was then

calculated as the difference between benefits and costs:

HRNV ~HRB{HRC ð7Þ

This formulation enabled us to estimate the value of a given

home range as a function of the quality of habitat resources it

encompasses, overlap with other individuals, and total size. Home

ranges with a positive value for HRNV are considered to be viable,

whereas those for which HRNV,0 are not. As the number of home

ranges increases on a site, the average HRNV decreases because

individuals are forced to partition resources in high-quality habitat

patches, to maintain smaller home ranges with access to fewer

resources, or both. Therefore, there is a limit to the number of

viable home ranges that can be maintained at a given site, which

depends on the local distribution of habitat resources.

We applied this model to estimate the potential number of

home ranges that can be maintained in different sites using the

following procedure. Starting with one home range of a fixed size

and shape, we found the initial position that maximized HRNV. We

then let this home range expand or contract by one or two cells, or

remain static, such that the new home range had the highest HRNV

from among those considered. This step was repeated until no

further improvements in HRNV were possible. If the resulting home

range had HRNV.0, we then added another home range and

repeated the process, adding or removing up to two cells from

each of the home ranges in turn and iterating until none could

improve in HRNV. If one or more home ranges had HRNV,0, we

re-established home ranges from new initial conditions to again see

if a viable set could be obtained. For a given set of model

parameters (p1, p2, p3), we estimated resident vole abundance

within a site as the maximum number of home ranges that could

be established where HRNV.0 for each.

Figure 1. Derivation of habitat value from effects on relative
habitat use. A species may show strong associations with the
availability of a given habitat resource in areas where the resource is
in limited supply, but not in areas where the resource’s availability
exceeds the species’ requirements (A). When these conditional effects
on habitat use are integrated over the resource’s availability, the
inferred value of the habitat is characterized by a threshold relationship
with resource availability (B).
doi:10.1371/journal.pone.0040599.g001

Figure 2. Representation of the benefits and costs of main-
taining home ranges of different sizes. Home ranges where
benefits are greater than or equal to costs in a given habitat are
considered viable, and the home range with the greatest difference
between benefits and costs is considered optimal for that habitat. The
rate at which home range benefits accrue depends on both habitat
value and overlap with other individuals, producing a range of possible
curves (shaded region) and differences in the minimum, maximum, and
optimal home range size among habitats.
doi:10.1371/journal.pone.0040599.g002
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Field Data and Parameter Estimation
Our model purposely simplifies aspects of home range

behaviour in order to minimize the number of free parameters

that need to be estimated. While this necessarily sacrifices some

degree of biological realism, it enables the use of powerful inverse

modelling techniques [17] to parameterize the model solely from

data on species abundances in different habitats. Inverse modelling

estimates the home range parameter values that maximize the fit

of emergent population densities (as predicted by the resulting

model) to observations. The approach thereby allows the home

range model to be quantitatively compared with alternative

empirical models derived from the same data.

We estimated the values for p1, p2, and p3 that provided the best

fit to vole abundances in 31 boreal mixedwood sites near

Kapuskasing, Ontario, Canada (49u259N, 82u259W). At each of

these sites we live-trapped red-backed voles in the spring (7 May–4

June) of 2006 and 2007 (University of Toronto Animal Use

Protocol 20005744, 20006270, and 20006824), and measured

spatially-explicit habitat variables relevant to the model of local

habitat value (eq. 1–4; Table 1). Further details on the sites,

habitat measurements, and live-trapping procedures used are

provided in [15]. Although this is largely the same dataset used to

build the fine-scale habitat model, there was no circularity in the

parameterization of the home range model because the earlier

work used capture locations within sites as a response variable

while controlling for site-level capture frequency. Indeed, the

mean habitat effect on capture probability was approximately zero

for each site; across sites, there was virtually no correlation with

the final predicted number of home ranges (r = 20.10). Parameter

estimation for the home range model did not use any information

on capture locations within sites.

Live-trapping was carried out when populations were near their

annual minimum and individuals would have been able to

establish home ranges in the best local habitat present. Dispersal

rates among sexually mature red-backed voles are reportedly very

low [18], so we expect that captures generally sampled from local

resident populations.

Variation in animal detectability (probability of an individual’s

capture given that it is present) can affect estimates of population

size [19], and so we sought to correct the number of individuals

captured for possible year- and site-specific differences in

detectability. For each year and site, the log-likelihood (LL) for

the observed sequence of captures of new individuals ({x1, x2, x3})

over three days was:

LL~ln x1|x2|x3ð Þ,
x1*B n,pdð Þ,

x2*B n{x1,pdð Þ,
x3*B n{x1{x2,pdð Þ

ð8Þ

where n is the estimated total number of voles at the site, pd is their

estimated daily detectability, and B(?) is probability density from a

binomial distribution. We estimated the values for n and pd that

maximized the total log-likelihood across both years and all sites in

models where pd was either year-specific, site-specific, year- and

site-specific, or a global constant. We found the greatest support

for a model in which estimated detectability varied between years

(pd,2006 = 0.63; pd,2007 = 0.42), but not among different sites

(DAICC = 10.9 for next best model). Using this detectability model

we estimate that, over three trapping days, we captured 95% and

81% of voles present at each site in 2006 and 2007, respectively.

For each of the 31 sites, we divided the number of individuals

captured each year by their year-specific detectability over three

days, averaged these values across both years, and rounded this

average to the nearest integer. The result was used as our measure

of vole abundance at each site.

Assuming a Poisson error distribution, we compared observed

(corrected for detectability) and predicted vole abundances to

calculate the likelihood of a given set of parameters in the home

range model. We used a simulated annealing algorithm [20] to

maximize the sum of the log-likelihood of all observations across

the dataset and estimate best-fit values for p1, p2, and p3 [21].

Alternative Models
We separately fit a constant and three Poisson regression models

to this same dataset to evaluate the ability of the home range

model to predict site-level vole abundances. In the first regression

model, we sought to assess whether our home range model

performed better than a model that used the same predictor

variable for habitat value, but that disregarded its spatial

variability within sites. This model predicted vole abundance (Y)

by a log-linear function of average habitat value (V ) within each

site:

Y~exp(q0zq1V ) ð9Þ

where q0 and q1 are regression coefficients.

Table 1. Summary of methodology for quantifying vole abundance and local habitat value in 31 boreal mixedwood sites in
Ontario, Canada, 2006–2007.

Quantity Field sampling methods Model form

Vole abundance Live-trapping over 3 consecutive nights using 49 traps set
in 767 grid at 15 m intervals.

Average no. individuals, adjusted for detectability as
described in text.

Shrub cover Counts of stems $1 cm height within 221 1-m2 quadrats
set at 5 m intervals.

Weighted sum of counts in four classes, transformed to
have an upper asymptote.

Downed woody debris Line-intersect sampling along 14 120-m transects. Sum of diameters raised to an estimated exponent, per
unit of transect.

Shade Same as shrubs above. Gradient from detrended correspondence analysis (DCA)
on species composition.

Substrate Percent cover of four ground cover types in 221 1-m2 quadrats
set at 5 m spacing.

Weighted sum of ground cover types.

doi:10.1371/journal.pone.0040599.t001
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In the second and third regression models, we sought to assess

whether our home range model and habitat value metric

performed better than an empirical model constructed using site

averages for the original habitat resources (Hi, Site; equation 1).

Although we originally started with four habitat variables, we

decided to first use only two of these in order to restrict the ratio of

parameters to data and lessen the risk of overfitting. After some

preliminary comparisons, we found that the best two-variable

habitat model included the effects of shrub cover (HShr, Site) and

shade-tolerant understory composition (HSha, Site):

Y~exp(r0zr1HShr,Sitezr2HSha,Site) ð10Þ

where r0, r1, and r2 are regression coefficients. For completeness,

we also present results for the equivalent regression model that

included all four of the original habitat resources (r3 and r4 are

regression coefficients for DWD and substrate, respectively).

Lastly, for the constant model we predicted vole abundance as

the mean among sites (k). This represented a null model for no

relationship between vole abundance and our habitat metrics:

Y~k ð11Þ

We compared the home range, regression, and constant models

using Akaike’s Information Criterion corrected for small sample

sizes (AICc)

Application to Partial Harvesting Scenarios
We next applied the home range and regression models to

simulated forest stands in which the intensity and spatial pattern of

recent (5-year) harvesting were varied systematically. These

scenarios varied in the magnitude of habitat alteration resulting

from harvesting and in the degree of spatial heterogeneity induced.

As such, the scenarios provided a range of conditions through

which expected population-level responses under the non-spatial

regression models and the spatial home range model could be

compared.

We used the individual-based stand dynamics model SORTIE-

ND [22,23], to generate spatially explicit 2106210 m stem maps

for relatively old boreal mixedwood stands. Fifteen replicate stands

were initially grown for 160 years from bare ground conditions, by

which time, like the field sites, their composition was approxi-

mately equally divided between deciduous and coniferous species.

We simulated partial harvesting in each stand at four levels of

harvest intensity (30%, 50%, 70%, 90% basal area removal) and,

for each, three levels of harvest pattern (uniform, small-patch,

large-patch). To achieve different spatial patterns of harvesting, we

varied the size distribution of groups of trees to remove and retain

by drawing random deviates from a lognormal distribution: with

the mode held constant, we simulated greater degrees of harvest

aggregation by systematically increasing the variance in group

area (Fig. 3). As we explain below, we used these stem maps

together with published results describing effects of partial

harvesting on stand structure to derive expected vole habitat

value in 15615 m cells within the simulated stands, both before

and five years after harvesting (Fig. 4).

The only vole habitat feature that could be gleaned directly

from the model’s output was shade. SORTIE-ND computes the

percent of total sunlight (gap light index, GLI) transmitted through

tree crowns at a given point in space. We sought to translate GLI

into a measure of shade represented by an ordination of

understory shrub composition in the habitat model [15]. To do

so, we calculated each of the five tree species’ optimal GLI level

(i.e., where each had the fastest growth relative to the others). We

then regressed these values against ordination-based mean shade

values of 1-m2 plots in which saplings of each species were present

Figure 3. Stem maps depicting examples of simulated partial harvesting. Simulations included four levels of intensity (increasing from left
to right) and three levels of aggregation (increasing from bottom to top).
doi:10.1371/journal.pone.0040599.g003
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in the actual stands. The resulting relationship (Shade = 3.6802–

0.0132?GLI) showed a strong fit (R2 = 0.95) across the five species,

and enabled us to predict shade habitat values within 15615 m

cells of each simulated stand.

Substrate habitat largely distinguished coniferous from decidu-

ous litter on the forest floor. We used a relationship between this

habitat term and proportion coniferous basal area (PCBA) from

empirical data to estimate vole substrate value in cells of the

simulated stands (Substrate = 0.1193+0.1816?PCBA; R2 = 0.17).

Residuals from this relationship showed a lognormal distribution

and strong short-distance autocorrelation. To add realistic spatial

variability to the simulated stands, we applied lognormally-

distributed scatter to the estimated substrate values (using the

average standard deviation from within real unmanaged mixed-

wood stands) and re-arranged the cell scatter values to match

observed autocorrelation patterns.

We used published studies from nearby areas to estimate the

effects of partial harvesting on DWD and shrub cover. In aspen-

Figure 4. Simulated value of habitat components as a function of local intensity of partial harvesting. Shrub cover and overall habitat
value are presented for both the normal and suppressed shrub development scenarios (see text for details). Solid black lines indicate habitat trends
derived from LOESS regression.
doi:10.1371/journal.pone.0040599.g004
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dominated stands of northwestern Quebec, Harvey and Brais [24]

found that well-decomposed DWD was less abundant in 1/3- and

2/3-removal cuts than in control stands 6 years after harvesting.

To apply these results to the simulations, we calculated their

observed decreases in DWD after partial harvesting relative to

unharvested stands, and multiplied these values by the average

amount of late-decay DWD in unmanaged stands. The resulting

three points fell on a straight line (DWD = 2.2035–1.8336?PC;

R2 = 1.00) describing a decrease in DWD with increasing

proportion of basal area cut (PC). As with substrate, we applied

lognormally-distributed and autocorrelated scatter to these values

based on observed variability in DWD within unmanaged stands.

Studies across the boreal forest have generally failed to identify

an effect of partial harvesting on shrub cover [25,26,27], although

partial harvesting has had a strong negative effect on shrub cover

in the Pacific Northwest region [28]. However, chemical tending

practices sometimes used to promote successful regeneration in

partially harvested stands have been found to reduce shrub cover

by approximately 60% [25]. We therefore developed two scenarios

for post-harvest shrub development. In the ‘normal’ shrub cover

scenario, shrub cover was unaffected by harvesting and was

assigned the mean value from unharvested stands. In the

‘suppressed’ shrub cover scenario, shrub cover was unaffected in

cells where the percent of basal area cut was less than 33%, was

reduced by an average of approximately 60% where the percent

cut exceeded 67%, and decreased linearly between these levels at

cutting intensities of 33–67%. This scenario was used to examine

the effects of post-harvest herbicide application, and to compare

predictions of the home range model where the contrast between

lightly harvested and intensely harvested cells was enhanced

through reductions in shrub cover. Again, we applied lognormally-

distributed and autocorrelated scatter based on observed variabil-

ity within unmanaged stands (Fig. 4).

Results

Model Parameterization
Across the 31 1.4 ha sites, mean (6SD) spring red-backed vole

abundance was estimated to be 7.8 (64.5) individuals. The home

range model explained a modest amount of variation in vole

abundance among these sites (R2 = 0.25), with predicted abun-

dances ranging from 3–10 individuals. Comparisons of AICc

values with those for constant and regression models (Table 2)

indicated that the home range model fit the data much better than

a constant value (DAICc = 12.0), and substantially better than

regression models that used original habitat variables

(DAICc = 5.9, 8.3). Given their low degree of support from the

data, the constant and original-habitat-variable models received

no further consideration.

The home range model had virtually the same support from the

data as a regression model that used our derived metric for habitat

value (DAICc = 0.1), though the latter model explained less

variation in the data (R2 = 0.19 with one fewer parameter).

Although predicted abundances under the home range model and

habitat-value regression model were similar, the home range

model tended to predict a greater number of voles than the

regression model in sites with more uniform local habitat values,

and fewer voles in sites that had more varied local habitat (Fig. 5).

Mean (6SD) home range size was 7.3 (61.2) grid cells, or 0.16

(60.03) ha. There was two-fold variation in the size of modelled

home ranges, from 5 to 10 grid cells (0.11 to 0.23 ha). Among the

1519 grid cells in all 31 sites, 72% were included in one home

range, 18% were included in two home ranges, and 1% were

included in three home ranges. Nine percent of grid cells were not

included in any of the optimized home ranges. As the estimated

number of home ranges increased, individual home ranges both

tended to become smaller (r = 20.34) and exhibited greater

overlap with one another (r = 0.71).

Partial Harvest Simulations
Applying the home range and habitat-value regression models to

simulations of habitat changes through partial harvesting, red-

backed voles were predicted to decrease in abundance across a

gradient in harvest intensity. Voles were fairly resilient to moderate

levels of basal area removal in the normal shrub cover scenarios, but

showed markedly greater decreases where post-harvest shrub cover

was suppressed through herbicide application (Fig. 6). Although the

spatial pattern of harvesting had a minor effect on abundance

compared to both harvest intensity and shrub suppression, voles

reached somewhat higher abundances under uniform vs. large-

patch retention patterns at low intensities of disturbance.

Under the home range model, decreases in the abundance of

voles were mostly attributable to lower degrees of home range

overlap (Table 3), and to an increasing area not included in any

home ranges. Mean home range size varied by only 13% among

the partial harvest scenarios (Table 3).

The home range and habitat-value regression models gave

similar predictions for harvest types that induced small and

moderate degrees of habitat change (30–70% removal with

normal shrub cover and 30–50% removal with suppressed shrub

cover). However, as habitat became more heavily degraded by

high-intensity silvicultural practices, the home range model

predicted greater decreases in abundance than the habitat-value

regression model.

Table 2. Comparison of the fit of home range, regression, and constant models to the 2006–2007 spring abundances of red-
backed voles across 31 boreal mixedwood sites in Ontario, Canada.

Model No. Parameters Parameter Values Log-likelihood DAICc R2

Home range 3 p1 = 8.108, p2 = 0.222, p3 = 4.150 287.95 0.0 0.25

Regression against derived habitat value 2 q0 = 0.856, q1 = 0.711 289.21 0.1 0.19

Regression against original shrub and shade variables 3 r0 = 20.473, r1 = 2.621, r2 = 0.643 290.90 5.9 0.13

Regression against all original habitat variables 5 r0 = 21.575, r1 = 3.704, r2 = 0.778,
r3 = 0.144, r4 = 1.253

289.34 8.3 0.18

Constant 1 k = 7.774 296.33 12.0 0.00

doi:10.1371/journal.pone.0040599.t002
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Figure 5. Difference between home range and habitat-value model predictions plotted against within-stand variation in habitat
value. The solid black line represents the linear trend in the relationship.
doi:10.1371/journal.pone.0040599.g005

Figure 6. Comparisons of predicted red-backed vole abundances (±SD) in various simulated partial harvesting scenarios.
Predictions from both the habitat-value regression (open symbols) and home range (filled symbols) models are shown. Circles, triangles, and squares
represent large-patch, small-patch, and uniform harvest patterns, respectively. Diamonds represent unharvested stands.
doi:10.1371/journal.pone.0040599.g006
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Discussion

Habitat selection at local-patch and home-range scales involve

decisions where individuals must assess how fitness is affected by

the quality of habitat, interference from conspecifics, travel, and

potentially a multitude of other factors [29]. Selection of habitat

features is typically scale-dependent, such that features that

describe good habitat at fine scales may not do so at broader

ones [30]. Theoretical developments in habitat selection have

sought to integrate these various processes and scales through

frameworks that generate predictions of population density from

simple underlying mechanisms [3,31,32,33]. In particular, the

classical concept of an ideal free distribution [34] has proved

highly influential in explaining how individuals distribute them-

selves among habitat patches when the fitness value of each patch

depends on both its inherent quality and the number of individuals

that occupy it.

Our model of home range establishment operates at an

individual level to estimate use of space as a trade-off between

habitat value, overlap with conspecifics, and home range size. It

accounts for partitioning of resources among individuals that share

a given habitat patch and, following the principles of an ideal free

distribution, promotes dispersion through density-dependent

selection of patches according to their fitness value. By simulating

iterative changes in the positions of a set of individual home

ranges, the model estimates the maximum number of feasible

home ranges that can be established within a heterogeneous area

when individuals optimize the difference between resource benefits

and costs.

Evaluation of the Home Range Model
We employed inverse modelling, whereby data at a given scale

(e.g., population) are used to make inferences on processes

operating at the next-lower scale (e.g., individual home ranges),

to maximize the model’s fit to observed vole abundances across a

number of sites. Unlike many other spatially explicit home range

models, this approach does not require observations of the location

or movement of individuals. In addition, calibration of the home

range model from vole abundances enabled direct comparison to

three regression models based on the same data. Naı̈ve application

of the original terms that explained local habitat use did not

predict stand-level patterns of abundance well (Table 2). It seems,

therefore, that the method by which we translated predictors of

local habitat use into an aggregate measure of habitat value (eqns

3, 4) was important to understanding how they affect home range

establishment and population density. In particular, limiting

thresholds (Fig. 1) may have a key role in determining habitat

relationships [35], but such complexities are generally not

incorporated into empirical habitat analyses built using linear

models.

The home range model received nearly equivalent support to

(but had somewhat greater explanatory power than) a regression

model where the individual effects of each variable were

incorporated into an aggregate measure of habitat value, then

averaged across each site (Table 2). Although predicted abun-

dances under the home range and habitat-value regression models

were highly concordant, the home range model tended to predict

lower vole abundances than the habitat-value regression model in

stands with more heterogeneous habitat (Fig. 5). Within-stand

Table 3. Mean habitat value, mean home range size, and home range overlap under the home range model for mixedwood field
sites in Ontario, Canada, and for simulations of unharvested and partially harvested stands.

Normal shrub development Suppressed shrub development

Mean habitat
value (±sd) *

Mean home
range size (±sd) {

Home range
overlap (%) {

Mean habitat
value (±sd) *

Mean home
range size (±sd) {

Home range
overlap (%) {

Field sites 1.6460.35 7.361.2 35% - - -

Unharvested 2.2460.47 8.361.1 82% - - -

30% removal

Large-patch 2.0060.53 7.961.1 67% 1.8660.67 8.261.1 70%

Small-patch 2.0660.48 8.061.1 70% 1.9960.53 8.161.1 69%

Uniform 2.1360.48 8.061.1 73% 2.1260.48 8.061.2 72%

50% removal

Large-patch 1.7560.55 8.061.1 54% 1.3060.74 8.161.1 49%

Small-patch 1.8360.52 7.961.1 57% 1.3660.64 8.261.0 44%

Uniform 1.9260.49 7.961.1 61% 1.4460.50 8.161.0 33%

70% removal

Large-patch 1.4060.59 8.061.1 39% 0.7060.65 8.361.1 35%

Small-patch 1.4760.56 8.061.0 41% 0.6960.56 8.360.9 23%

Uniform 1.5760.51 7.961.0 42% 0.7260.45 8.460.8 11%

90% removal

Large-patch 0.9160.55 8.260.9 23% 0.2560.43 7.361.7 19%

Small-patch 0.9660.45 8.361.0 22% 0.2560.37 7.461.2 8%

Uniform 1.0360.50 8.360.9 18% 0.2660.35 7.861.3 0%

*Mean6SD of vole habitat value per cell (eq. 3 and 4).
{Home range size is given in units of 15615 m grid cells.
{Mean percentage of each home range that is shared with one or more other home ranges.
doi:10.1371/journal.pone.0040599.t003
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variability in vole habitat value was fairly low in the field sites

(mean CV = 24%), so it is interesting that differences between the

two models, albeit modest ones, arose from this heterogeneity.

One might expect such differences to be more pronounced in sites

subjected to variable intensities of disturbance, which we indeed

found in certain simulations of partially harvested stands (discussed

further below).

Unlike the regression models, our home range model generates

a number of further predictions concerning vole home range size,

location, and overlap. Reported home range sizes for red-backed

voles range from 0.09–0.5 ha [18], and the predicted mean of

0.16 ha was within this range. Although the model produced two-

fold variation in home range size, mean home range size among

sites was only weakly related to the density of individuals. Field

observations have shown that mean home range sizes of mature

females vary little within habitat types, and are independent of

population density [18]. The model further predicted that habitat

patches would commonly be included in one home range, would

occasionally overlap two home ranges, and would rarely be used

by three or more individuals. Mature female red-backed voles

maintain home ranges with little overlap during the breeding

season [18], but home ranges of males and immature females may

overlap with each other and with those of mature females [36].

These patterns are broadly consistent with the degree of overlap

observed in the simulated home ranges.

Simulations of Partially Harvested Stands
Red-backed voles tend to increase in abundance with stand age,

reaching their highest densities in mature and old stands with

complex structural features [37]. They are tolerant of light- and

moderate-intensity partial harvesting, but often exhibit decreased

abundance where harvesting removes more than about two-thirds

of stand basal area (reviewed in [38]). These changes appear to be

attributable to the alteration of important habitat conditions such

as protective cover and cool, moist microclimates. Voles exhibit

less marked decreases in abundance in harvested stands where

such features are maintained [39,40].

As a model evaluation exercise, we compared our simulation

results to these general patterns in red-backed vole responses to

partial forest harvesting. The simulations were in agreement with

previous empirical results: with normal shrub development,

estimated abundances of red-backed voles decreased by ,30% at

harvest intensities of up to 50% removal, but then decreased by

about 60–70% at 90% removal (Fig. 6). Our simulations for post-

harvest shrub suppression appropriately reflected the strong adverse

effects such practices are known to have on this species [41].

At low removal intensities, both models predicted that dispersed

retention could support somewhat higher vole abundances because

habitat within these stands was better shaded, on average, than in

stands subjected to aggregated harvesting. In highly degraded

habitat scenarios the effect was offset by greater average shrub cover

under aggregated harvesting, leading to little difference in vole

abundance among harvest patterns (Fig. 6). The home range model

further predicted that when harvesting induced spatial heterogene-

ity in local habitat, voles tended to establish home ranges within less-

disturbed areas, particularly as the overall intensity of disturbance

increased. In an experimental comparison of different harvest

patterns, there were no significant differences in small mammal

abundances between dispersed and aggregated retention treatments

at 75%, 40%, or 15% retention [40]. However, 70% of red-backed

vole captures in the aggregated retention treatments occurred in the

unharvested portion of those stands [42].

Model predictions in the partial harvest simulations diverged in

scenarios with high degrees of habitat degradation, with the home

range model predicting sharper decreases in abundance than the

habitat-value regression model (Fig. 6). Whereas the regression

model assumed that log-abundance was linearly related to habitat

value, the home range model supposed a lower threshold below

which voles could not establish viable home ranges. Many species

show abrupt decreases in habitat use beyond a given level of

habitat alteration, even after accounting for local habitat suitability

[43]. Such effects cannot be detected by regression models when

extrapolating outside the range of data used for their development.

However, if a mechanistic model captures underlying processes

which govern habitat use, and these processes are invariant to

habitat alteration, then we might place greater confidence in its

predictions under novel habitat conditions. Although we cannot

verify that our home range model meets these conditions, its

predictions suggest one potential mechanism for non-linear

responses to habitat alteration that could be evaluated in future

research.

Application in New Contexts
Although the home range model generated valuable insights for

both the original calibration data and simulated partial harvesting

scenarios, its extension to new landscapes, habitats, and popula-

tions remains untested. It should also be noted that although the

home range model had a better fit to the data than any of the

alternative models considered, it was still unable to explain most of

the variation in vole abundance among sites. Independent testing

of the model is needed to verify its performance under new habitat

conditions, as well as to assess how its parameters vary, for

example, with inter-annual fluctuations in population density. The

simulations presented here explore how the model may behave

under varying degrees of habitat alteration; these results provide

specific predictions that we believe should be tested against real

data from partially harvested boreal mixedwood stands [44].

We calibrated the home range model on top of an existing

model that describes the fine-scale habitat assocations of red-

backed voles within these stands. This may seem to impose a

strong restriction on its application to new contexts, but other

approaches could be used as well. One possibility would be to

generate a habitat value map based on a resource selection

function [45] developed from other available data appropriate to a

given context. A second possibility would be to use inverse

modelling to infer parameters for a model describing habitat value

along with the parameters of the home range model, using only a

set of abundance data and spatially-explicit habitat variables.

Although this approach does not require a priori information on

habitat quality, it would require a larger amount of abundance

data because the parameters for habitat value are not contrained

by any lower-level data on habitat use.

Conclusions
Optimal home range models such as the one developed here

apply a mechanistic biological foundation to the problem of

estimating species abundances within heterogeneous habitats.

With empirical data, they can test predictions concerning

behavioural strategies for home range establishment and spatial

dispersion [8]. With simulated data, they can generate predictions

of how a species may respond to habitat alteration scenarios with

varying degrees of spatial heterogeneity. For example, individuals

have been found to vary home range size in response to the loss

and fragmentation of good habitat patches [46], as well as in

response to edge-related habitat conditions created by forest

disturbance [47]. Mechanistic home range models like ours can

explain how such changes in individual behavior as a result of

habitat alteration might scale up to population-level impacts.
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Simple phenomenological models for predicting species abun-

dance may overlook processes that affect habitat use by individual

animals. As ecologists increasingly recognize the importance of

heterogeneity within forest ecosystems, mechanistic models that

appropriately scale from individual- to population-level can have

an important role in understanding species-habitat relationships

under natural and anthropogenic disturbances.

Supporting Information

Appendix S1 Walkthrough of home range model calcu-
lations for an example site.
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